
A Proofs413

In this section, we provide proofs for the theoretical results presented in the paper.414

A.1 Convergence of CAUSAL-UCB* and CAUSAL-TS*415

Next we provide proofs for the regret bounds for CAUSAL-UCB* and CAUSAL-TS*. We begin416

by introducing some necessary lemmas. We first establish that the proposed Q̂[C] is a consistent417

estimate for c-factor Q[C], for every C 2 C. It will allow us to show that the confidence set Mt418

contains the underlying SCM M with high probabilities.419

Lemma 1. For a causal diagram G, let C 2 C be a c-component in G. Then, c-factor Q[C] factorizes420

over a topological ordering � in G as follows:421

Q[C] =
Y

V 2C

q
�
v | pa+

V

�
(6)

where extended parents PA+
V = Pa(CV ) \ {V }; CV is the c-component containing V in G[{V 0

2422

C | V 0
� V }]. Moreover, q

�
V | PA+

V

�
= P

�
V | PA+

V , do(⇡)
�

for any policy ⇡ 2 ⇧S(C).423

Proof. The decomposition follows from the semi-Markovian factorization in [7, Def. 15].424

Lemma 2. Fix � 2 (0, 1). With probability (w.p.) 1� �
2 , M 2 Mt for all time steps t = 1, 2, . . . .425

Proof. Fix a time step t. For every c-component C 2 C and every V 2 C and any pa+
V 2 ⌦PA+

V
,426

define function fV (t, �) as427

fV (t, �) =

vuut6
��⌦V

�� ln
⇣
2
��⌦PA+

V

����V (C)
��t/�

⌘

max
�
nt

�
pa+

V

�
, 1
 . (20)

Fix nt

�
pa+

V

�
= n. It follows from the concentration inequality in [22, C.1] that428

P
���q

�
· | pa+

V

�
� q̂t

�
· | pa+

V

���
1
> fV (t, �) and nt

�
pa+

V

�
= n

�


�

4t3
��⌦PA+

V

����V (C)
�� (21)

Hence a union bound over all possible values of nt

�
pa+

V

�
implies that Eq. (4) holds at any time step429

t with probability at most430

P
���q

�
· | pa+

V

�
� q̂t

�
· | pa+

V

���
1
> fV (t, �)

�


�

4t2
��⌦PA+

V

����V (C)
�� (22)

Summing these error probabilities over all realizations pa+
V for every variable V 2 V (C) gives431

P (M 62 Mt) 
�

4t2 . A union bound over all times steps t = 1, 2, . . . implies:432

P (8t = 1, 2, . . . ,M 2 Mt) � 1�
1X

t=1

P (M 62 Mt) � 1�
1X

t=1

�

4t2
� 1�

�

2
. (23)

This proves the claimed concentration bound.433

Lemma 3. Fix � 2 (0, 1). W.p. at least 1� �
2 , for any T > 1,434

TX

t=1

EM [Y | do(⇡t)]� Yt 
p
2T log (T/�) (24)

Proof. Let Zt = EM [Y | do(⇡t)]�Yt and let Ht = {Vi}
t�1
i=1 denote experimental history up to time435

step t. It is verifiable that E[Zt | Ht] = 0 and |Zt|  1. This means that Z1, . . . , ZT is a sequence436

of martingale differences. Azuma-Hoeffding inequality [18] implies that for all ✏ > 0 and T 2 N,437

P

 
TX

t=1

Zt > ✏

!
 exp

✓
�

✏2

2T

◆
. (25)

Setting ✏ =
p
2T log (T/�) we obtain the claimed bound.438
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Lemma 4. Assume that M 2 Mt for all time steps t = 1, 2, . . . . Let Mt be the solution of the inner439

maximization in Eq. (5). For all � 2 (0, 1) and T > 1,440

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)]  17�(G, S)
q��S

��T ln
���V (C)

��T/�
�
. (26)

