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Abstract

We propose and analyze a reinforcement learning principle that approximates the1

Bellman equations by enforcing their validity only along an user-defined space of2

test functions. Focusing on applications to model-free offline RL with function3

approximation, we exploit this principle to derive confidence intervals for off-policy4

evaluation, as well as to optimize over policies within a prescribed policy class.5

We prove an oracle inequality on our policy optimization procedure in terms of6

a trade-off between the value and uncertainty of an arbitrary comparator policy.7

Different choices of test function spaces allow us to tackle different problems8

within a common framework. We characterize the loss of efficiency in moving9

from on-policy to off-policy data using our procedures, and establish connections10

to concentrability coefficients studied in past work. We examine in depth the11

implementation of our methods with linear function approximation, and provide12

theoretical guarantees with polynomial-time implementations even when Bellman13

closure does not hold.14

1 Introduction15

Markov decision processes (MDP) provide a general framework for optimal decision-making in16

sequential settings (e.g., [Put94, Ber95a, Ber95b]). Reinforcement learning refers to a general17

class of procedures for estimating near-optimal policies based on data from an unknown MDP18

(e.g., [BT96, SB18]). Different classes of problems can be distinguished depending on our access19

to the data-generating mechanism. Many modern applications of RL involve learning based on a20

pre-collected or offline dataset. Moreover, the state-action spaces are often sufficiently complex that21

it becomes necessary to implement function approximation. In this paper, we focus on model-free22

offline reinforcement learning (RL) with function approximation, where prior knowledge about the23

MDP is encoded via the value function. In this setting, we focus on two fundamental problems: (1)24

offline policy evaluation—namely, the task of accurately predicting the value of a target policy; and25

(2) offline policy optimization, which is the task of finding a high-performance policy.26

There are various broad classes of approaches to off-policy evaluation, including importance sam-27

pling [Pre00, TB16, JL16, LLTZ18], as well as regression-based methods [LP03, MS08, CJ19].28

Many methods for offline policy optimization build on these techniques, with a line of recent pa-29

pers including the addition of pessimism [JYW21, XCJ+21, ZWB21]. We provide a more detailed30

summary of the literature in Appendix A.3.31

In contrast, this work investigates a different model-free principle—different from importance32

sampling or regression-based methods—to learn from an offline dataset. It belongs to the class33

of weight learning algorithms, which leverage an auxiliary function class to either encode the34

marginalized importance weights of the target policy [LLTZ18, XJ20b], or estimates of the Bellman35

errors [ASM08, CJ19, XJ20b]. Some work has considered kernel classes [FRTL20] or other weight36
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classes to construct off-policy estimators [UHJ20] as well as confidence intervals at the population37

level [JH20]. However, these works do not examine in depth the statistical aspects of the problem, nor38

elaborate upon the design of the weight function classes.1 The last two considerations are essential to39

obtaining data-dependent procedures accompanied by rigorous guarantees, and to provide guidance40

on the choice of weight class, which are key contributions of this paper.41

For space reasons, we motivate our approach in the idealized case where the Bellman operator is42

known in Appendix A.1, and compare with the weight learning literature at the population level43

in Appendix A.2. Let us summarize our main contributions in the following three paragraphs.44

Conceptual contributions: Our paper makes two novel contributions of conceptual nature:45

1. We propose a method, based on approximate empirical orthogonalization of the Bellman residual46

along test functions, to construct confidence intervals and to perform policy optimization.47

2. We propose a sample-based approximation of such principle, based on self-normalization and48

regularization, and obtain general guarantees for parametric as well as non-parametric problems.49

The construction of the estimator, its statistical analysis, and the concrete consequences (described50

in the next paragraph) are the major distinctions with respect to past work on weight learning51

methods [UHJ20, JH20]. Our analysis highlights the statistical trade-offs in the choice of the test52

functions. (See Appendix A.2 for comparison with past work at the population level.)53

Domain-specific results: In order to illustrate the broad effectiveness and applicability of our general54

method and analysis, we consider several domains of interest. We show how to recover various results55

from past work—and to obtain novel ones—by making appropriate choices of the test functions and56

invoking our main result. Among these consequences, we discuss the following:57

1. When marginalized importance weights are available, they can be used as test class. In this case58

we recover a similar results as the paper [XJ20b]; however, here we only require concentrability59

with respect to a comparator policy instead of over all policies in the class.60

2. When some knowledge of the Bellman error class is available, it can be used as test class. Similar61

results have appeared previously either with stronger concentrability [CJ19] or in the special case62

of Bellman closure [XCJ+21].63

3. We provide a test class that projects the Bellman residual along the error space of theQ class. The64

resulting procedure is as an extension of the LSTD algorithm [BB96] to non-linear spaces, which65

makes it a natural approach if no domain-specific knowledge is available. A related result is the66

lower bound by [FKSLX21], which proves that without Bellman closure learning is hard even67

with small density ratios. In contrast, our work shows that learning is still possible even with large68

density ratios.69

4. Finally, our procedure inherits some form of “multiple robustness”. For example, the two test70

classes corresponding to Bellman completeness and marginalized importance weights can be used71

together, and guarantees will be obtained if either Bellman completeness holds or the importance72

weights are correct. We examine this issue in Section 4.4.73

Linear setting: We examine in depth an application to the linear setting, where we propose the first74

computationally tractable policy optimization procedure without assuming Bellman completeness.75

The closest result here is given in the paper [ZWB21], which holds under Bellman closure. Our76

procedure can be thought of making use of LSTD-type estimates so as to establish confidence intervals77

for the projected Bellman equations, and then using an iterative scheme for policy improvement.78

2 Background and set-up79

We begin with some notation used throughout the paper. For a given probability distribution ρ80

over a space X , we define the L2(ρ)-inner product and semi-norm as 〈f1, f2〉ρ = Eρ[f1f2], and81

‖f1‖ρ =
√
〈f1, f1〉ρ. The identity function that returns one for every input is denoted by 1. We82

frequently use notation such as c, c′, c̃, c1, c2 etc. to denote constants that can take on different values83

in different sections of the paper.84
1For instance, the paper [FRTL20] only shows validity of ther intervals, not a performance bound; on the

other hand, the paper [JH20] gives analyses at the population level, and so does not address the alignment of
weight functions with respect to the dataset in the construction of the empirical estimator, which we do via
self-normalization and regularization. This precludes obtaining the same type of guarantees that we present here.
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2.1 Markov decision processes and Bellman errors85

