
Roadmap. In Appendix A, we provide more details of quantum walk and give our user-friendly
framework. In Appendix B, we introduce the classical method for optimizing approximately convex
functions in a self-contained way. In Appendix C, we prove our main result of quantum approxi-
mately convex optimization.

A Basic Facts about Quantum Walk

In this section, we first define the quantum walk operators and introduce some spectral properties.
Then, we show how to efficiently implement a quantum walk.

A.1 Definitions and spectral properties of quantum walk

Let P be the transition operator of the classical Markov chain over the space K such that∫
K

P (x, y)dy = 1 ∀x ∈ K.

We define the following states, which capture key properties of the quantum walk:

|ψx〉 :=

∫
K

√
P (x, y) |y〉dy ∀x ∈ K.

Definition 1 (Quantum walk operators). The quantum walk uses the following three operators:

• U :=
∫
K
|x〉 |ψx〉 〈x| 〈0|dx for any x ∈ K.

• Π :=
∫
K
|x〉 |ψx〉 〈x| 〈ψx|dx is the projection to the subspace span{|x〉 |ψx〉}x∈K .

• S :=
∫
K

∫
K
|y〉 |x〉 〈x| 〈y|dxdy is to swap the two quantum registers.

Then, the quantum walk operator W is defined by:

W := S(2Π− I).

Definition 2 (Alternative definition of quantum walk operator, [38]). Define the quantum walk op-
erator

W ′ := U†SURAU
†SURA,

whereRA denotes the reflection about the subspaceA := {|x〉 |0〉 | x ∈ K} for random walk space
K, S is the swap operator, and U is the following operator:

U |x〉 |0〉 =

∫
y∈K

√
P (x, y) |x〉 |y〉dy,

for P being the transition operator of the Markov chain.

Fact A.1 (Equivalence of the definitions, [14]). Let W be defined as in Definition 1 and let W ′ be
defined as in Definition 2. Then, W ′ and W have the same set of eigenvalues.

Fact A.2 ([14]). Let D be the discriminant operator of P defined as D(x, y) :=
√
P (x, y)P (y, x).

Then, P and D have the same set of eigenvalues.

Fact A.3 ([14]). Let {λj} be the eigenvalues of D. Then, the eigenvalues of W are{
±1, λj ±

√
1− λ2

j i
}
.

The following lemma shows that when the initial stationary is a warm start, then the eigenvalues
whose eigenspaces have big overlap with the initial state are bounded away from 1.

Lemma 5 (Effective spectral gap for warm start, [18, Lemma C.7]). Let M = (Ω, p) be an ergodic
reversible Markov chain with a transition operator P and unique stationary state with a corre-
sponding density ρ. Let {(λi, fi)} be the set of eigenvalues and eigenfunctions of P , and |ψi〉 be the
eigenvectors of the corresponding quantum walk operator W . Let ρ0 be a probability density that is

14

a warm start for ρ and mixes up to TV-distance ε in t steps of M . Furthermore, assume that ρ0 is a
β-warm start of ρ.

Let |φρ0〉 be the resulting state of applying the quantum walk update operator U to the state |ρ0〉:

|φρ0〉 =

∫
Ω

√
ρ0(x)

∫
Ω

√
P (x, y) |x〉 |y〉dxdy.

Then, we have |〈φρ0 |ψi〉| = O(β
√
ε) for all i with 1 > |λi| ≥ 1−O(1/t).

Lemma 5 also applies to the initial distribution with a bounded `2-warmness:
Lemma 6 (Effective spectral gap for `2-warm start, [13]). Let M = (Ω, p) be an ergodic reversible
Markov chain with a transition operator P and unique stationary state with a corresponding density
ρ. Let {(λi, fi)} be the set of eigenvalues and eigenfunctions of P , and |ψi〉 be the eigenvectors
of the corresponding quantum walk operator W . Let ρ0 be a probability density that is a warm
start for ρ and mixes up to TV-distance ε in t steps of M . Furthermore, assume that ‖ρ/ρ0‖ =∫

Ω
ρ(x)
ρ0(x)ρ(x)dx ≤ γ and ‖ρ0/ρ‖ = O(1).

Let |φρ0〉 be the resulting state of applying the quantum walk update operator U to the state |ρ0〉:

|φρ0〉 =

∫
Ω

√
ρ0(x)

∫
Ω

√
P (x, y) |x〉 |y〉dxdy.

Then, we have |〈φρ0 |ψi〉| = O(γ1/4ε3/4 +
√
ε) for all i with 1 > |λi| ≥ 1−O(1/t).