Proof. Let St denote the scope of policy ⇡t at time step t. Let variables in V (CSt) be ordered by441

V (1)
� V (2)

� · · · � V (k) following a topological ordering in GSt . For any i = 0, . . . , k, define442

E(i)[Y | do(⇡t)] =
X

v(CSt )\y

y
iY

j=1

PM

⇣
v(j) | pa+

V (j)

⌘ kY

j=i+1

PMt

⇣
v(j) | pa+

V (j)

⌘
. (27)

By a telescoping sum, EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] for any time t could be written as443

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] =
k�1X

i=0

E(i)[Y | do(⇡t)]� E(i+1)[Y | do(⇡t)]. (28)

Observe that for any i = 0, 1, . . . , k, expected rewards E(i)[Y | do(⇡t)] and E(i+1)[Y | do(⇡t)] only444

differ in the factor of P
�
v(i) | pa+

V (i)

�
. This implies445

E(i)[Y | do(⇡t)]� E(i+1)[Y | do(⇡t)] 
X

pa+

V (i)

kPMt

�
· | pa+

V (i)

�
� PM

�
· | pa+

V (i)

�
k1 (29)



X

pa+

V (i)

kPMt

�
· | pa+

V (i)

�
� P̂t

�
· | pa+

V (i)

�
k1 (30)

+
X

pa+

V (i)

kP̂t

�
· | pa+

V (i)

�
� PM

�
· | pa+

V (i)

�
k1 (31)

Since both M and Mt is contained in the hypothesis class Mt,446

E(i)[Y | do(⇡t)]� E(i+1)[Y | do(⇡t)] 
X

pa+

V (i)

2

vuut6
��⌦V

�� ln
⇣
2
��⌦PA+

V

����V (C)
��t/�

⌘

max
�
nt

�
pa+

V

�
, 1
 (32)

For any S 2 S, let T (S) be a subset of {1, . . . , T} containing time steps t such that ⇡t ⇠ S . We have447

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] (33)

=
X

S2S

X

t2T (S)

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] (34)

=
X

S2S

X

t2T (S)

k�1X

i=0

E(i)[Y | do(⇡t)]� E(i+1)[Y | do(⇡t)] (35)



X

S2S

X

t2T (S)

k�1X

i=0

2

vuut6
��⌦V

�� ln
⇣
2
��⌦PA+

V

����V (C)
��t/�

⌘

max
�
nt

�
pa+

V

�
, 1
 (36)

Let nt(S) denote the total occurrence of event ⇡t ⇠ S prior to time t. Applying [22, C.3] gives448

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] (37)



X

S2S

X

V 2V (CS)

12

r��⌦V [PA+
V

��nT+1(S) ln
⇣
2
��⌦PA+

V

����V (C)
��T/�

⌘
(38)



X

S2S

p
nT+1(S)max

S2S

X

V 2V (CS)

12

r��⌦V [PA+
V

�� ln
⇣
2
��⌦PA+

V

����V (C)
��T/�

⌘
(39)
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Applying Jensen’s inequality we obtain449

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)]

 max
S2S

X

V 2V (CS)

12

r��⌦V [PA+
V

����S
��T ln

⇣
2
��⌦PA+

V

����V (C)
��T/�

⌘ (40)

A few simplification gives the claimed bound450

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)]  17�(G, S)
q��S

��T ln
���V (C)

��T/�
�

(41)

where function �(G, S) = maxS2S
P

V 2V (CS)

q��⌦V [PA+
V

��.451

Theorem 1. For a causal diagram G and a mixed policy scope S, fix a � 2 (0, 1). With probability at452

least 1� �, it holds for any T > 1, the regret of CAUSAL-UCB* is bounded by453

R(T,M)  19�(G, S)
q��S

��T ln
���V (C)

��T/�
�
. (9)

where function �(G, S) = maxS2S �(G,S) and �(G,S) =
P

V 2V (CS)

q��⌦V [PA+
V

��.454

Proof. The cumulative regret R(T,M) could be written as follows, by a telescoping sum:455

