A Proofs

In this section, we provide proofs for the theoretical results presented in the paper.

A. 1 Convergence of CaUsal-UCB* and Causal-TS*

Next we provide proofs for the regret bounds for CAUSAL-UCB* and CAUSAL-TS*. We begin by introducing some necessary lemmas. We first establish that the proposed $\hat{Q}[\boldsymbol{C}]$ is a consistent estimate for c-factor $Q[\boldsymbol{C}]$, for every $\boldsymbol{C} \in \mathbb{C}$. It will allow us to show that the confidence set \mathscr{M}_{t} contains the underlying SCM M with high probabilities.
Lemma 1. For a causal diagram \mathcal{G}, let $\boldsymbol{C} \in \mathbb{C}$ be a c-component in \mathcal{G}. Then, c-factor $Q[\boldsymbol{C}]$ factorizes over a topological ordering \prec in \mathcal{G} as follows:

$$
\begin{equation*}
Q[\boldsymbol{C}]=\prod_{V \in \boldsymbol{C}} q\left(v \mid \boldsymbol{p a}_{V}^{+}\right) \tag{6}
\end{equation*}
$$

where extended parents $\boldsymbol{P} \boldsymbol{A}_{V}^{+}=P a\left(\boldsymbol{C}_{V}\right) \backslash\{V\} ; \boldsymbol{C}_{V}$ is the c-component containing V in $\mathcal{G}\left[\left\{V^{\prime} \in\right.\right.$ $\left.\left.\boldsymbol{C} \mid V^{\prime} \prec V\right\}\right]$. Moreover, $q\left(V \mid \boldsymbol{P A}_{V}^{+}\right)=P\left(V \mid \boldsymbol{P A}_{V}^{+}\right.$, do $\left.(\pi)\right)$ for any policy $\pi \in \Pi_{\mathbb{S}(\boldsymbol{C})}$.

Proof. The decomposition follows from the semi-Markovian factorization in [7] Def. 15].
Lemma 2. Fix $\delta \in(0,1)$. With probability (w.p.) $1-\frac{\delta}{2}, M \in \mathscr{M}_{t}$ for all time steps $t=1,2, \ldots$.
Proof. Fix a time step t. For every c-component $\boldsymbol{C} \in \mathbb{C}$ and every $V \in \boldsymbol{C}$ and any $\boldsymbol{p a _ { V } ^ { + }} \in \Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}$, define function $f_{V}(t, \delta)$ as

$$
\begin{equation*}
f_{V}(t, \delta)=\sqrt{\frac{6\left|\Omega_{V}\right| \ln \left(2\left|\Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})| t / \delta\right)}{\max \left\{n_{t}\left(\boldsymbol{p a}_{V}^{+}\right), 1\right\}}} \tag{20}
\end{equation*}
$$

Fix $n_{t}\left(p a_{V}^{+}\right)=n$. It follows from the concentration inequality in [22], C.1] that

$$
\begin{equation*}
P\left(\left\|q\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V}^{+}\right)-\hat{q}_{t}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V}^{+}\right)\right\|_{1}>f_{V}(t, \delta) \text { and } n_{t}\left(\boldsymbol{p} \boldsymbol{a}_{V}^{+}\right)=n\right) \leq \frac{\delta}{4 t^{3}\left|\Omega_{\boldsymbol{P A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})|} \tag{21}
\end{equation*}
$$

Hence a union bound over all possible values of $n_{t}\left(\boldsymbol{p a}_{V}^{+}\right)$implies that Eq. (4) holds at any time step t with probability at most

$$
\begin{equation*}
P\left(\left\|q\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V}^{+}\right)-\hat{q}_{t}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V}^{+}\right)\right\|_{1}>f_{V}(t, \delta)\right) \leq \frac{\delta}{4 t^{2}\left|\Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})|} \tag{22}
\end{equation*}
$$

Summing these error probabilities over all realizations $\boldsymbol{p a} \boldsymbol{a}_{V}^{+}$for every variable $V \in \boldsymbol{V}(\mathbb{C})$ gives $P\left(M \notin \mathscr{M}_{t}\right) \leq \frac{\delta}{4 t^{2}}$. A union bound over all times steps $t=1,2, \ldots$ implies:

$$
\begin{equation*}
P\left(\forall t=1,2, \ldots, M \in \mathscr{M}_{t}\right) \geq 1-\sum_{t=1}^{\infty} P\left(M \notin \mathscr{M}_{t}\right) \geq 1-\sum_{t=1}^{\infty} \frac{\delta}{4 t^{2}} \geq 1-\frac{\delta}{2} \tag{23}
\end{equation*}
$$

This proves the claimed concentration bound.
Lemma 3. Fix $\delta \in(0,1)$. W.p. at least $1-\frac{\delta}{2}$, for any $T>1$,