We focus on infinite-horizon discounted Markov decision processes [Put94, BT96, SB18] with86

discount factor γ ∈ [0, 1), state space S, and an action set A. For each state-action pair (s, a), there87

is a reward distribution R(s, a) supported in [0, 1] with mean r(s, a), and a transition P(· | s, a).88

A (stationary) stochastic policy π maps states to actions. For a given policy, its Q-function is the89

discounted sum of future rewards based on starting from the pair (s, a), and then following the90

policy π in all future time steps Qπ(s, a) = r(s, a) +
∑∞
h=0 γ

hE[rh(Sh, Ah) | (S0, A0) = (s, a)],91

where the expectation is taken over trajectories with Ah ∼ π(· | Sh), and Sh+1 ∼ P(· |92

Sh, Ah) for h = 1, 2, . . .. We also use Qπ(s, π) = EA∼π(·|s)Q
π(s,A) and define the Bellman93

evaluation operator as (T πQ)(s, a) = r(s, a) + ES+∼P(·|s,a)Q(S+, π). The value function satisfies94

V π(s) = Qπ(s, π). In our analysis, we assume that policies have action-value functions that satisfy95

the uniform bound sup(s,a)|Qπ(s, a)| ≤ 1. We are also interested in approximating optimal poli-96

cies, whose value and action-value functions are defined as V ?(s) = V π
?

(s) = supπ V
π(s) and97

Q?(s, a) = Qπ
?

(s, a) = supπ Q
π(s, a).98

We assume that the starting state S0 is drawn according to νstart and study V π = ES0∼νstart [V
π(S0)].99

The discounted occupancy measure associated with a policy π is defined as dπ(s, a) = (1 −100

γ)
∑∞
h=0 γ

hPh[(Sh, Ah) = (s, a)]. We adopt the shorthand notation Eπ for expectations over101

dπ. For any functions f, g : S × A → R, we make frequent use of the shorthands Eπ[f ]
def
=102

E(S,A)∼dπ [f(S,A)], and 〈f, g〉π
def
= E(S,A)∼dπ

[
f(S,A) g(S,A)

]
. Note moreover that we have103

〈1, f〉π = Eπ[f ] where 1 denotes the identity function.104

For a given Q-function and policy π, let us define the temporal difference error (or TD error)105

associated with the sample z = (s, a, r, s+) and the Bellman error at (s, a)106

(δπQ)(z)
def
= Q(s, a)− r − γQ(s+, π), (BπQ)(s, a)

def
= Q(s, a)− r(s, a)− γEs+∼P(s,a)Q(s+, π).

The TD error is a random variable function of z, while the Bellman error is its conditional expectation107

with respect to the immediate reward and successor state at (s, a). Many of our bounds involve the108

quantity EπBπQ = E(S,A)∼dπ
[
BπQ(S,A)

]
.109

2.2 Function Spaces and Weak Representation110

Our methods involve three different types of function spaces, corresponding to policies, action-111

value functions, and test functions. A test function f is a mapping (s, a, o) 7→ f(s, a, o) such112

that sup(s,a,o)|f(s, a, o)| ≤ 1, where o is an optional identifier containing side information. Our113

methodology involves the following three function classes:114

• a policy class Π that contains all policies π of interest (for evaluation or optimization);115

• for each π, the predictor class Qπ of action-value functions Q that we permit; and116

• for each π, the test function class Fπ that we use to enforce the Bellman residual constraints.117

We use the shorthands Q = ∪π∈ΠQπ and F = ∪π∈ΠF
π . We assume weak realizability:118

Assumption 1 (Weak Realizability). For a given policy π, the predictor classQπ is weakly realizable119

with respect to the test space Fπ and the measure µ if there exists a predictor Qπ? ∈ Qπ such that120

〈f,BπQπ? 〉µ = 0 for all f ∈ Fπ and 〈1,BπQπ? 〉π = 0. (1)

The first condition requires the predictor to satisfy the Bellman equations on average. The second121

condition amounts to requiring that the predictor returns the value of π at the start distribution: using122

Lemma 9 stated in the sequel, we have123

ES∼νstartQ
π
? (S, π)− V π = ES∼νstart [Q

π
? −Qπ](S, π) =

1

1− γ
EπBπQπ? =

1

1− γ
〈1,BπQπ? 〉π = 0.

This weak notion should be contrasted with strong realizability, which requires a function Qπ ∈ Qπ124

that satisfies the Bellman equation in all state-action pairs.125

A stronger assumption that we sometime use is Bellman closure, which requires that T π(Q) ∈126

Qπ for all Q ∈ Qπ . The corresponding ‘weak’ version is given in Appendix A.4.127
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3 Policy Estimates via the Weak Bellman Equations128

In this section, we introduce our high-level approach, first at the population level and then in terms of129

regularized/normalized sample-based approximations.130

3.1 Weak Bellman equations, empirical approximations and confidence intervals131

We begin by noting that the predictor Qπ satisfies the Bellman equations everywhere in the state-132

action space, i.e., BπQπ = 0. However, if our dataset is “small” relative to the complexity of133

(functions) on the state-action space, then it is unrealistic to enforce such a stringent condition.134

Instead, the idea is to control the Bellman error in a weighted-average sense, where the weights are135

given by a set of test functions. At the idealized population level (corresponding to an infinite sample136

size), we consider predictors that satisfy the conditions137

〈f,BπQ〉µ = 0, for all f ∈ Fπ. (2)
where Fπ is a user-defined set of test functions. The two main challenges here are how to use data to138

enforce an approximate version of such constraints (along with rigorous data-dependent guarantees),139

and how to design the test function space. We begin with the former challenge.140

Construction of the empirical set: Given a dataset D = {(si, ai, ri, s+
i , oi)}ni=1, we can approxi-141

mate the Bellman errors by a linear combination of the temporal difference errors:142 ∫
f(s, a) [Q(s, a)− (T πQ)(s, a)]︸ ︷︷ ︸

=BπQ(s,a)

dµ ≈ 1

n

n∑
i=1

f(si, ai) [Q(si, ai)− ri − γQ(s+
i , π)]︸ ︷︷ ︸

=δπQ(si,ai,ri,s
+
i ,oi)