A.2 Efficient implementation of quantum walk

The goal of this section is to give a user-friendly quantum walk implementation cost-analysis (The-
orem 5).
Lemma 7 (Approximate reflector, [14, Corollary 4.1]). Let W be a unitary operator with a unique
leading eigenvector |ψ0〉 with eigenvalue 1. Denote the remaining eigenvectors by |ψj〉 with corre-
sponding eigenvaluese e2πiξj for j ≥ 1. For any ∆ ∈ (0, 1] and ε < 1/2, define a := log(1/∆) and
c := log(1/

√
ε). Let R be the reflector such that R = α |ψ0〉 〈ψ0|+ (I − |ψ0〉 〈ψ0|).

For any constant α ∈ C, there exists a quantum circuit R̃ that uses a · c ancilla qubits and invokes
the controlled-W gate 2a+1c times such that

• R̃ |ψ0〉 |0〉⊗ac = R |ψ0〉 |0〉⊗ac.

•
∥∥R̃ |ψj〉 |0〉⊗ac −R |ψj〉 |0〉⊗ac ∥∥2

≤
√
ε for j ≥ 1 with ξj ≥ ∆.

Lemma 8 (π/3-amplitude amplification, [38, Lemma 1]). Let |ψ〉 , |φ〉 be two quantum states with
|〈ψ|φ〉| ≥ p for some p ∈ (0, 1]. Let ω = eiπ/3. Define Rψ := ω |ψ〉 〈ψ| + (I − |ψ〉 〈ψ|), and
Rφ := ω |φ〉 〈φ|+ (I − |φ〉 〈φ|). Then, for m ≥ 1, there exists a sequence of unitaries:

V0 = I, Vj+1 = VjRψV
†
j RφVj ∀j ∈ [m],

such that

|〈ψ|Vm|φ〉|2 ≥ 1− (1− p)3m .

Furthermore, the unitaries Rφ, Rψ and their inverses are used at most 3m times in Vm.
Theorem 5 (Quantum walk implementation cost). Let M0,M1 be two ergodic reversible Markov
chains with stationary distributions π0, π1, respectively. Suppose π0 is β0-warm with respect to
M1 and mixes up to total variation distance ε in t0(ε) steps. Similarly, suppose π1 is β1-warm
with respect to M0 and mixes in t1(ε) steps. Let β := max{β0, β1}. Moreover, we assume that
|〈π0|π1〉| ≥ p.

Given |π0〉, we can obtain a state |π̃1〉 such that ‖ |π̃1〉 − |π1〉 ‖2 ≤ ε using

O
(√

t0(εp/β) + t1(εp/β) · p−1 · log2(1/(pε))
)

calls to the controlled walk operators controlled-W ′0, controlled-W ′1.

15

Proof. By assumption, we know that π0 mixes in t′0 = t0(ε1/β) steps in M1 to achieve total varia-
tion distance ε1/β, where ε1 is a parameter to be chosen later. Similarly, π1 mixes in t′1 = t1(ε1/β)
steps in M0 to achieve total variation distance ε1/β.

We start from |π0〉. By Lemma 5, we have |π0〉 = |π0,good〉 + |e0〉, where |π0,good〉 lies in the
subspace spanned by the eigenvectors |ψj〉 of W ′1 with corresponding eigenvalue λj of P1 such that
λj = 1 or λj ≤ 1−Ω(1/t′0). Let e2πiξj be the eigenvalue of |ψj〉 of W ′1. By Fact A.1 and Fact A.3,
we get that ξj = 0 or ξj ≥ Ω(t′0

−1/2
). By Lemma 5, we also have ‖ |e0〉 ‖ ≤ ε1.

Then, by Lemma 7 with ∆ = Ω(t′0
−1/2

) and ε = ε21, we can implement R̃1 such that ‖R1 |φ〉 −
R̃1 |φ〉 ‖2 ≤ 2ε1 using O(

√
t′0 log(1/ε1)) calls to controlled-W ′1, where |φ〉 is any state that occurs

during π/3-amplitude amplification (Lemma 8) for |π0〉 towards |π1〉.

In the same way, we can start from |π1〉 and show that R̃0 can be implemented using
O(
√
t′1 log(1/ε1)) calls to controlled-W ′0 such that ‖R0 |φ′〉 − R̃0 |φ′〉 ‖ ≤ 2ε1, where |φ′〉 is any

state that occurs during π/3-amplitude amplification for |π1〉 towards |π0〉.
Suppose we can implement R0 and R1 perfectly. Then, we can prepare a state |π̃1〉 such that
|〈π̃1|π1〉| ≥ 1− (1− p)3m using 3m calls to R0, R1 and their inverses, by applying π/3-amplitude
amplification (Lemma 8) to |πi〉. Thus, by taking m = O(p−1 log(1/ε2)) where ε2 is a parameter
to be chosen later, we have ‖ |π1〉 − |π̃1〉 ‖2 ≤ ε2. However, since each call to R̃0 or R̃1 causes an
error of ε1, the total error will be

O(ε2 + ε1 · p−1 log(1/ε2)) = ε,

where we take ε1 := O(pε log−1(1/ε)) and ε2 := ε21.