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid d o\left(\pi_{t}\right)\right]-Y_{t} \leq \sqrt{2 T \log (T / \delta)} \tag{24}
\end{equation*}
$$

Proof. Let $Z_{t}=\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-Y_{t}$ and let $\boldsymbol{H}_{t}=\left\{\boldsymbol{V}_{i}\right\}_{i=1}^{t-1}$ denote experimental history up to time step t. It is verifiable that $\mathbb{E}\left[Z_{t} \mid \boldsymbol{H}_{t}\right]=0$ and $\left|Z_{t}\right| \leq 1$. This means that Z_{1}, \ldots, Z_{T} is a sequence of martingale differences. Azuma-Hoeffding inequality [18] implies that for all $\epsilon>0$ and $T \in \mathbb{N}$,

$$
\begin{equation*}
P\left(\sum_{t=1}^{T} Z_{t}>\epsilon\right) \leq \exp \left(-\frac{\epsilon^{2}}{2 T}\right) . \tag{25}
\end{equation*}
$$

Lemma 4. Assume that $M \in \mathscr{M}_{t}$ for all time steps $t=1,2, \ldots$ Let M_{t} be the solution of the inner maximization in Eq. (5). For all $\delta \in(0,1)$ and $T>1$,

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid d o\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid d o\left(\pi_{t}\right)\right] \leq 17 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)} \tag{26}
\end{equation*}
$$

Proof. Let \mathcal{S}_{t} denote the scope of policy π_{t} at time step t. Let variables in $\boldsymbol{V}\left(\mathbb{C}_{\mathcal{S}_{t}}\right)$ be ordered by $V^{(1)} \prec V^{(2)} \prec \cdots \prec V^{(k)}$ following a topological ordering in $\mathcal{G}_{\mathcal{S}_{t}}$. For any $i=0, \ldots, k$, define

$$
\begin{equation*}
\mathbb{E}^{(i)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]=\sum_{\boldsymbol{v}\left(\mathbb{C}_{\mathcal{S}_{t}}\right) \backslash y} y \prod_{j=1}^{i} P_{M}\left(v^{(j)} \mid \boldsymbol{p} \boldsymbol{a}_{V^{(j)}}^{+}\right) \prod_{j=i+1}^{k} P_{M_{t}}\left(v^{(j)} \mid \boldsymbol{p} \boldsymbol{a}_{V^{(j)}}^{+}\right) . \tag{27}
\end{equation*}
$$

By a telescoping sum, $\mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]$ for any time t could be written as

$$
\begin{equation*}
\mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]=\sum_{i=0}^{k-1} \mathbb{E}^{(i)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}^{(i+1)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \tag{28}
\end{equation*}
$$

Observe that for any $i=0,1, \ldots, k$, expected rewards $\mathbb{E}^{(i)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]$ and $\mathbb{E}^{(i+1)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]$ only differ in the factor of $P\left(v^{(i)} \mid \boldsymbol{p a}{V^{(i)}}_{+}^{)}\right.$. This implies

$$
\begin{align*}
\mathbb{E}^{(i)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}^{(i+1)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] & \leq \sum_{p a_{V^{(i)}}^{+}}\left\|P_{M_{t}}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V^{(i)}}^{+}\right)-P_{M}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V^{(i)}}^{+}\right)\right\|_{1} \tag{29}\\
& \leq \sum_{p \boldsymbol{a}_{V^{(i)}}^{+}}\left\|P_{M_{t}}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V^{(i)}}^{+}\right)-\hat{P}_{t}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V^{(i)}}^{+}\right)\right\|_{1} \tag{30}\\
& +\sum_{p a_{V^{(i)}}^{+}}\left\|\hat{P}_{t}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V^{(i)}}^{+}\right)-P_{M}\left(\cdot \mid \boldsymbol{p} \boldsymbol{a}_{V^{(i)}}^{+}\right)\right\|_{1} \tag{31}
\end{align*}
$$

Since both M and M_{t} is contained in the hypothesis class \mathscr{M}_{t},

$$
\begin{equation*}
\mathbb{E}^{(i)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}^{(i+1)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \leq \sum_{\boldsymbol{p} \boldsymbol{a}_{V^{+}}^{+}} 2 \sqrt{\frac{6\left|\Omega_{V}\right| \ln \left(2\left|\Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})| t / \delta\right)}{\max \left\{n_{t}\left(\boldsymbol{p} \boldsymbol{a}_{V}^{+}\right), 1\right\}}} \tag{32}
\end{equation*}
$$