. (3)

Note that the approximation (3) corresponds to a weighted linear combination of temporal differences.143

Written more compactly in inner product notation, equation (3) reads 〈f,BπQ〉µ ≈ 〈f, δπQ〉n, where144

〈f, g〉n = 1
n

∑
(s,a,r,s+,o)∈D(fg)(s, a, r, s+, o).145

In general, the action value function Qπ does not satisfy 〈f, δπQπ〉n = 0 because the empirical146

approximation (3) involves sampling error. For these reasons, in order to (approximately) identify147

Qπ, we impose only inequalities. Given a class of test functions Fπ, a radius parameter ρ ≥ 0 and148

regularization parameter λ ≥ 0, we define the set149

Ĉπn(ρ, λ;Fπ)
def
=

{
Q ∈ Qπ such that

|〈f, δπQ〉n|√
‖f‖2n + λ

≤
√
ρ

n
for all f ∈ Fπ

}
. (4)

When the choices of (ρ, λ) are clear from the context, we adopt the shorthand Ĉπn(Fπ), or Ĉπn when150

the function class Fπ is also clear. If Fπ and Qπ have finite cardinality, ρ ≈ ln |Fπ||Qπ|+ ln 1/δ,151

where δ is a prescribed failure probability.152

Our definition of the empirical constraint set (4) has two key components: first, the division by153 √
‖f‖2n + λ corresponds to a form of self-normalization, whereas the addition of λ corresponds to a154

form of regularization. Self-normalization is needed so that the constraints remain suitably scale-155

invariant. More importantly—in conjunction with the regularization—it ensures that test functions156

that have poor coverage under the dataset do not have major effects on the solution. In particular,157

the empirical norm ‖f‖2n in the self-normalization measures how well the given test function is158

covered by the dataset. Any test function with poor coverage (i.e., ‖f‖2n ≈ 0) will not yield useful159

information, and the regularization counteracts its influence. In our guarantees, the choices of λ and160

ρ are critical; as shown in our theory, we typically have λ = ρ/n, where ρ scales with the metric161

entropy of the predictor, test and policy spaces. Disregarding ρ, the right-hand side of the constraint162

decays as 1/
√
n, so that the constraints are enforced more tightly as the sample size increases.163

Confidence bounds and policy optimization: First, for any fixed policy π, we can use the feasi-164

bility set (4) to compute the lower and upper estimates165

V̂ πmin
def
= min

Q∈Ĉπn(ρ,λ;Fπ)
ES∼νstart

[
Q(S, π)

]
, and V̂ πmax

def
= max

Q∈Ĉπn(ρ,λ;Fπ)
ES∼νstart

[
Q(S, π)

]
, (5)

corresponding to estimates of the minimum and maximum value that the policy π can take at the166

initial distribution. The family of lower estimates can be used to perform policy optimization over the167

class Π, in particular by solving the max-min problem168

max
π∈Π

[
min
Q∈Ĉπn

ES∼νstartQ(S, π)
]
, or equivalently max

π∈Π
V̂ πmin. (6)
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Form of guarantees Let us now specify and discuss the types of guarantees that we establish for169

our estimators (5) and (6). All of our theoretical guarantees involve a µ-based counterpart Cπn of the170

data-dependent set Ĉπn. More precisely, we define the population set171

Cπn(4ρ, λ;Fπ)
def
=

{
Q ∈ Qπ such that |〈f,BπQ〉µ|√

‖f‖2µ+λ
≤
√

4ρ
n for all f ∈ F

}
, (7)

where 〈f, g〉µ
def
=
∫
f(s, a)g(s, a)dµ is the inner product induced by a distribution2 µ over (s, a).172

As before, we use the shorthand notation Cπn when the underlying arguments are clear from context.173

Moreover, in the sequel, we generally ignore the constant 4 in the definition (7) by assuming that ρ is174

rescaled appropriately—e.g., that we use a factor of 1
4 in defining the empirical set.175

It should be noted that in contrast to the set Ĉπn, the set Cπn is non-random and it is defined in terms of176

the distribution µ and the input space (Π,F,Q). It relaxes the orthogonality constraints in the weak177

Bellman formulation (2). Our guarantees for off-policy confidence intervals take the following form:178

Coverage guarantee:
[
V̂ πmin, V̂

π
max

]
3 V π. (8a)

Width bound: max
{
|V̂ πmin − V π|, |V̂ πmax − V π|

}
≤ 1

1− γ
max

Q∈Cπn(Fπ)
|EπBπQ|. (8b)

Turning to policy optimization, let π̃ be a solution to the max-min criterion (6). Then we prove a179

result of the following type:180

Oracle inequality: V π̃ ≥ max
π∈Π

{
V π︸︷︷︸
Value

− 1
1−γ max

Q∈Cπn(F)
|EπBπQ|︸ ︷︷ ︸

Evaluation uncertainty

}
. (9)

Note that this result guarantees that the estimator competes against an oracle that can search over all181

policies, and select one based on the optimal trade-off between its value and evaluation uncertainty.182

3.2 High-probability guarantees183

In this section, we present some high-probability guarantees. So as to facilitate understanding under184

space constraints, we state here results under simplifying assumptions: (a) the dataset originates185

from a fixed distribution, and (b) the classes Π,F and Q have finite cardinality. We emphasize186

that Appendix B provides a far more general version of this result, with an extremely flexible187

sampling model, and involving metric entropies of parametric or non-parametric function classes.188

Assumption 2 (I.i.d. dataset). An i.i.d. dataset is a collection D = {(si, ai, ri, s+
i , oi)}ni=1 such that189

for each i = 1, . . . , n we have (si, ai, oi) ∼ µ and conditioned on (si, ai, oi), we observe a noisy190

reward ri = r(si, ai) + ηi with E[ηi | Fi] = 0, |ri| ≤ 1 and the next state s+
i ∼ P(si, ai).191

Theorem 1 (Guarantees for finite classes). Consider a triple (Π,F,Q) that is weakly Bellman192

realizable (Assumption 1); an i.i.d. dataset (Assumption 2); and the choices ρ = c
{

log(|F||Π||Q|) +193

log(1/δ)
}

and λ = c′ρ/n for some constants c, c′. Then w.p. at least 1− δ:194

• Policy evaluation: For any π ∈ Π, the estimates (V̂ πmin, V̂
π

max) specify a confidence interval195

satisfying the coverage (8a) and width bounds (8b)196

• Policy optimization: Any max-min policy (6) π̃ satisfies the oracle inequality (9).197