Therefore, the total number of calls to controlled-W ′0, controlled-W ′1 is

O
(

(
√
t′0 +

√
t′1) · p−1 log2(1/pε)

)
,

where t′i = ti(ε1/β) = O(ti(εp/β)).

The theorem is then proved.

The following corollary is an immediate consequence of Theorem 5, and it also gives Theorem 3.
Corollary 2 (Quantum walk implementation cost (`2-warm starts)). Let M0,M1 be two ergodic re-
versible Markov chains with stationary distributions π0, π1, respectively. Suppose π0 mixes towards
π1 in M1 up to total variation distance ε in t0(ε) steps. Similarly, suppose π1 mixes towards π0 in
M0 in t1(ε) steps. Suppose ‖π0/π1‖ = O(1) and ‖π1/π0‖ = O(1). Moreover, we assume that
|〈π0|π1〉| = Ω(1).

Given |π0〉, we can obtain a state |π̃1〉 such that ‖ |π̃1〉 − |π1〉 ‖2 ≤ ε using

O
(√

t0(ε) + t1(ε) log2(1/ε)
)

calls to the controlled walk operators controlled-W ′0, controlled-W ′1.

B Classical Approach for Optimizing Approximately Convex Functions

In this section, we introduce the classical approach [8] for the optimization of approximately convex
functions as in Eq. (1).

B.1 Low level: Hit-and-Run for approximate log-concave distributions

The Hit-and-Run walk uses a unidimensional rejection sampler to sample a point from the dis-
tribution πg restricted to a line `. The following lemma shows the performance guarantee of the
unidimensional sampler:
Lemma 9 (Unidimensional rejection sampler, [8, Lemma 5]). Given β = O(1). Let g be a β-log-
concave function and ` be a bounded line segment on K. For ε ∈ (0, e−2β/2), Algorithm 4 outputs
a point x ∈ ` with a distribution π̃` such that

dTV(π̃`, πg|`) ≤ 3e2βε.

16

Algorithm 3 Hit-and-Run walk

1: procedure HITANDRUN(π0, πg , Σ, m) . πg is the target distribution on K induced by a
nonnegative function g, Σ is a linear transformation

2: x0 ← sample from π0

3: Choose accuracy parameter ε`
4: for i← 1, . . . ,m do
5: u← uniformly sample from the surface of ellipse given by Σ acting on sphere
6: `(t) := xi−1 + tu, compute [s, t]← ` ∩ K
7: xi ← UNISAMPLER(g, β, [s, t], ε`)
8: end for
9: return xm

10: end procedure

Moreover, the algorithm requires Õ(1) evaluations of the function g.

The following theorem gives the mixing time of the standard Hit-and-Run walk for an approximate
log-concave distribution, where we assume that in each step we directly sample from the restricted
distribution πg|`.
Theorem 6 (Mixing time of Hit-and-Run for approximate log-concave distribution, [8, Theorem
4]). Let πg be the stationary measure associated with the Hit-and-Run walk based on a β/2-
approximately log-concave function g, and let σ(0) be an initial distribution with `2-warmness
M := ‖σ(0)/πg‖. There is a universal constant C such that for any γ ∈ (0, 1/2), if

m ≥ Cn2 e
6βR2

r2
log4

(eβMnR

rγ2

)
log
(M
γ

)
,

then m steps of the Hit-and-Run random walk based on g yield

dTV(σ(m), πg) ≤ γ.

The next theorem shows the closeness between the output distribution of Algorithm 3 and the target
distribution πg . Due to the unidimensional rejection sampler (Algorithm 4), the stationary distribu-
tion of Algorithm 3 may not be exactly πg . Nevertheless, we can still show that it will not deviate a
lot.
Theorem 7 (The effect of the rejection sampler, [8, Theorem 5]). Let πg , σ(0) be defined as in
Theorem 6. Let σ̂(m) denote the output distribution of Algorithm 3 with initial distribution σ̂(0) in
m steps. Let ε` be the accuracy parameter for the unidimensional rejection sampler (Algorithm 4).
Then, we have

dTV(σ̂(m), σ(m)) ≤ mε` + 2dTV(σ̂(0), σ(0)).