For any $\mathcal{S} \in \mathbb{S}$, let $T(\mathcal{S})$ be a subset of $\{1, \ldots, T\}$ containing time steps t such that $\pi_{t} \sim \mathcal{S}$. We have

$$
\begin{align*}
& \sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \tag{33}\\
& =\sum_{\mathcal{S} \in \mathbb{S}} \sum_{t \in T(\mathcal{S})} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \tag{34}\\
& =\sum_{\mathcal{S} \in \mathbb{S}} \sum_{t \in T(\mathcal{S})} \sum_{i=0}^{k-1} \mathbb{E}^{(i)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}^{(i+1)}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \tag{35}\\
& \leq \sum_{\mathcal{S} \in \mathbb{S}} \sum_{t \in T(\mathcal{S})} \sum_{i=0}^{k-1} 2 \sqrt{\frac{6\left|\Omega_{V}\right| \ln \left(2\left|\Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})| t / \delta\right)}{\max \left\{n_{t}\left(\boldsymbol{p a}_{V}^{+}\right), 1\right\}}} \tag{36}
\end{align*}
$$

448 Let $n_{t}(\mathcal{S})$ denote the total occurrence of event $\pi_{t} \sim \mathcal{S}$ prior to time t. Applying [22, C.3] gives

$$
\begin{align*}
& \sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \tag{37}\\
& \leq \sum_{S \in \mathbb{S}} \sum_{V \in \boldsymbol{V}\left(\mathbb{C}_{\mathcal{S}}\right)} 12 \sqrt{\left|\Omega_{V \cup \boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right| n_{T+1}(\mathcal{S}) \ln \left(2\left|\Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})| T / \delta\right)} \tag{38}\\
& \leq \sum_{S \in \mathbb{S}} \sqrt{n_{T+1}(\mathcal{S})} \max _{S \in \mathbb{S}} \sum_{V \in \boldsymbol{V}\left(\mathbb{C}_{\mathcal{S}}\right)} 12 \sqrt{\left|\Omega_{V \cup \boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right| \ln \left(2\left|\Omega_{\boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})| T / \delta\right)} \tag{39}
\end{align*}
$$

Applying Jensen's inequality we obtain

$$
\begin{align*}
& \sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \\
& \leq \max _{S \in \mathbb{S}} \sum_{V \in \boldsymbol{V}\left(\mathbb{C}_{\mathcal{S}}\right)} 12 \sqrt{\left|\Omega_{V \cup \boldsymbol{P} \boldsymbol{A}_{V}^{+}}\right||\mathbb{S}| T \ln \left(2\left|\Omega_{\boldsymbol{P A}_{V}^{+}}\right||\boldsymbol{V}(\mathbb{C})| T / \delta\right)} \tag{40}
\end{align*}
$$

A few simplification gives the claimed bound

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \leq 17 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)} \tag{41}
\end{equation*}
$$

where function $\Delta(\mathcal{G}, \mathbb{S})=\max _{S \in \mathbb{S}} \sum_{V \in V\left(\mathbb{C}_{\mathcal{S}}\right)} \sqrt{\left|\Omega_{V \cup P A_{V}^{+}}\right|}$.
Theorem 1. For a causal diagram \mathcal{G} and a mixed policy scope \mathbb{S}, fix a $\delta \in(0,1)$. With probability at least $1-\delta$, it holds for any $T>1$, the regret of CAUSAL-UCB* is bounded by

$$
\begin{equation*}
R(T, M) \leq 19 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)} \tag{9}
\end{equation*}
$$

where function $\Delta(\mathcal{G}, \mathbb{S})=\max _{\mathcal{S} \in \mathbb{S}} \Delta(\mathcal{G}, \mathcal{S})$ and $\Delta(\mathcal{G}, \mathcal{S})=\sum_{V \in V\left(\mathbb{C}_{\mathcal{S}}\right)} \sqrt{\left|\Omega_{V \cup P A_{V}^{+}}\right|}$.
Proof. The cumulative regret $R(T, M)$ could be written as follows, by a telescoping sum:

$$
\begin{align*}
R(T, M) & =\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi^{*}\right)\right]-Y_{t} \tag{42}\\
& =\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi^{*}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]+\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-Y_{t} \tag{43}
\end{align*}
$$

Lem. 2 implies that w.p. $1-\frac{\delta}{2}$, the actual $\operatorname{SCM} M \in \mathscr{M}_{t}$ for all time steps t. Since M_{t} and π_{t} are the optımistic instance in \mathscr{M}_{t} that achieves the maximal expected reward,

$$
\begin{equation*}
R(T, M) \leq \sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]+\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-Y_{t} \tag{44}
\end{equation*}
$$

Among quantities in the above equation, Lem. 3 implies that w.p. $1-\frac{\delta}{2}$,

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-Y_{t} \leq \sqrt{2 T \log (T / \delta)} \tag{45}
\end{equation*}
$$

Applying Lem. 4 gives the following bound:

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \leq 17 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)} \tag{46}
\end{equation*}
$$

The above equations together imply

$$
\begin{align*}
R(T, M) & \leq 17 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)}+\sqrt{2 T \log (T / \delta)} \tag{47}\\
& \leq 19 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)} \tag{48}
\end{align*}
$$