4 Concentrability Coefficients and Test Spaces198

In this section, we develop some connections to concentrability coefficients that have been used in199

past work, and discuss various choices of the test class. Like the predictor class Qπ, the test class200

Fπ encodes domain knowledge, and thus its choice is delicate. Different from the predictor class,201

the test class does not require a ‘realizability’ condition. As a general principle, the test functions202

should be chosen as orthogonal as possible with respect to the Bellman residual, so as to enable203

rapid progress towards the solution; at the same time, they should be sufficiently “aligned” with the204

dataset, meaning that ‖f‖µ or its empirical counterpart ‖f‖n should be large. Given a test class, each205

additional test function posits a new constraint which helps identify the correct predictor; at the same206

2See Section B.2.1 for a precise definition of the relevant µ for a fairly general sampling model.
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time, it increases the metric entropy (parameter ρ), which makes each individual constraints more207

loose. In summary, there are trade-offs to be made in the selection of the test class F , much like Q.208

In order to assess the statistical cost that we pay for off-policy data, it is natural to define the off-policy209

cost coefficient (OPC) as210

Kπ(Cπn, ρ, λ)
def
= max

Q∈Cπn

|EπBπQ|2

(1 + λ) ρn
= max
Q∈Cπn

〈1,BπQ〉2µ
(1 + λ) ρn

, (10)

With this notation, our off-policy width bound (8b) can be re-expressed as211

|V̂ πmin − V̂ πmax| ≤ 2
√

1+λ
1−γ

√
Kπ ρ

n , (11a)

while the oracle inequality (9) for policy optimization can be re-expressed in the form212

V π̃ ≥ max
π∈Π

{
V π −

√
1+λ

1−γ

√
Kπ ρ

n

}
, (11b)

Since λ ∼ ρ/n, the factor
√

1 + λ can be bounded by a constant in the typical case n ≥ ρ. We now213

offer concrete examples of the OPC , while deferring further examples to Appendix A.5.214

4.1 Likelihood ratios215

Our broader goal is to obtain small Bellman error along the distribution induced by π. Assume that216

one constructs a test function class Fπ of possible likelihood ratios.217

Proposition 1 (Likelihood ratio bounds). Assume that for some constant bπ , the test function defined218

as f∗(s, a) = 1
bπ

dπ(s,a)
µ(s,a) belongs to Fπ and satisfies ‖f∗‖∞ ≤ 1. Then the OPC coefficient satisfies219

Kπ
(i)

≤
Eπ

[
dπ(S,A)
µ(S,A)

]
+b2πλ

1+λ

(ii)

≤ bπ

(
1+bπλ

)
1+λ (12)

The proof is in Appendix D.1. Since λ = λn → 0 as n increases, the OPC coefficient is bounded220

by a multiple of the expected ratio Eπ
[
dπ(S,A)
µ(S,A)

]
. Up to an additive offset, this expectation is221

equivalent to the χ2-distribution between the policy-induced occupation measure dπ and data-222

generating distribution µ. The concentrability coefficient can be plugged back into Eqs. (11a)223

and (11b) to obtain a concrete policy optimization bound. In this case, we recover a result similar to224

[XJ20b], but with a much milder concentrability coefficient that involves only the chosen comparator225

policy.226

4.2 The error test space227

We now turn to the discussion of a choice for the test space that extends the LSTD algorithm to228

non-linear spaces. A simplification to the linear setting is presented later in Section 5.229

As is well known, the LSTD algorithm [BB96] can be seen as minimizing the Bellman error projected230

onto the linear prediction spaceQ. Define the transition operator (PπQ)(s, a) = Es+∼P(s,a)Q(s+, π),231

and the prediction error ε = Q − Qπ? , where Qπ? is a Q-function from the definition of weak232

realizability. The Bellman error can be re-written as BπQ = BπQ− BπQπ? = (I − γPπ)ε. When233

realizability holds, in the linear setting and at the population level, the LSTD solution seeks to satisfy234

the projected Bellman equations235

〈f,BπQ〉µ = 0, for all f ∈ Eπ? . (13)

In the linear case, Eπ? is the class of linear functions Qπ used as predictors; when Qπ is non-linear,236

we can extend the LSTD method by using the (nonlinear) error test space Fπ = Eπ? = {Q−Qπ?}.237

Since Eπ? is unknown (as it depends on the weak solution Qπ? ), we choose instead the larger class238

Eπ = {Q−Q′ | Q,Q′ ∈ Qπ},

which contains Eπ? . The resulting approach can be seen as performing a projection of the Bellman239

operator BπQ into the error space Eπ? , much like LSTD does in the linear setting. However, different240

from LSTD, our procedure returns confidence intervals as opposed to a point estimator. This choice241

of the test space is related to the Bubnov-Galerkin method [Rep17] for linear spaces; it selects the242

test space Fπ to be identical to the trial space Eπ? that contains all possible solution errors.243
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Lemma 1 (OPC coefficient from prediction error). For any test function class Fπ ⊇ Eπ , we have244

Kπ ≤ max
Q∈Qπ

{ ‖ε‖2µ+λ

‖ 1 ‖2π+λ
〈1,BπQ〉2π
〈ε,BπQ〉2µ

}
= max

ε∈Eπ?