In particular, for γ ∈ (0, 1/e), suppose dTV(σ̂(0), σ(0)) ≤ γ/8. Let s ∈ (0, 1) be such that
Hs ≤ γ/4, where Hs is defined to be:

Hs := sup
A⊂K:πg(A)≤s

|πg(A)− σ(0)(A)|.

Then, there is a constant C ′ such that, if we take ε` := γe−2β/(12m) and

m ≥ C ′n2 e
6βR2

r2
log4

(eβnR
rs

)
log(1/s),

we have

dTV(σ̂(m), πg) ≤ γ.

B.2 Mid level: rounding into isotropic position

The following lemma rounds a β-log-concave distribution to near-isotropic position.

17

Algorithm 4 Unidimensional rejection sampler

1: procedure INITP(g, β, ` = [s, t])
2: while true do
3: x1 ← 3

4s + 1
4t, x2 ← 1

2s + 1
2t, x3 ← 1

4s + 3
4t

4: if | log(g(x1))− log(g(x3))| > β then
5: t← x3 if g(x1) > g(x3); s← x1 otherwise
6: else if | log(g(x1))− log(g(x2))| > β then
7: t← x2 if g(x1) > g(x2); s← x1 otherwise
8: else if | log(g(x2))− log(g(x3))| > β then
9: t← x3 if g(x2) > g(x3); s← x2 otherwise

10: else
11: return p← arg maxx∈{x1,x2,x3} g(x)
12: end if
13: end while
14: end procedure
15: procedure BINSEARCH(g,xl, xr, Vl, Vr)
16: while true do
17: xm ← (xl + xr)/2
18: if g(xm) > Vr then
19: xr ← xm
20: else if g(xm) < Vl then
21: xl ← xm
22: else
23: return xm
24: end if
25: end while
26: end procedure
27: procedure INITE(g, β, ` = [s, t], p, ε`)
28: if g(s) ≥ 1

2e
−βε`g(p) then

29: e0 ← s
30: else
31: e0 ← BINSEARCH(g, s,p, 1

2e
−βε`g(p), ε`g(p))

32: end if
33: if g(t) ≥ 1

2e
−βε`g(p) then

34: e1 ← t
35: else
36: e1 ← BINSEARCH(g,p, t, 1

2e
−βε`g(p), ε`g(p))

37: end if
38: return e0, e1

39: end procedure
40: procedure UNISAMPLER(g, β, ` = [s, t], ε`)
41: p← INITP(g, β, `)
42: e0, e1 ← INITE(g, β, `, p, ε`)
43: while true do
44: x← Uniform([e0, e1]), r ← Uniform([0, 1])
45: if r ≤ g(x)/(e3βg(p)) then
46: return x
47: end if
48: end while
49: end procedure

18

Lemma 10 (Rounding β-log-concave distribution, [8, Lemma 9]). Let π be a β-log-concave distri-
bution in Rn. By taking N = Θ(n log n) i.i.d. samples x1, . . . ,xn from π, we have

1

2
≤ σmin

(1

N

∑
i∈[N]

xix
>
i

)
≤ σmax

(1

N

∑
i∈[N]

xix
>
i

)
≤ 3

2

holds with probability at least 1− n−O(1).

B.3 High level: simulated annealing

At high level, we run a simulated annealing for a series of functions:

hi(x) := exp(−f(x)/Ti), and gi(x) := exp(−F (x)/Ti),

where f, F satisfy Eq. (1) and {Ti}i∈[K] are parameters to be chosen later.

Algorithm 5 Simulated annealing

1: procedure SIMANNEALING(K, {Ti}i∈[K])
2: N ← Θ(n log n) . The number of strands
3: Xj

0 ∼ Uniform(K) for j = 1, . . . , N
4: K0 ← K, Σ0 ← I
5: m← Õ(n3) . Theorem 7
6: for i← 1, . . . ,K do
7: Σ′i ← the rounding linear transformation for {Xj

i−1}j∈[N]

8: Σi ← Σ′i ◦ Σi−1

9: for j ← 1, . . . , N do
10: Xj

i ← HITANDRUN(Xj
i−1, πgi ,Σi,m) . Algorithm 3

11: end for
12: end for
13: return arg mini∈[K],j∈[N] F (Xj

i)
14: end procedure

Lemma 11 (The warmness of annealing distributions, [8, Lemma 8]). Let g(x) = exp(−F (x))
be a β-log-concave function. Let πgi be a distribution with density proportional to gi(x) =

exp(−F (x)/Ti), supported on K . Let Ti := Ti−1

(
1− 1√

n

)
. Then,

‖πgi/πgi+1‖ ≤ Cγ = 5 exp(2β/Ti).