The error probabilities are bounded by $\frac{\delta}{2}+\frac{\delta}{2}=\delta$. This proves the claimed regret bound.
Theorem 3. Given a causal diagram \mathcal{G}, a mixed policy scope \mathbb{S}, and a prior distribution ρ, it holds for any $T>1$, the regret of CAUSAL-TS* is bounded by

$$
\begin{equation*}
R(T, \rho) \leq 26 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T)} \tag{19}
\end{equation*}
$$

Proof. The idea of the proof was established in [42, 34]. First, note that given any sample history $\boldsymbol{H}_{t}=\left\{\boldsymbol{V}_{i}\right\}_{i=1}^{t-1}$, the true SCM M and the sampled M_{t} are identically distributed. That means that

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi^{*}\right)\right] \mid \boldsymbol{H}_{t}, M \sim \rho\right]=\mathbb{E}\left[\mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \mid \boldsymbol{H}_{t}, M_{t} \sim \rho\right] \tag{49}
\end{equation*}
$$

Since $Y_{t} \sim P\left(Y \mid \operatorname{do}\left(\pi_{t}\right)\right)$, we also have

$$
\begin{equation*}
\mathbb{E}\left[Y_{t} \mid \boldsymbol{H}_{t}, M \sim \rho\right]=\mathbb{E}\left[\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \mid \boldsymbol{H}_{t}, M \sim \rho\right] \tag{50}
\end{equation*}
$$

The Bayesian cumulative regret $R(T, \rho)$ could thus be written as:

$$
\begin{align*}
R(T, \rho) & =\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi^{*}\right)\right]-Y_{t} \mid M \sim \rho\right] \tag{51}\\
& =\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-Y_{t} \mid M, M_{t} \sim \rho\right] \tag{52}\\
& =\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \mid M, M_{t} \sim \rho\right] \tag{53}
\end{align*}
$$

We can use $\rho\left(M \mid \boldsymbol{H}_{t}\right)=\rho\left(M_{t} \perp \boldsymbol{H}_{t}\right)$ again and say that both M and M_{t} belongs to \mathscr{M}_{t} for all time steps t w.p. at least $1-\delta$ (Lem. 22). This means that we can bound $R(T, \rho)$ in CaUSAL-TS*

$$
\begin{align*}
R(T, \rho) & \leq \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}_{M_{t}}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right]-\mathbb{E}_{M}\left[Y \mid \operatorname{do}\left(\pi_{t}\right)\right] \mid M, M_{t} \in \mathscr{M}_{t}\right]+\delta T \tag{54}\\
& \leq 17 \Delta(\mathcal{G}, \mathbb{S}) \sqrt{|\mathbb{S}| T \ln (|\boldsymbol{V}(\mathbb{C})| T / \delta)}+\delta T \tag{55}
\end{align*}
$$

The last step follows from Lem. 4. Setting $\delta=\frac{1}{T}$ we obtain the claimed bound.

A. $2 \mathbb{C}$-Canonical SCMs

In this section, we provide proofs for theoretical results related to \mathbb{C}-canonical SCMs.
Theorem 2. For any $S C M M=\langle\boldsymbol{V}, \boldsymbol{U}, \mathscr{F}, P(\boldsymbol{U})\rangle$, let \mathbb{C} be an arbitrary c-collection. For any $\boldsymbol{C} \in \mathbb{C}$, c-factor $Q[\boldsymbol{C}]$ decomposes as follows:

$$
\begin{equation*}
Q[\boldsymbol{C}](\boldsymbol{v})=\sum_{U \in \boldsymbol{U}} \sum_{u=1, \ldots, d_{U}} \prod_{V \in \boldsymbol{C}} \mathbb{1}\left\{f_{V}\left(\boldsymbol{p} \boldsymbol{a}_{V}, \boldsymbol{u}_{V}\right)=v\right\} \prod_{U \in \boldsymbol{U}} P(u) \tag{11}
\end{equation*}
$$

where for every exogenous $U \in \boldsymbol{U}, P(U)$ is a discrete distribution over a finite domain $\left\{1, \ldots, d_{U}\right\}$ with cardinality $d_{U}=\sum_{\boldsymbol{C} \in \mathbb{C}(U)}\left|\Omega_{P a(\boldsymbol{C})}\right| ; \mathbb{C}(U) \subseteq \mathbb{C}$ are c-components covering U.