{ ‖ε‖2µ+λ

‖ 1 ‖2π+λ
〈1,(I−γPπ)ε〉2π
〈ε,(I−γPπ)ε〉2µ

}
. (14)

The above coefficient measures the ratio between the Bellman error along the distribution of the245

target policy π and that projected onto the error space Eπ? defined by Qπ. It is a concentrability246

coefficient that always applies, as the choice of the test space does not require domain knowledge.247

See Appendix D.2 for the proof, and Appendix A.6 for further comments and insights, as well as a248

simplification in the special case of Bellman closure.249

4.3 The Bellman test space250

In the prior section we controlled the projected Bellman error. Another longstanding approach in251

reinforcement learning is to control the Bellman error itself, for example by minimizing the squared252

Bellman residual. In general, this cannot be done if only an offline dataset is available due to the well253

known double sampling issue. However, in some cases we can use an helper class to try to capture254

the Bellman error. Such class needs to be a superset of the class of Bellman test functions given by255

FBπ
def
= {BπQ | Q ∈ Qπ}. (15)

Any test class that contains the above allows us to control the Bellman residual, as we show next.256

Lemma 2 (Bellman Test Functions). For any test function class Fπ that contains FBπ , we have257

‖BπQ‖µ ≤ c1
√

ρ
n for any Q ∈ Cπn(Fπ). (16a)

Moreover, the off-policy cost coefficient is upper bounded as258

Kπ
(i)

≤ c1 sup
Q∈Qπ

〈1,BπQ〉2π
‖BπQ‖2µ

(ii)

≤ c1 sup
Q∈Qπ

‖BπQ‖2π
‖BπQ‖2µ

(iii)

≤ c1 sup
(s,a)

dπ(s,a)
µ(s,a) . (16b)

See Appendix D.4 for the proof of this claim.259

Consequently, whenever the test class includes the Bellman test functions, the off-policy cost260

coefficient is at most the ratio between the squared Bellman residuals along the data generating261

distribution and the target distribution. If Bellman closure holds, then the prediction error space262

Eπ introduced in Section 4.2 contains the Bellman test functions: for Q ∈ Qπ, we can write263

BπQ = Q− T πQ ∈ Eπ . This fact allows us to recover a result in the recent paper [XCJ+21] in the264

special case of Bellman closure, although the approach presented here is more general.265

4.4 Combining test spaces266

Often, it is natural to construct a test space that is a union of several simpler classes. A simple but267

valuable observation is that the resulting procedure inherits the best of the OPC coefficients. Suppose268

that we are given a collection {Fπm}Mm=1 of M different test function classes, and define the union269

Fπ =
⋃M
m=1 F

π
m. For each m = 1, . . . ,M , let Kπ

m be the OPC coefficient defined by the function270

class Fπm and radius ρ, and let Kπ(F) be the OPC coefficient associated with the full class. Then we271

have the following guarantee:272

Lemma 3 (Multiple test classes). Kπ(F) ≤ minm=1,...,M Kπ
m.273

This guarantee is a straightforward consequence of our construction of the feasibility sets: in particular,274

we have Cπn(F) = ∩Mm=1C
π
n(Fm), and consequently, by the variational definition of the off-policy275

cost coefficient Kπ(F) as optimization over Cπn(F), the bound (3) follows. In words, when multiple276

test spaces are combined, then our algorithms inherit the best (smallest) OPC coefficient over all277

individual test spaces. While this behavior is attractive, one must note that there is a statistical cost to278

using a union of test spaces: the choice of ρ scales as a function of F via its metric entropy. This279

increase in ρ must be balanced with the benefits of using multiple test spaces.3280
3For space reasons, we defer to Appendix A.7 an application in which we construct a test function space as a

union of subclasses, and thereby obtain a method that automatically leverages Bellman closure when it holds,
falls back to importance sampling if closure fails, and falls back to a worst-case bound in general.
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5 Linear Setting281

In this section, we turn to a detailed analysis of our estimators using function classes that are linear282

in a feature map. Let φ : S × A → Rd be a given feature map, and consider linear expansions283

gw(s, a)
def
= 〈w, φ(s, a)〉 =

∑d
j=1 wjφj(s, a). The class of linear functions takes the form284

L def
= {(s, a) 7→ gw(s, a) | w ∈ Rd, ‖w‖2 ≤ 1}. (17)

Throughout our analysis, we assume that ‖φ(s, a)‖2 ≤ 1 for all state-action pairs.285

Following the approach in Section 4.2, which is based on the LSTD method, we should choose the286

test function class Fπ = L, as in the linear case the prediction error is linear.287

In order to obtain a computationally efficient implementation, we need to use a test class that is a288

“simpler” subset of L. In particular, for linear functions, it is not hard to show that the estimates289

V̂ πmin and V̂ πmax from equation (5) can be computed by solving a quadratic program, with two linear290

constraints for each test function. (See Appendix A.8 for the details.) Consequently, the computational291

complexity scales linearly with the number of test functions. Thus, if we restrict ourselves to a finite292

test class contained within L, we will obtain a computationally efficient approach.293

5.1 A computationally friendly test class and OPC coefficients294

Define the empirical covariance matrix Σ̂ = 1
n

∑n
i=1 φiφ

T
i where φi

def
= φ(si, ai). Let {ûj}dj=1 be295

the eigenvectors of empirical covariance matrix Σ̂, and suppose that they are normalized to have unit296

`2-norm. We use these normalized eigenvectors to define the finite test class297

F̃π
def
= {fj , j = 1, . . . , d} where fj(s, a)

def
= 〈ûj , φ(s, a)〉 (18)

A few observations are in order:298

• This test class has only d functions, so that our QP implementation has 2d constraints, and can299

be solved in polynomial time. (Again, see Appendix A.8 for details.)300

• Since F̃π is a subset of L the choice of radius ρ = c( dn + log 1/δ) is valid for some constant c.301

Concentrability: When weak Bellman closure does not hold, then our analysis needs to take into302

account how errors propagate via the dynamics. In particular, we define the next-state feature303

extractor φ+π(s, a)
def
= Es+∼P(s,a)φ(s+, π), along with the population covariance matrix Σ

def
=304

Eµ
[
φ(s, a)φ>(s, a)

]
, and its λ-regularized version Σλ

def
= Σ + λI . We also define the matrices305

Σ+π def
= Eµ[φ(φ+π)>], Σ+π

λ,Boot
def
= (Σ

1
2

λ − γΣ
− 1

2

λ Σ+π)>(Σ
1
2

λ − γΣ
− 1

2

λ Σ+π).