Theorem 8 (Sample Guarantee for the simulated annealing, [8, Theorem 6]). Fix a target accu-
racy γ ∈ (0, 1/e) and let g be an β/2-approximately log-concave function in Rn. Suppose the
simulated annealing algorithm (Algorithm 5) is run for K =

√
n log(1/ρ) epochs with temperature

parameters Ti = (1−1/
√
n)i for 0 ≤ i ≤ K. If the Hit-and-Run with the unidimensional sampling

scheme (Algorithm 3) is run form = Õ(n3) number of steps prescribed in Theorem 7, the algorithm
maintains that

dTV(σ̂
(m)
i , πgi) ≤ eγ

for each i ∈ [K], where σ̂(m)
i is the distribution of the m-th step of Hit-and-Run. Here, m depends

polylogarithmically on 1/ρ.

Then, we have the following optimization guarantee for the simulated annealing procedure:
Theorem 9 (Optimization guarantee for the simulated annealing, [8, Corollary 1]). Suppose F is
approximately convex and |F − f | ≤ ε/n as in Eq. (1). The simulated annealing method with
K =

√
n log(n/ε) epochs produces a random point X such that

E[f(X)]−min
x∈K

f(x) ≤ ε,

and thus,

E[F (X)]−min
x∈K

F (x) ≤ 2ε.

Furthermore, the number of oracle queries required by the method is Õ(n4.5).

19

C Quantum Speedup for Optimizing Approximately Convex Functions

As we discussed in previous section, there are three levels for the optimization algorithm. The goal
of this section is to prove Theorem 1, where we improve the classical query complexity Õ(n4.5)

(Theorem 9) to quantum query complexity Õ(n3). The main idea is to use quantum walk algorithm
(introduced in Appendix A) to speed-up the low level such that each sample can be generated with
less queries.

C.1 Quantum speedup for low-level

In this section, we show how to use the quantum walk algorithm to speedup the sampling procedure
in the simulated annealing process. According to the framework (Corollary 2), we first show that the
each Markov chain’s stationary distribution in the annealing process is a warm-start for its adjacent
chains, and the Markov chains are slowly-varying. Then, we show how to implement the quan-
tum walk operator for the Hit-and-Run walk. Finally, we prove the quantum speedup from Õ(n3)

classical query complexity to Õ(n1.5) quantum query complexity.

Warmness and overlap for the stationary distributions. We first show that πgi is a warm-start
for πgi+1

, and vice versa.

By lemma 11, we know that ‖πgi/πgi+1‖ ≤ 5 exp(2β/Ti). Similarly, we can also bound
‖πgi+1/πgi‖:
Lemma 12. Let g(x) = exp(−F (x)) be a β-log-concave function. Let πgi be a distribution with

density proportional to gi(x) = exp(−F (x)/Ti), supported on K . Let Ti := Ti−1

(
1− 1√

n

)
.

Then,

‖πgi+1/πgi‖ ≤ 8 exp(2β/Ti+1).

Proof. Define Y (a) :=
∫
K exp(−F (x)a)dx. Then, we have

‖πgi+1/πgi‖ =

∫
K exp(−F (x)(2/Ti+1 − 1/Ti))dx ·

∫
K exp(−F (x)/Ti)dx(∫

K exp(−F (x)/Ti+1)dx
)2

=
Y (2/Ti+1 − 1/Ti)Y (1/Ti)

Y (1/Ti+1)2
.

Define G(x, t) := g(x/t)t. Then, we have

G(λx+ (1− λ)x′, λt+ (1− λ)t′) = g
(λx+ (1− λ)x′

λt+ (1− λ)t′

)λt+(1−λ)t′

= g
(λt

λt+ (1− λ)t′
x

t
+

(1− λ)t′

λt+ (1− λ)t′
x′

t′

)λt+(1−λ)t′

≥ exp(−β(λt+ (1− λ)t′)) · g
(x
t

)λt
· g
(x′
t′

)(1−λ)t′

= exp(−β(λt+ (1− λ)t′)) ·G(x, t)λ ·G(x′, t′)1−λ

= (exp(−βt)G(x, t))
λ · (exp(−βt′)G(x′, t′))

1−λ
,

where the inequality follows from g is β-log-concave.

By Prékopa–Leindler inequality (Theorem 10), it implies that∫
K
G(x, λt+ (1− λ)t′)dx ≥

(∫
K

exp(−βt)G(x, t)dx
)λ
·
(∫
K

exp(−βt′)G(x, t′)dx
)1−λ

.

Note that∫
K
G(x, t)dx =

∫
K
g
(x
t

)t
dx = tn

∫
K
g(x)tdx = tn

∫
K

exp(−F (x)t)dx = tnY (t).