Proof. Let \vec{P} be a vector representing all values of c-factors $Q[\boldsymbol{C}]$ contained in \mathbb{C}. Formally,

$$
\begin{equation*}
\vec{P}=\left(Q[\boldsymbol{C}]\left(\boldsymbol{c}, \boldsymbol{p} \boldsymbol{a}_{\boldsymbol{C}}\right) \mid \forall \boldsymbol{C} \in \mathbb{C}, \forall \boldsymbol{c} \in \Omega_{\boldsymbol{C}}, \forall \boldsymbol{p} a_{\boldsymbol{C}} \in \Omega_{\boldsymbol{P} \boldsymbol{A}_{\boldsymbol{C}}}\right) \tag{56}
\end{equation*}
$$

where $\boldsymbol{P} \boldsymbol{A}_{\boldsymbol{C}}=P a(\boldsymbol{C}) \backslash \boldsymbol{C}$. Obviously, \vec{P} is a vector containing $d=\sum_{\boldsymbol{C} \in \mathbb{C}(U)}\left|\Omega_{P a(\boldsymbol{C})}\right|$ elements. However, since for any $\boldsymbol{C} \in \mathbb{C}, \sum_{\boldsymbol{c}} Q[\boldsymbol{C}]=1$, it only takes a vector with $d-1$ dimensions to determine \vec{P}. We could thus see \vec{P} as a point in the $(d-1)$-dimensional real space. Following the discretization procedure in [60, Lem. A.6] we obtain the claimed decomposition.

Proposition 1. For a causal diagram \mathcal{G} and a c-collection \mathbb{C}, $\operatorname{MinCollect}(\mathcal{G}, \mathbb{C})$ returns a minimal reduction \mathbb{C}^{*} of \mathbb{C}.

Proof. The soundness of Identify implies that MinCollect must returns a valid reduction \mathbb{C}^{*} of c-collection \mathbb{C} in \mathcal{G}. What remains is to show that \mathbb{C}^{*} is minimal. Suppose \mathbb{C}^{*} is not minimal. That is, there exists a c-component $\boldsymbol{C} \in \mathbb{C}^{*}$ such that $Q[\boldsymbol{C}]$ is identifiable from other c-factors $Q\left[\boldsymbol{C}^{\prime}\right]$ in $\mathbb{C}^{*} \backslash\{\boldsymbol{C}\}$ in \mathcal{G}. It follows from the construction procedure in [31, Theorem 3] that one could construct a pair of SCMs M_{1}, M_{2} compatible with \mathcal{G} such that $Q_{M_{1}}[\boldsymbol{C}] \neq Q_{M_{2}}[\boldsymbol{C}]$ while $Q_{M_{1}}\left[\boldsymbol{C}^{\prime}\right]=Q_{M_{2}}\left[\boldsymbol{C}^{\prime}\right]$ for any other $\boldsymbol{C}^{\prime} \in \mathbb{C}^{*} \backslash\{\boldsymbol{C}\}$. This means that $Q[\boldsymbol{C}]$ is not identifiable from $\mathbb{C}^{*} \backslash\{\boldsymbol{C}\}$ in \mathcal{G}, which is a contradiction.

Proposition 2. For a causal diagram \mathcal{G}, any c-collection \mathbb{C} has a unique minimal reduction.

Proof. We will utilize the following claim
Claim 1. If \mathbb{C}_{1} and \mathbb{C}_{2} are both reductions of a c-collection \mathbb{C} in a causal diagram \mathcal{G}, then $\mathbb{C}_{1} \cap \mathbb{C}_{2}$ is a reduction of both \mathbb{C}_{1} and \mathbb{C}_{2} in \mathcal{G}.

The uniqueness of the minimal reduction of any c-collection \mathbb{C} follows immediately from the above claim. Suppose \mathbb{C} has two different minimal reductions $\mathbb{C}_{1}, \mathbb{C}_{2}$. Claim 1 implies that their intersection $\mathbb{C}_{1} \cap \mathbb{C}_{2}$ is a reduction of \mathbb{C}_{1} and \mathbb{C}_{2}, which contradicts the assumption that \mathbb{C}_{1} and \mathbb{C}_{2} are both minimal reductions.

Next we will provide the proof for Claim 1 . Let $m_{i}=\left|\mathbb{C} \backslash \mathbb{C}_{i}\right|$ where $i=1,2$. We will show the result by induction after $m=m_{1}+m_{2}$.