The matrix Σ+π is the cross-covariance between successive states, whereas the matrix Σ+π
λ,Boot is a306

suitably renormalized and symmetrized version of the matrix Σ
1
2 −γΣ−

1
2 Σ+π , which arises naturally307

from the policy evaluation equation. We refer to quantities that contain evaluations at the next-state308

(e.g., φ+π) as bootstrapping terms, and now bound the OPC coefficient in the presence of such terms:309

Proposition 2 (OPC bounds with bootstrapping). Under weak realizability, we have310

Kπ(F̃π) ≤ c d‖Eπ[φ− γφ+π]‖2
(Σ+π
λ,Boot)

−1 with probability at least 1− δ. (19)

See Appendix E.1 for the proof. The bound (19) takes a familiar form, as it involves the same311

matrices used to define the LSTD solution. This is expected, as our approach here is essentially312

equivalent to the LSTD method; the difference is that LSTD only gives a point estimate as opposed to313

the confidence intervals that we present here; however, they are both derived from the same principle,314

namely from the Bellman equations projected along the predictor (error) space.315

The bound quantifies how the feature extractor φ together with the bootstrapping term φ+π , averaged316

along the target policy π, interact with the covariance matrix with bootstrapping Σ+π
λ,Boot. It is an317

approximation to the OPC coefficient bound derived in Lemma 1. The bootstrapping terms capture318

the temporal difference correlations that can arise in reinforcement learning when strong assumptions319

like Bellman closure do not hold. As a consequence, such an OPC coefficient being small is a320

sufficient condition for reliable off-policy prediction. This bound on the OPC coefficient always321

applies, and it reduces to the simpler one (20) when weak Bellman closure holds, with no need to322

inform the algorithm of the simplified setting; see Appendix E.3 for the proof.323
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Proposition 3 (OPC bounds under weak Bellman Closure). Under Bellman closure, we have324

Kπ(F̃π) ≤ c d‖Eπφ‖2Σ−1
λ

with probability at least 1− δ. (20)

5.2 Actor-critic scheme for policy optimization325

Having described a practical procedure to compute V̂ πmin, we now turn to the computation of the326

max-min estimator for policy optimization. We define the soft-max policy class327

Πlin
def
=
{

(s, a) 7→ e〈φ(s,a),θ〉∑
a+∈A e

〈φ(s,a+),θ〉 | ‖θ‖2 ≤ T, θ ∈ Rd
}
. (21)

In order to compute the max-min solution (6) over this policy class, we implement an actor-critic328

method, in which the actor performs a variant of mirror descent.4329

• At each iteration t = 1, . . . , T , the policy πt ∈ Πlin can be identified with a parameter θt ∈ Rd.330

The sequence is initialized with θ1 = 0.331

• Using the finite test function class (18) based on normalized eigenvectors, the pessimistic332

value estimate V̂ πtmin is computed by solving a quadratic program, as previously described. This333

computation returns the weight vector wt of the associated optimal action-value function.334

• Using the action-value vector wt, we update the actor’s parameter as335

θt+1 = θt + ηwt where η =
√

log|A|
2T is a stepsize parameter. (22)

We now state a guarantee on the behavior of this procedure, based on two OPC coefficients:336

K π̃
(1) = d‖Eπ̃φ‖2Σ−1

λ

, and K π̃
(2) = d sup

π∈Π

{
‖Eπ̃[φ− γφ+π]‖2

(Σ+π
λ,Boot)

−1

}
. (23)

Moreover, in making the following assertion, we assume that every weak solutionQπ? can be evaluated337

against the distribution of a comparator policy π̃ ∈ Π, i.e., 〈1,BπQπ? 〉π̃ = 0 for all π ∈ Π. (This338

assumption is still weaker than strong realizability).339

Theorem 2 (Approximate Guarantees for Linear Soft-Max Optimization). Under the above con-340

ditions, running the procedure for T rounds returns a policy sequence {πt}Tt=1 such that, for any341

comparator policy π̃ ∈ Π,342

1
T

T∑
t=1

{
V π̃ − V πt

}
≤ c1

1−γ

{ √
log|A|
T︸ ︷︷ ︸

Optimization error

+

√
K π̃

(·)
d log(nT )+log

(
n
δ

)
n︸ ︷︷ ︸

Statistical error

}
, (24)

with probability at least 1− δ. This bound always holds with K π̃
(·) = K π̃

(2), and moreover, it holds343

with K π̃
(·) = K π̃

(1) when weak Bellman closure is in force.344

See Appendix F for the proof. Whenever Bellman closure holds, the result automatically inherits the345

more favorable concentrability coefficient K π̃
(2), as originally derived in Proposition 3. The resulting346

bound is only
√
d worse than the lower bound recently established in the paper [ZWB21]. However,347

the method proposed here is robust, in that it provides guarantees even when Bellman closure does not348

hold. In this case, we have a guarantee in terms of the OPC coefficient K π̃
(1). Note that it is a uniform349

version of the one derived previously in Proposition 2, in that there is an additional supremum over350

the policy class. This supremum arises due to the use of gradient-based method, which implicitly351

searches over policies in bootstrapping terms; see Appendix A.9 for a more detailed discussion of352

this issue.353
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(a) If your work uses existing assets, did you cite the creators? [N/A]580

(b) Did you mention the license of the assets? [N/A]581

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]582

583

(d) Did you discuss whether and how consent was obtained from people whose data you’re584

using/curating? [N/A]585

(e) Did you discuss whether the data you are using/curating contains personally identifiable586

information or offensive content? [N/A]587

5. If you used crowdsourcing or conducted research with human subjects...588

(a) Did you include the full text of instructions given to participants and screenshots, if589

applicable? [N/A]590

(b) Did you describe any potential participant risks, with links to Institutional Review591

Board (IRB) approvals, if applicable? [N/A]592

(c) Did you include the estimated hourly wage paid to participants and the total amount593

spent on participant compensation? [N/A]594
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A Additional Discussion and Results659

A.1 Bellman Residual Orthogonalization660

Suppose that our goal is to estimate the action-value function Qπ of a given policy π. This function is661

known to be a fixed point of the Bellman evaluation operator T π associated with the policy π. Thus,662

when the MDP is known, one option is to (approximately) solve the Bellman evaluation equations663

Q(s, a) = (T πQ)(s, a) for all state-action pairs. However, even if function approximation for Q is664

implemented, it is still difficult to directly solve these equations if the state-action space is sufficiently665

complex.666

This observation motivates the strategy taken in this paper: instead of enforcing the Bellman equations667

for all state-action pairs, suppose that we do so only in an average sense, and with respect to a certain668

set of functions. More formally, a test function is a mapping from the state-action space to the real669

line; any such function serves to enforce the Bellman equations in an average sense in the following670

way. Let Fπ denote some user-prescribed class of test functions, which we refer to as the test space.671