20

Hence, for λ = 1
2 , we have(t+ t′

2

)2n

Y
(t+ t′

2

)2

≥ exp(−β(t+ t′)/2) · tnY (t) · t′nY (t′),

which implies that

Y (t)Y (t′)

Y (t+t
′

2)2
≤ exp

(β(t+ t′)

2

)
·
((t+ t′)2/4

tt′

)n
. (13)

By taking t = 2/Ti+1 − 1/Ti and t′ = 1/Ti, we have

‖πgi+1
/πgi‖ ≤

Y (2/Ti+1 − 1/Ti)Y (1/Ti)

Y (1/Ti+1)2

≤ exp(2β/Ti+1) ·
((1/Ti+1)2

(2/Ti+1 − 1/Ti)(1/Ti)

)n
= exp(2β/Ti+1) ·

(1

(2− (1− 1/
√
n))(1− 1/

√
n)

)n
= exp(2β/Ti+1) ·

(
1 +

1

n− 1

)n
≤ exp(2β/Ti+1) · exp(n/(n− 1))

≤ 8 exp(2β/Ti+1),

where the third step follows from Ti+1 = Ti(1− 1√
n

).

The lemma is then proved.

Remark 1. Since we assume that |F (x) − f(x)| ≤ ε/n in Eq. (1), i.e., β = ε/n, by Lemmas 11
and 12, we know that the warmness M := max{‖πg+i/πgi+1

‖, ‖πgi+1
/πgi‖} can be bounded by

O(exp(2ε/(nTi+1))). Since we choose the final temperature Tk = ε/n, we get that M = O(1).
Therefore, it satisfies the warmness condition in Corollary 2.

Theorem 10 (Prékopa–Leindler inequality, [32, 33]). Let 0 < λ < 1 and let f, g, h : Rn → [0,∞)
be measurable functions. Suppose that these functions satisfy

h(λx+ (1− λ)y) ≥ f(x)λ · g(y)1−λ ∀x, y ∈ Rn.

Then, we have ∫
Rn
h(x)dx ≥

(∫
Rn
f(x)dx

)λ
·
(∫

Rn
g(x)dx

)1−λ
.

Lemma 13 (Bound distribution overlap). Let g(x) = exp(−F (x)) be a β-log-concave function.
Let πgi be a distribution with density proportional to gi(x) = exp(−F (x)/Ti), supported on K .

Let Ti := Ti−1

(
1− 1√

n

)
. Then,

〈πi|πi+1〉 ≥ exp(−(β/Ti+1 + 1)/2).

Proof. We can write the overlap as follows:

〈πgi |πgi+1
〉 =

∫
K

√
gi(x)gi+1(x)dx

(
∫
K gi(x)dx)1/2 · (

∫
K gi+1(x)dx)1/2

=

∫
K exp(−F (x)(1/Ti + 1/Ti+1)/2)dx

(
∫
K exp(−F (x)/Ti)dx)1/2 · (

∫
K exp(−F (x)/Ti+1)dx)1/2

=
Y ((1/Ti + 1/Ti+1)/2)

Y (1/Ti)1/2Y (1/Ti+1)1/2
,

where Y (t) :=
∫
K exp(−F (x)t)dx.

21

By Eq. (13), we have

Y (1/Ti)Y (1/TTi+1
)

Y ((1/Ti + 1/Ti+1)/2)2
≤ exp(β(1/Ti + 1/Ti+1)/2) ·

((1/Ti + 1/Ti+1)2/4

1/(TiTi+1)

)n
= exp

(
β(2− 1/

√
n)/(2Ti+1)

)
·
(

1 +
1

4(n−
√
n)

)n
≤ exp

(
1

4

√
n√

n− 1

)
· exp(β/Ti+1)

≤ exp(β/Ti+1 + 1),

where the second step follows from Ti+1 = Ti(1− 1/
√
n).

Therefore,

〈πgi |πgi+1
〉 ≥ exp(−(β/Ti+1 + 1)/2).

Remark 2. By taking β = ε/n and Ti ≥ ε/n in Lemma 13, we have for any i ∈ [K − 1], the
overlap can be upper-bounded by:

〈πgi |πgi+1
〉 ≥ exp(−(β/TK + 1)/2) = e−1.

Implementing the quantum walk operator. We introduce how to implement the quantum walk
update operator U such that:

U |x〉 |0〉 =

∫
K

√
Px,y |x〉 |y〉dy,

where P is the stochastic transition matrix for the Hit-and-Run walk.

Given an input state |x〉. We first prepare an n-dimensional Gaussian state in an ancilla register:

|x〉 |0〉 −→ |x〉
∫
Rn

(2π)−n/4 |z〉dz.