Base Case: $m=2$. Let $\boldsymbol{C}_{i}=\mathbb{C} \backslash \mathbb{C}_{i}$ for $i=1,2$. It suffices to show that $\boldsymbol{C}_{1} \in \mathbb{C}_{2}$ is identifiable from c-factors in $\mathbb{C}_{2} \backslash\left\{\boldsymbol{C}_{1}\right\}$. MinCollect shows that \boldsymbol{C}_{1} is identifiable from \mathbb{C}_{1} if any only if there exists a c-component $\boldsymbol{C} \in \mathbb{C}_{1}$ such that $Q\left[\boldsymbol{C}_{1}\right]$ is identifiable from $Q[\boldsymbol{C}]$. If $\boldsymbol{C} \neq \boldsymbol{C}_{2}$, we must have $\mathbb{C}_{1} \cap \mathbb{C}_{2}=\mathbb{C}_{2} \backslash\left\{\boldsymbol{C}_{1}\right\}$ is a reduction of \mathbb{C}_{2} since $\boldsymbol{C} \in \mathbb{C}_{2}$ and IdEntify $\left(\boldsymbol{C}_{1}, \boldsymbol{C}, \mathcal{G}\right) \neq$ FAIL. If $\boldsymbol{C}=\boldsymbol{C}_{2}$, since \mathbb{C}_{2} is a reduction of \mathbb{C} by removing \boldsymbol{C}_{2}, there must exists c-component $\boldsymbol{C}^{\prime} \in \mathbb{C}$ such that $\operatorname{IdENTIFy}\left(\boldsymbol{C}_{2}, \boldsymbol{C}^{\prime}, \mathcal{G}\right) \neq$ FAIL. Also, note that $\boldsymbol{C}^{\prime} \neq \boldsymbol{C}_{1}$; otherwise, one would have $\boldsymbol{C}_{1}=\boldsymbol{C}_{2}$ which contradicts the fact that $\mathbb{C}_{1} \neq \mathbb{C}_{2}$. This means that $C^{\prime} \in \mathbb{C}_{1} \cap \mathbb{C}_{2}$, which again implies that \boldsymbol{C}_{1} is identifiable from $\mathbb{C}_{2} \backslash\left\{\boldsymbol{C}_{1}\right\}$ in \mathcal{G}. We could thus obtain a reduction $\mathbb{C}_{1} \cap \mathbb{C}_{2}$ of \mathbb{C}_{2} by removing c-component \boldsymbol{C}_{1}. The proof for $\mathbb{C}_{1} \cap \mathbb{C}_{2}$ being a reduction of \mathbb{C}_{1} follows the same procedure.

Induction Step: $m \leq k+1$. Suppose the result holds for $m \leq k$ where $k \geq 2$ and consider the case $m=k+1$. So $\max \left\{m_{1}, m_{2}\right\}>1$, say $m_{2}>1$. Thus \mathbb{C}_{2} is obtained by successively removing m_{2} identifiable c-components from \mathbb{C}. Let \mathbb{C}_{2}^{\prime} be a reduction obtained by removing the first $m_{2}-1$ of these. By the induction assumption, $\mathbb{C}_{1} \cap \mathbb{C}_{2}^{\prime}$ is a reduction of \mathbb{C}_{2} obtained by removing at most m_{1} identifiable c-components from \mathbb{C}_{2}^{\prime}. Furthermore, \mathbb{C}_{2} is also a reduction of \mathbb{C}_{2}^{\prime} obtained by removing exactly one identifiable c-component. Since $\left(\mathbb{C}_{1} \cap \mathbb{C}_{2}^{\prime}\right) \cap \mathbb{C}_{2}=\mathbb{C}_{1} \cap \mathbb{C}_{2}$ and $m_{1}+1 \leq k$, the induction assumption yields that $\mathbb{C}_{1} \cap \mathbb{C}_{2}$ is a reduction of \mathbb{C}_{2}. Similarly, the induction assumption gives that $\mathbb{C}_{1} \cap \mathbb{C}_{2}$ is a reduction of \mathbb{C}_{1}. This completes the proof.

B Simulation Setups

In all experiments, we evaluate our proposed CAUSAL-TS* with uninformative Dirichlet priors over exogenous probabilities and uniform priors over structural functions, which we label as c - $t s^{*}$. As a baseline, we also include following algorithms. (1) Randomized trials ($r c t$) allocating treatments in all possible scopes uniformly at random; (2) standard Thompson sampling algorithm ($t s$) using all deterministic policies as arms; and (3) Thompson sampling over a simplified mixed scope ($t s^{*}$), which is obtained by applying graphical conditions in [30]. For each experiment, we randomly generate 100 instances of SCMs compatible with the corresponding causal diagram. For each random SCM, we measure the cumulative regrets of all algorithms over $T=1.1 \times 10^{3}$ episodes. For every algorithm in every random SCM instance, we repeat the online learning process for 100 times, and compute the cumulative regret averaging over all repetitions. Finally, all experiments were performed on a computer with 32 GB memory, implemented in MATLAB.

C Related Work on Canonical SCMs

The idea of canonical SCMs was first explored in [5, 4], which introduced a canonical partitioning of exogenous domains in the 'IV" diagram in Fig. 5] For binary endogenous variables $X, Y, Z \in\{0,1\}$, the canonical partitioning allows one to discretize the domain of U into 16 equivalent classes without changing the original counterfactual distributions and the graphical structure

Figure 5: IV in Fig. 5$]$ Such discritization is also referred to as the principal stratification [15, 37]. Based on this finite-state representation, tight bounding strategy was proposed to evaluate treatment effects under the condition of imperfect compliance in randomized experiments [6]. There
also exist Bayesian approaches to obtain posterior distributions of causal effects provided with data collected from experimental studies with imperfect compliance [12, 20].