Then for a given measure µ, we require only that the action-value function Qπ satisfy the integral672

constraints673

〈f, Q− T π(Q)〉µ
def
=

∫
f(s, a)[Q(s, a)− (T πQ)(s, a)]dµ = 0, for all f ∈ Fπ . (25)

We refer to this design principle as Bellman residual orthogonalization, because it requires the674

Bellman error function to be orthogonal to a set of test functions, as measured under the L2(µ) inner675

product. Of course, by enlarging the test space Fπ , the Bellman error is required to be orthogonal to676

more test functions, and it will ultimately be zero if enough test functions are added as constraints.677

But at the same time, as shown by our analysis, any such enlargement has both computational and678

statistical costs, so there are tradeoffs to be understood.679

In numerical analysis, especially in solving partial differential equations, the design principle (25) is680

called the weak or variational formulation (e.g., [Eva10]), and its solutions are referred to as weak681

solutions. Here we are advocating a weak formulation of the Bellman equations. Of course, the682

constraints (25) are necessary but not sufficient: the weak (Bellman) solutions need not solve the683

Bellman equations. However, whenever we need to learn based on a limited dataset, it is unreasonable684

to satisfy the Bellman equations everywhere; instead, by choosing the test space appropriately, we can685

seek to satisfy the Bellman equations over regions of the state-action space that are most important.686

In some cases, the formulation (25) can be fruitfully viewed as a type of Galerkin approximation687

(e.g., [Gal15, Fle84]) to the Bellman equations. For example, when both the test functions and688

Q-value functions belong to some linear space (and the empirical constraints are enforced exactly),689

then the weak formulation and Galerkin approximation lead to the least-squares temporal difference690

(LSTD) estimator; this connection between Galerkin methods and LSTD has been noted in past work691

by Yu and Bertsekas [YB10]. In this paper, our goal is to understand the weak formulation (25) in a692

broader sense for general test and predictor classes.693

A.2 Comparison with Weight Learning Methods694

The work closest to ours is [JH20]. They also use an auxiliary weight function class, which is695

comparable to our test class. However, the test class is used in different ways; we compare them696

in this section at the population level.5 Let us assume that weak realizability holds and that F is697

symmetric, i.e., if f ∈ F then −f ∈ F as well. At the population level, our program seeks to solve698

sup
Q∈Qπ

Es∼νstartQ(s, π) s.t. sup
f∈F
〈f,BπQ〉µ = 0, (26)

which is equivalent for any w ∈ F to699

sup
Q∈Qπ

Es∼νstartQ(s, π)− 1

1− γ
〈w,BπQ〉µ s.t. sup

f∈F
〈f,BπQ〉µ = 0.

5The empirical estimator in [JH20] does not take into account the ‘alignment’ of each weight function with
respect to the dataset, which we do through self-normalization and regularization in the construction of the
empirical estimator. This precludes obtaining the same type of strong finite time guarantees that we are able to
derive here.
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Removing the constraints leads to the upper bound700

sup
Q∈Qπ

Es∼νstartQ(s, π)− 1

1− γ
〈w,BπQ〉µ.

Since this is a valid upper bound for any w ∈ F , minimizing over w must still yield an upper bound,701

which reads702

inf
w∈F

sup
Q∈Qπ

Es∼νstartQ(s, π)− 1

1− γ
〈w,BπQ〉µ.

This is the population program for “weight learning”, as described in [JH20]. It follows that Bellman703

residual orthogonalization always produces tighter confidence intervals than “weight learning” at the704

population level.705

Another interesting comparison is with “value learning”, also described in [JH20]. In this case,706

assuming symmetric F , we can equivalently express the population program (26) using a Lagrange707

multiplier as follows708

sup
Q∈Qπ

Es∼νstartQ(s, π)− sup
λ≥0,f∈F

λ〈f,BπQ〉µ. (27)

Rearranging we obtain709

sup
Q∈Qπ

inf
λ≥0,f∈F

Es∼νstartQ(s, π)− λ〈f,BπQ〉µ.

The “value learning” program proposed in [JH20] has a similar formulation to ours but differs in710

two key aspects. The first—and most important—is that [JH20] ignores the Lagrange multiplier;711

this means “value learning” is not longer associated to a constrained program. While the Lagrange712

multiplier could be “incorporated” into the test class F , doing so would cause the entropy of F to713

be unbounded. Another point of difference is that “value learning” uses such expression with λ = 1714

to derive the confidence interval lower bound, while we use it to construct the confidence interval715

upper bound. While this may seem like a contradiction, we notice that the expression is derived using716

different assumptions: we assume weak realizability of Q, while [JH20] assumes realizability of the717

density ratios between µ and the discounted occupancy measure π.718

A.3 Additional Literature719

Here we summarize some additional literature. The efficiency of off-policy tabular RL has been720

investigated in the papers [YBW20, YW20, YW21]. For empirical studies on offline RL, see the721

papers [LTDC19, JGS+19, WTN19, ASN20, WNŻ+20, SSB+20, NDGL20, YQCC21, KHSL21,722

BGB20, KFTL19, KRNJ20, YTY+20].723

Some of the classical RL algorithm are presented in the papers [Mun03, Mun05, AMS07, ASM08,724

FSM10, FGSM16]. For a more modern analysis, see [CJ19]. These works generally make725

additionally assumptions on top of realizability. Alternatively, one can use importance sam-726

pling [Pre00, TB16, JL16, FCG18]. A more recent idea is to look at the distributions them-727

selves [LLTZ18, NDK+19, XMW19, ZDLS20, ZLW20, YND+20, KU19].728

Offline policy optimization with pessimism has been studied in the papers [LSAB20, RZM+21,729

JYW21, XCJ+21, ZWB21, YWDW, US21]. There exists a fairly extensive literature on lower bounds730

with linear representations, including the two papers [Zan20, WFK20] that concurrently derived the731

first exponential lower bounds for the offline setting, and [FKSLX21] proves that realizability and732

coverage alone are insufficient.733

In the context of off-policy optimization several works have investigated methods that assume only734

realizability of the optimal policy [XJ20a, XJ20b]. Related work includes the papers [DW20, DJL21,735

JH20, UHJ20, TFL+19, ND20, VJY21, HJD+21, ZSU+22, UIJ+21, CQ22, LTND21]. Among736

concurrent works, we note [ZHH+22].737

A.4 Definition of Weak Bellman Closure738

Definition 1 (Weak Bellman Closure). The Bellman operator T π is weakly closed with respect to739

the triple
(
Qπ,Fπ, µ

)
if for any Q ∈ Qπ , there exists a predictor Pπ(Q) ∈ Qπ such that740

〈f,Pπ(Q)〉µ = 〈f, T π(Q)〉µ. (28)