Then, by normalizing z and applying the linear transformation Σ in another quantum register, we
get that

|x〉
∫
Rn

(2π)−n/4 |z〉
∣∣∣∣ Σz

‖z‖

〉
dz.

If we un-compute the |z〉 register, we get that (ignoring the normalization factor):

|x〉
∫

ΣSn
|u〉du.

Next, we coherently compute the two end-points of `∩K for `(t) := x+ ut in the ancilla registers:∫
ΣSn

du |x〉 |u〉 |0〉 −→
∫

ΣSn
du |x〉 |u〉 |s, t〉

We coherently simulate the unidimensional sampler (Algorithm 4). More specifically, we can com-
pute the points p, e0, e1 in ancilla registers:∫

ΣSn
du |x〉 |u〉 |s, t, p, e0, e1〉

Then, we prepare two unifrom distribution states in the next two ancilla qubits:∫
ΣSn

du |x〉 |u〉 |s, t, p, e0, e1〉
∫

[0,1]2
|r′, r〉dr′dr

And the next proposed point y can be computed via y := e0 + r′(e1 − e0):∫
ΣSn

du |x〉 |u〉 |s, t, p, e0, e1〉
∫

[0,1]2
|r′, r〉dr′dr |y〉

22

Then, we check the condition r ≤ g(y)/(3βg(p)) by querying the evaluation oracle twice and use
an ancilla qubit to indicate whether it is satisfied:∫

ΣSn

∫
[0,1]2

dudr′dr |x〉 |u〉 |s, t, p, e0, e1〉 |r′, r〉 |y〉 |b〉 ,

where b ∈ {0, 1}. Then, we post-select4 the last qubit for b = 1. By un-computing the registers for
u, s, t, p, e0, e1, r, r

′, we get the desired state:

|x〉
∫
K

√
Px,y |y〉 .

By Lemma 9, we get that this procedure (including the post-selection cost) takesO(1) oracle queries
with high probability. Therefore, we get the following lemma:

Lemma 14 (Implementation cost of the quantum walk update operator). For the Hit-and-Run walk
(Algorithm 3) with the unidimensional sampler (Algorithm 4), the quantum walk update operator U
can be implemented by querying the evaluation oracle O(1) times.

Õ(n1.5)-query quantum algorithm. We have the following theorem:

Theorem 11 (Quantum speedup for the Hit-and-Run sampler). Let γ ∈ (0, 1/e). Let πg be the sta-
tionary measure associated with the Hit-and-Run walk based on a β/2-approximately log-concave
function g. Let Ti = (1 − 1/

√
n)i for 0 ≤ i ≤ K be the annealing schedule. Suppose we use the

quantum walk to implement the Hit-and-Run walk (Algorithm 3). Then, for each 0 ≤ i ≤ K − 1,
given a state |πgi〉, we can produce a state |σ̂(m)

i 〉 such that

‖|πgi+1〉 − |σ̂
(m)
i 〉‖2 ≤ O(γ),

using m = Õ(n1.5) calls for the evaluation oracle.

Proof. We use the quantum walk framework in Corollary 2.

For the warmness, by Remark 1, we know that in this annealing schedule, ‖πgi/πgi+1‖ and
‖πgi+1

/πgi‖ are upper-bounded by some constants.

Then, by Theorem 6, we get that the number of steps for evolving from πgi to πgi+1
and from

πgi+1
to πgi is Õ(n3) classically. The proof of Theorem 7 implies that the stationary distribution

of the Hit-and-Run walk with unidimensional sampler is very close to the original Markov chain,
only causing a constant blowup to the total variation distance. Thus, for γ′ = O(γ), we have
t1(γ′), t2(γ′) = Õ(n3) in Corollary 2.

By Remark 2, we know that in this annealing schedule, the adjacent distributions have a big overlap.
In particular, we have |〈πgi |πgi+1〉| ≥ Ω(1), satisfying the condition in Corollary 2.

Therefore, by Corollary 2, we get that the state |σ̂(m)
i 〉 satisfying ‖|πgi+1〉 − |σ̂

(m)
i 〉‖2 ≤ O(γ) can

be prepared using Õ(n1.5) calls to the controlled walk operators.

By Lemma 14, each call to the quantum walk operator can be implemented with O(1) query to the
evaluation oracle. Hence, the total query complexity is Õ(n1.5).

The theorem is then proved.

C.2 Non-destructive rounding in the mid-level

In the middle level, we need to compute the linear transformation Σi that rounds the β-logconcave
distribution to near-isotropic position. Moreover, we are given access to N copies of the quantum
states |πgi〉 and we will compute Σi in a non-destructive way.

4We can measure the last qubit. If the measurement outcome is 0, we reinitialize the r, r′ registers and
re-preapre |y〉 and |b〉. We repeat this process until we measure b = 1.