The canonical partitioning could be extended to a more generalized class of causal diagrams that are reducible to the "IV" graph [43, 56]. However, these methods do not necessarily encode all constraints over induced distributions. [14] showed that for a specific class of causal diagrams satisfying a running intersection property among exogenous variables, all equality and inequality constraints over the observational distribution could be generated using discrete unobserved domains. [41] applied a classic result of Carathéodory theorem in convex geometry [9] and developed a generative model with finite-state unobserved variables that could represent the observational distribution over discrete domains in an arbitrary causal diagram. More recently, [60] introduced a family of canonical SCMs that could represent all categorical counterfactual distributions in any causal diagram with finite exogenous states. Using this canonical representation, the problem of inferring counterfactual probabilities from the combination of observational and interventional data is reducible to a series of polynomial optimization programs [55, 13]. The computational framework of neural networks is also applicable to determine the identifiability of causal effects over discrete observed domains [54]. Finally, representing distributions over continuous observed domains is more challenging; existing methods often require untestable parametric assumptions about the underlying environment [23, 19].
Thm. 2 extends existing results in several non-trivial ways. First, the cardinality of exogenous states in canonical SCMs [60] grows exponentially with regard to the total number of observed states. The restricted family of canonical SCM in Thm. 2 is tailored for an arbitrary collection of c-components in the causal diagram. This means that, in many cases, the cardinality of exogenous domains in \mathbb{C}-canonical SCMs could be sparse, growing as a polynomial function of the size of observed states. Second, we propose a novel algorithm (Alg. 2) to exploit equality relationships among c-factors. This allows us to further reduce the model complexity of \mathbb{C}-canonical SCMs while maintaining the same qualitative and quantitative constraints over parameters of target c-factors.