R(T,M) =
TX

t=1

EM [Y | do(⇡⇤)]� Yt (42)

=
TX

t=1

EM [Y | do(⇡⇤)]� EM [Y | do(⇡t)] +
TX

t=1

EM [Y | do(⇡t)]� Yt (43)

Lem. 2 implies that w.p. 1� �
2 , the actual SCM M 2 Mt for all time steps t. Since Mt and ⇡t are456

the optimistic instance in Mt that achieves the maximal expected reward,457

R(T,M) 
TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] +
TX

t=1

EM [Y | do(⇡t)]� Yt (44)

Among quantities in the above equation, Lem. 3 implies that w.p. 1� �
2 ,458

TX

t=1

EM [Y | do(⇡t)]� Yt 
p
2T log (T/�) (45)

Applying Lem. 4 gives the following bound:459

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)]  17�(G, S)
q��S

��T ln
���V (C)

��T/�
�
. (46)

The above equations together imply460

R(T,M)  17�(G, S)
q��S

��T ln
���V (C)

��T/�
�
+
p
2T log (T/�) (47)

 19�(G, S)
q��S

��T ln
���V (C)

��T/�
�

(48)

The error probabilities are bounded by �
2 + �

2 = �. This proves the claimed regret bound.461

Theorem 3. Given a causal diagram G, a mixed policy scope S, and a prior distribution ⇢, it holds462

for any T > 1, the regret of CAUSAL-TS* is bounded by463

R(T, ⇢)  26�(G, S)
q��S

��T ln
���V (C)

��T
�
. (19)
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Proof. The idea of the proof was established in [42, 34]. First, note that given any sample history464

Ht = {Vi}
t�1
i=1 , the true SCM M and the sampled Mt are identically distributed. That means that465

E [EM [Y | do(⇡⇤)] | Ht,M ⇠ ⇢] = E [EMt [Y | do(⇡t)] | Ht,Mt ⇠ ⇢] (49)

Since Yt ⇠ P (Y | do(⇡t)), we also have466

E [Yt | Ht,M ⇠ ⇢] = E [EM [Y | do(⇡t)] | Ht,M ⇠ ⇢] (50)

The Bayesian cumulative regret R(T, ⇢) could thus be written as:467

R(T, ⇢) = E
"

TX

t=1

EM [Y | do(⇡⇤)]� Yt | M ⇠ ⇢

#
(51)

= E
"

TX

t=1

EMt [Y | do(⇡t)]� Yt | M,Mt ⇠ ⇢

#
(52)

= E
"

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] | M,Mt ⇠ ⇢

#
(53)

We can use ⇢(M | Ht) = ⇢(Mt | Ht) again and say that both M and Mt belongs to Mt for all time468

steps t w.p. at least 1� � (Lem. 2). This means that we can bound R(T, ⇢) in CAUSAL-TS*469

R(T, ⇢)  E
"

TX

t=1

EMt [Y | do(⇡t)]� EM [Y | do(⇡t)] | M,Mt 2 Mt

#
+ �T (54)

 17�(G, S)
q��S

��T ln
���V (C)

��T/�
�
+ �T (55)

The last step follows from Lem. 4. Setting � = 1
T we obtain the claimed bound.470

A.2 C-Canonical SCMs471

In this section, we provide proofs for theoretical results related to C-canonical SCMs.472

Theorem 2. For any SCM M = hV ,U ,F , P (U)i, let C be an arbitrary c-collection. For any473

C 2 C, c-factor Q[C] decomposes as follows:474

Q[C](v) =
X

U2U

X

u=1,...,dU

Y

V 2C

1{fV (paV ,uV ) = v}
Y

U2U

P (u) (11)

where for every exogenous U 2 U , P (U) is a discrete distribution over a finite domain {1, . . . , dU}475

with cardinality dU =
P

C2C(U)

��⌦Pa(C)