23

Classically, by Lemma 10, we can take

Σ′i(x
1, . . . , xN) :=

1

N

N∑
i=1

xjij
>
,

where xji is the j-th independent sample from πgi . Then, the linear transformation in the i-th itera-
tion is Σi composite with the linear transformation in the (i− 1)-th iteration, i.e.,

Σi(x1, . . . , xn) := Σ′i(x1, . . . , xN) · Σi−1.

In quantum, we can use a quantum circuit to simulate the classically computation for Σ′i and Σi
coherently, which computes the following superposition state:∫

K
dx1 · · ·

∫
K

dxN
N∏
j=1

√
πgi(x

j) ·
∣∣x1
〉
· · ·
∣∣xN〉 |Σi(x1, . . . , x

n)〉 . (14)

That is, the first N quantum registers contain N copies of the state |πgi〉, and the last quantum
register contains the linear transformation Σi. If we directly measure the last register, we can get the
desired matrix, but the coherence of the quantum states |πgi〉 are also destroyed.

To resolve this issue, we use the following theorem of Harrow and Wei:
Theorem 12 (Non-destructive amplitude estimation, [21]). Let P be an observable. Given state
|ψ〉 and reflections Rψ = 2 |ψ〉 〈ψ| − I and R = 2P − I , and any η > 0, there exists a quantum
algorithm that outputs ã, an approximation to a := 〈ψ|P |ψ〉, so that

|a− ã| ≤ 2π
a(1− a)

M
+

π2

M2
.

with probability at least 1−η andO(log(1/η)M) uses ofRψ andR. Morover the algorithm restores
the state |ψ〉 with probability at least 1− η.

Then, we can create O(logN) copies of the state in Eq. (14), and non-destructively estimate the
mean of the last quantum register via the procedure in [14, 21]. More specifically, we start from
Õ(N) copies of the states

∣∣πgi−1

〉
, and evolve them to |πgi〉. In the same time, the reflection op-

erator R can be approximately implemented by Lemma 7. Then, the mean value can be estimated
by Theorem 12. Note that we can estimate all the coordinates of Σi in the same time using the
non-destructive mean estimation quantum circuit. And we get that the success probability of this
procedure is at least 1 − 1/ poly(N). After that, the states in the first N registers will be restored.
Therefore, we get that:
Lemma 15 (Non-destructive rounding). For i ∈ [K], the linear transformation Σi at the i-iteration
of the annealing process (Algorithm 5) can be obtained using Õ(N) copies of the states

∣∣πgi−1

〉
,

with query complexity Õ(N ·C) where C is the cost of evolving
∣∣πgi−1

〉
to |πgi〉. Moreover, the states∣∣πgi−1

〉
will be recovered with high probability.

C.3 Proof of Theorem 1

Proof of Theorem 1. The quantum algorithm for optimizing an approximately convex function is
given in Algorithm 6. By Theorem 11 and Lemma 15, we know that it has the same optimization
guarantee as the classical procedure (Algorithm 5). Thus, we take K =

√
n log(n/ε). And the

output x∗ of QSIMANNEALING procedure satisfies:
F (x∗)−min

x∈K
F (x) ≤ O(ε)

with high probability.

Then, consider the query complexity. We have K =
√
n log(n/ε) stages in the annealing process.

In each iteration, the quantum walk has query complexity C = Õ(n1.5) by Theorem 11. Thus, the
query cost of Line 5 is Õ(NC) = Õ(n2.5). Also, the query cost of Line 6 is also Õ(n2.5). Therefore,
the total query complexity of the annealing procedure is

K · Õ(n2.5) = Õ(n3).

24

Algorithm 6 Quantum speedup for approximately convex optimization.

1: procedure QSIMANNEALING(K, {Ti}i∈[K])
2: N ← Õ(n) . The number of strands
3: Prepare N (approximately) copies of |π0〉, denoted as |π̃(1)

0 〉, . . . , |π̃
(N)
0 〉, where π0 =

Uniform(K)
4: for i← 1, . . . ,K do
5: Use the N copies of the state |πi−1〉 to nondestructively obtain the linear transformation

Σi. Let |π̂(1)
i−1〉, . . . , |π̂

(N)
i−1〉 denote the post-measurements states . Lemma 15

6: Apply quantum walk with Σi to evolve the states |π̂(1)
i−1〉, . . . , |π̂

(N)
i−1〉 to

|π̃(1)
i 〉, . . . , |π̃

(N)
i 〉 . Theorem 11

7: end for
8: xjK ← measure the final state |π̃(j)

K 〉 for j ∈ [N]

9: return arg minj∈[N] F (xjK)
10: end procedure

25