References

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2/3):235-256, 2002.
[2] P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning. In Advances in neural information processing systems, pages 89-96, 2009.
[3] K. Azizzadenesheli, A. Lazaric, and A. Anandkumar. Reinforcement learning of pomdp's using spectral methods. In COLT, 2016.
[4] A. Balke and J. Pearl. Counterfactual probabilities: Computational methods, bounds, and applications. In R. L. de Mantaras and D. Poole, editors, Uncertainty in Artificial Intelligence 10, pages 46-54. Morgan Kaufmann, San Mateo, CA, 1994.
[5] A. Balke and J. Pearl. Probabilistic evaluation of counterfactual queries. In Proceedings of the Twelfth National Conference on Artificial Intelligence, volume I, pages 230-237. MIT Press, Menlo Park, CA, 1994.
[6] A. Balke and J. Pearl. Bounds on treatment effects from studies with imperfect compliance. Journal of the American Statistical Association, 92(439):1172-1176, September 1997.
[7] E. Bareinboim, J. D. Correa, D. Ibeling, and T. Icard. On pearl's hierarchy and the foundations of causal inference. In Probabilistic and Causal Inference: The Works of Judea Pearl, page 507-556. Association for Computing Machinery, New York, NY, USA, 1st edition, 2022.
[8] E. Bareinboim and J. Pearl. Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences, 113:7345-7352, 2016.
[9] C. Carathéodory. Über den variabilitätsbereich der fourier'schen konstanten von positiven harmonischen funktionen. Rendiconti Del Circolo Matematico di Palermo (1884-1940), 32(1):193217, 1911.
[10] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System Sciences, 78(5):1404-1422, 2012.
[11] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning, pages 151-159. PMLR, 2013.
[12] D. Chickering and J. Pearl. A clinician's tool for analyzing non-compliance. Computing Science and Statistics, 29(2):424-431, 1997.
[13] G. Duarte, N. Finkelstein, D. Knox, J. Mummolo, and I. Shpitser. An automated approach to causal inference in discrete settings. arXiv preprint arXiv:2109.13471, 2021.
[14] R. J. Evans. Margins of discrete bayesian networks. The Annals of Statistics, 46(6A):2623-2656, 2018.
[15] C. Frangakis and D. Rubin. Principal stratification in causal inference. Biometrics, 1(58):21-29, 2002.
[16] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman San Francisco, 1979.
[17] Z. D. Guo, S. Doroudi, and E. Brunskill. A pac rl algorithm for episodic pomdps. In Artificial Intelligence and Statistics, pages 510-518, 2016.
[18] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, 1963.
[19] Y. Hu, Y. Wu, L. Zhang, and X. Wu. A generative adversarial framework for bounding confounded causal effects. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021.
[20] G. W. Imbens and D. B. Rubin. Bayesian inference for causal effects in randomized experiments with noncompliance. The annals of statistics, pages 305-327, 1997.
[21] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453):161-173, 2001.
[22] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research, 11(Apr):1563-1600, 2010.
[23] N. Kilbertus, M. Kusner, and R. Silva. A class of algorithms for general instrumental variable models. Advances in Neural Information Processing Systems (NeurIPS 2020), 2020.
[24] D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games. Games and economic behavior, 45(1):181-221, 2003.
[25] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4-22, 1985.
[26] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits. Advances in neural information processing systems, 20(1):96-1, 2007.
[27] S. L. Lauritzen and D. Nilsson. Representing and solving decision problems with limited information. Management Science, 47(9):1235-1251, 2001.
[28] S. Lee and E. Bareinboim. Structural causal bandits: where to intervene? In Advances in Neural Information Processing Systems, pages 2568-2578, 2018.
[29] S. Lee and E. Bareinboim. Structural causal bandits with non-manipulable variables. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4164-4172, 2019.
[30] S. Lee and E. Bareinboim. Characterizing optimal mixed policies: Where to intervene and what to observe. Advances in Neural Information Processing Systems, 33, 2020.
[31] S. Lee, J. D. Correa, and E. Bareinboim. General identifiability with arbitrary surrogate experiments. In In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, 2019.
[32] M. Magill and L. A. Ray. Cognitive-behavioral treatment with adult alcohol and illicit drug users: a meta-analysis of randomized controlled trials. Journal of studies on alcohol and drugs, 70(4):516-527, 2009.
[33] S. A. Murphy, M. J. van der Laan, J. M. Robins, and Conduct Problems Prevention Research Group. Marginal Mean Models for Dynamic Regimes. Journal of the American Statistical Association, 96(456):1410-1423, Dec. 2001.
[34] I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via posterior sampling. In Advances in Neural Information Processing Systems, pages 3003-3011, 2013.
[35] I. Osband and B. Van Roy. Why is posterior sampling better than optimism for reinforcement learning? In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2701-2710. JMLR. org, 2017.
[36] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, 2000.
[37] J. Pearl. Principal stratification - a goal or a tool? The International Journal of Biostatistics, 7(1), 2011.
[38] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for off-policy policy evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 759-766, 2000.
[39] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley \& Sons, Inc., 1994.
[40] H. Robbins. Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc., 58(5):527-535, 091952.
[41] D. Rosset, N. Gisin, and E. Wolfe. Universal bound on the cardinality of local hidden variables in networks. Quantum Information and Computation, 18(11\&12):0910-0926, 2018.
[42] D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Mathematics of Operations Research, 39(4):1221-1243, 2014.
[43] M. C. Sachs, G. Jonzon, A. Sjölander, and E. E. Gabriel. A general method for deriving tight symbolic bounds on causal effects. arXiv preprint arXiv:2003.10702, 2020.
[44] P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search. MIT press, 2000.
[45] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd international conference on Machine learning, pages 881-888. ACM, 2006.
[46] M. Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pages 943-950, 2000.
[47] R. S. Sutton, H. R. Maei, and C. Szepesvári. A convergent o (n) temporal-difference algorithm for off-policy learning with linear function approximation. In Advances in neural information processing systems, pages 1609-1616, 2009.
[48] A. Swaminathan and T. Joachims. Counterfactual risk minimization: Learning from logged bandit feedback. In International Conference on Machine Learning, pages 814-823, 2015.
[49] I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight exploration complexity bounds. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 1031-1038, 2010.
[50] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.
[51] J. Tian. Studies in Causal Reasoning and Learning. PhD thesis, Computer Science Department, University of California, Los Angeles, CA, November 2002.
[52] J. Tian. Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI'08, pages 554-561, Arlington, Virginia, United States, 2008. AUAI Press.
[53] J. Tian and J. Pearl. A general identification condition for causal effects. In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), pages 567-573, Menlo Park, CA, 2002. AAAI Press/The MIT Press.
[54] K. Xia, K.-Z. Lee, Y. Bengio, and E. Bareinboim. The causal-neural connection: Expressiveness, learnability, and inference. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 10823-10836. Curran Associates, Inc., 2021.
[55] M. Zaffalon, A. Antonucci, and R. Cabañas. Causal expectation-maximisation. arXiv preprint arXiv:2011.02912, 2020.
[56] M. Zaffalon, A. Antonucci, and R. Cabañas. Structural causal models are (solvable by) credal networks. In International Conference on Probabilistic Graphical Models, pages 581-592. PMLR, 2020.
[57] J. Zhang and E. Bareinboim. Transfer learning in multi-armed bandits: a causal approach. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 1340-1346. AAAI Press, 2017.
[58] J. Zhang and E. Bareinboim. Near-optimal reinforcement learning in dynamic treatment regimes. In Advances in Neural Information Processing Systems, pages 13401-13411, 2019.
[59] J. Zhang and E. Bareinboim. Designing optimal dynamic treatment regimes: A causal reinforcement learning approach. In International Conference on Machine Learning, pages 11012-11022. PMLR, 2020.
[60] J. Zhang, T. Jin, and E. Bareinboim. Partial counterfactual identification from observational and experimental data. In Proceedings of the 39th International Conference on Machine Learning (ICML-22), 2022.