��; C(U) ✓ C are c-components covering U .476

Proof. Let ~P be a vector representing all values of c-factors Q[C] contained in C. Formally,477

~P = (Q[C](c,paC) | 8C 2 C, 8c 2 ⌦C , 8paC 2 ⌦PAC ) (56)

where PAC = Pa(C) \C. Obviously, ~P is a vector containing d =
P

C2C(U)

��⌦Pa(C)

�� elements.478

However, since for any C 2 C,
P

c Q[C] = 1, it only takes a vector with d � 1 dimensions to479

determine ~P . We could thus see ~P as a point in the (d� 1)-dimensional real space. Following the480

discretization procedure in [60, Lem. A.6] we obtain the claimed decomposition.481

Proposition 1. For a causal diagram G and a c-collection C, MINCOLLECT(G,C) returns a minimal482

reduction C⇤
of C.483

Proof. The soundness of IDENTIFY implies that MINCOLLECT must returns a valid reduction C⇤484

of c-collection C in G. What remains is to show that C⇤ is minimal. Suppose C⇤ is not minimal.485

That is, there exists a c-component C 2 C⇤ such that Q[C] is identifiable from other c-factors486

Q[C 0] in C⇤
\ {C} in G. It follows from the construction procedure in [31, Theorem 3] that one487

could construct a pair of SCMs M1,M2 compatible with G such that QM1 [C] 6= QM2 [C] while488

QM1 [C
0] = QM2 [C

0] for any other C 0
2 C⇤

\ {C}. This means that Q[C] is not identifiable from489

C⇤
\ {C} in G, which is a contradiction.490
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Proposition 2. For a causal diagram G, any c-collection C has a unique minimal reduction.491

Proof. We will utilize the following claim492

Claim 1. If C1 and C2 are both reductions of a c-collection C in a causal diagram G, then C1 \ C2493

is a reduction of both C1 and C2 in G.494

The uniqueness of the minimal reduction of any c-collection C follows immediately from the above495

claim. Suppose C has two different minimal reductions C1,C2. Claim 1 implies that their intersection496

C1 \ C2 is a reduction of C1 and C2, which contradicts the assumption that C1 and C2 are both497

minimal reductions.498

Next we will provide the proof for Claim 1. Let mi = |C \ Ci| where i = 1, 2. We will show the499

result by induction after m = m1 +m2.500

Base Case: m = 2. Let Ci = C \ Ci for i = 1, 2. It suffices to show that C1 2 C2 is identifiable501

from c-factors in C2 \ {C1}. MINCOLLECT shows that C1 is identifiable from C1 if any only if502

there exists a c-component C 2 C1 such that Q[C1] is identifiable from Q[C]. If C 6= C2, we must503

have C1 \C2 = C2 \ {C1} is a reduction of C2 since C 2 C2 and IDENTIFY(C1,C,G) 6= FAIL. If504

C = C2, since C2 is a reduction of C by removing C2, there must exists c-component C 0
2 C such505

that IDENTIFY(C2,C 0,G) 6= FAIL. Also, note that C 0
6= C1; otherwise, one would have C1 = C2506

which contradicts the fact that C1 6= C2. This means that C 0
2 C1 \C2, which again implies that C1507

is identifiable from C2 \ {C1} in G. We could thus obtain a reduction C1 \ C2 of C2 by removing508

c-component C1. The proof for C1 \ C2 being a reduction of C1 follows the same procedure.509

Induction Step: m  k + 1. Suppose the result holds for m  k where k � 2 and consider the510

case m = k+1. So max{m1,m2} > 1, say m2 > 1. Thus C2 is obtained by successively removing511

m2 identifiable c-components from C. Let C0
2 be a reduction obtained by removing the first m2 � 1512

of these. By the induction assumption, C1\C0
2 is a reduction of C2 obtained by removing at most m1513

identifiable c-components from C0
2. Furthermore, C2 is also a reduction of C0

2 obtained by removing514

exactly one identifiable c-component. Since (C1 \ C0
2) \ C2 = C1 \ C2 and m1 + 1  k, the515

induction assumption yields that C1 \ C2 is a reduction of C2. Similarly, the induction assumption516

gives that C1 \ C2 is a reduction of C1. This completes the proof.517

B Simulation Setups518

In all experiments, we evaluate our proposed CAUSAL-TS* with uninformative Dirichlet priors over519

exogenous probabilities and uniform priors over structural functions, which we label as c-ts*. As a520

baseline, we also include following algorithms. (1) Randomized trials (rct) allocating treatments in521

all possible scopes uniformly at random; (2) standard Thompson sampling algorithm (ts) using all522

deterministic policies as arms; and (3) Thompson sampling over a simplified mixed scope (ts*), which523

is obtained by applying graphical conditions in [30]. For each experiment, we randomly generate 100524

instances of SCMs compatible with the corresponding causal diagram. For each random SCM, we525

measure the cumulative regrets of all algorithms over T = 1.1⇥ 103 episodes. For every algorithm526

in every random SCM instance, we repeat the online learning process for 100 times, and compute527

the cumulative regret averaging over all repetitions. Finally, all experiments were performed on a528

computer with 32GB memory, implemented in MATLAB.529

C Related Work on Canonical SCMs530

XZ Y

U

Figure 5: IV

The idea of canonical SCMs was first explored in [5, 4], which introduced a531

canonical partitioning of exogenous domains in the ‘IV” diagram in Fig. 5.532

For binary endogenous variables X,Y, Z 2 {0, 1}, the canonical partitioning533

allows one to discretize the domain of U into 16 equivalent classes without534

changing the original counterfactual distributions and the graphical structure535

in Fig. 5. Such discritization is also referred to as the principal stratification536

[15, 37]. Based on this finite-state representation, tight bounding strategy was proposed to evaluate537

treatment effects under the condition of imperfect compliance in randomized experiments [6]. There538
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also exist Bayesian approaches to obtain posterior distributions of causal effects provided with data539

collected from experimental studies with imperfect compliance [12, 20].540

The canonical partitioning could be extended to a more generalized class of causal diagrams that are541

reducible to the “IV” graph [43, 56]. However, these methods do not necessarily encode all constraints542

over induced distributions. [14] showed that for a specific class of causal diagrams satisfying a running543

intersection property among exogenous variables, all equality and inequality constraints over the544

observational distribution could be generated using discrete unobserved domains. [41] applied a545

classic result of Carathéodory theorem in convex geometry [9] and developed a generative model546

with finite-state unobserved variables that could represent the observational distribution over discrete547

domains in an arbitrary causal diagram. More recently, [60] introduced a family of canonical548

SCMs that could represent all categorical counterfactual distributions in any causal diagram with549

finite exogenous states. Using this canonical representation, the problem of inferring counterfactual550

probabilities from the combination of observational and interventional data is reducible to a series551

of polynomial optimization programs [55, 13]. The computational framework of neural networks is552

also applicable to determine the identifiability of causal effects over discrete observed domains [54].553

Finally, representing distributions over continuous observed domains is more challenging; existing554

methods often require untestable parametric assumptions about the underlying environment [23, 19].555

Thm. 2 extends existing results in several non-trivial ways. First, the cardinality of exogenous states556

in canonical SCMs [60] grows exponentially with regard to the total number of observed states. The557

restricted family of canonical SCM in Thm. 2 is tailored for an arbitrary collection of c-components558

in the causal diagram. This means that, in many cases, the cardinality of exogenous domains in559

C-canonical SCMs could be sparse, growing as a polynomial function of the size of observed states.560

Second, we propose a novel algorithm (Alg. 2) to exploit equality relationships among c-factors. This561

allows us to further reduce the model complexity of C-canonical SCMs while maintaining the same562

qualitative and quantitative constraints over parameters of target c-factors.563
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