19



A.5 Additional results on the concentrability coefficients741

A.5.1 Testing with the identity function742

Suppose that the identity function 1 belongs to the test class. Doing so amounts to requiring that the743

Bellman error is controlled in an average sense over all the data. When this choice is made, we can744

derive some generic upper bounds on Kπ , which we state and prove here:745

Lemma 4. If 1 ∈ Fπ , then we have the upper bounds746

Kπ
(i)

≤
maxQ∈Cπn |EπB

πQ|2

maxQ∈Cπn |EµBπQ|2
(ii)

≤ Kπ
∗
def
= max

Q∈Cπn

|EπBπQ|2

|EµBπQ|2
. (29)

Proof. Since 1 ∈ F , the definition of Cπn implies that747

max
Q∈Cπn

|EµBπQ|2 ≤
(
‖1 ‖2µ + λ

) ρ
n

=
(
1 + λ

) ρ
n
.

The upper bound (i) then follows from the definition of Kπ. The upper bound (ii) follows since the748

right hand side is the maximum ratio.749

Note that large values of Kπ
∗ can arise when there exist Q-functions in the set Cπn that have low750

average Bellman error under the data-generating distribution µ, but relatively large values under π. Of751

course, the likelihood of such unfavorable choices of Q is reduced when we use a larger test function752

class, which then reduces the size of Cπn. However, we pay a price in choosing a larger test function753

class, since the choice (40b) of the radius ρ needed for Theorem 3 depends on its complexity.754

A.5.2 Mixture distributions755

Now suppose that the dataset consists of a collection of trajectories collected by different protocols.756

More precisely, for each j = 1, . . . ,m, let µj be a particular protocol for generating a trajectory.757

Suppose that we generate data by first sampling a random index J ∈ [m] according to a probability758

distribution {pj}mj=1, and conditioned J = j, we sample (s, a, o) according to µj . The resulting data759

follows a mixture distribution, where we set o = j to tag the protocol used to generate the data. To760

be clear, for each sample i = 1, . . . , n, we sample J as described, and then draw a single sample761

(s, a, o) ∼ µj .762

Following the intuition given in the previous section, it is natural to include test functions that code763

for the protocol—that is, the binary-indicator functions764

fj(s, a, o) =

{
1 if o = j

0 otherwise.
(30)

This test function, when included in the weak formulation, enforces the Bellman evaluation equations765

for the policy π ∈ Π under consideration along the distribution induced by each data-generating766

policy µj .767

Lemma 5 (Mixture Policy Concentrability). Suppose that µ is an m-component mixture, and that768

the indicator functions {fj}mj=1 are included in the test class. Then we have the upper bounds769

Kπ
(i)

≤ 1 +mλ

1 + λ

max
Q∈Cπn

[EπBπQ]2

max
Q∈Cπn

∑m
j=1 p

2
j [EµjBπQ]2

(ii)

≤ 1 +mλ

1 + λ
max
Q∈Cπn

{
[EπBπQ]2∑m

j=1 p
2
j [EµjBπQ]2

}
. (31)

Proof. From the definition of Kπ , it suffices to show that770

max
Q∈Cπn

m∑
j=1

p2
j [EµjBπQ]2 ≤ ρ

n

(
1 +mλ

)
.

A direct calculation yields 〈fj ,BπQ〉µ = EµI{o = j}BπQ = pjEµjBπQ. Moreover, since each fj771

belongs to the test class by assumption, we have the upper bound
∣∣∣pjEµjBπQ∣∣∣ ≤√ ρ

n

√
‖fj‖2µ + λ.772
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Squaring each term and summing over the constraints yields773

m∑
j=1

p2
j [EµjBπQ]2 ≤ ρ

n

m∑
j=1

(
‖fj‖2µ + λ

)
=
ρ

n

(
1 +mλ

)
,

where the final equality follows since
∑m
j=1 ‖fj‖2µ = 1.774

As shown by the upper bound, the off-policy coefficient Kπ provides a measure of how the squared-775

averaged Bellman errors along the policies {µj}mj=1, weighted by their probabilities {pj}mj=1, trans-776

fers to the evaluation policy π. Note that the regularization parameter λ decays as a function of the777

sample size—e.g., as 1/n in Theorem 3—the factor (1 +mλ)/(1 +λ) approaches one as n increases778

(for a fixed number m of mixture components).779

A.5.3 Bellman Rank for off-policy evaluation780

In this section, we show how more refined bounds can be obtained when—in addition to a mixture781

condition—additional structure is imposed on the problem. In particular, we consider a notion similar782

to that of Bellman rank [JKA+17], but suitably adapted6 to the off-policy setting.783

Given a policy class Π̃ and a predictor class Q̃, we say that it has Bellman rank is d if there exist two784

maps ν : Π̃→ Rd and ξ : Q̃ → Rd such that785

EπBπQ = 〈νπ, ξQ〉Rd , for all π ∈ Π̃ and Q ∈ Q̃. (32)

In words, the average Bellman error of any predictor Q along any given policy π can be expressed786

as the Euclidean inner product between two d-dimensional vectors, one for the policy and one for787

the predictor. As in the previous section, we assume that the data is generated by a mixture of m788

different distributions (or equivalently policies) {µj}mj=1. In the off-policy setting, we require that789

the policy class Π̃ contains all of these policies as well as the target policy—viz. {µj} ∪ {π} ⊆ Π̃.790

Moreover, the predictor class Q̃ should contain the predictor class for the target policy, i.e., Qπ ⊆ Q̃.791

We also assume weak realizability for this discussion.792

Our result depends on a positive semidefinite matrix determined by the mixture weights {pj}mj=1793

along with the embeddings {νµj}mj=1 of the associated policies that generated the data. In particular,794

we define795

Σν =

m∑
j=1

p2
jνµjν

>
µj .

Assuming that this is matrix is positive definite,7 we define the norm ‖u‖Σ−1
ν

=
√
uT (Σν)−1u. With796

this notation, we have the following bound.797

Lemma 6 (Concentrability with Bellman Rank). For a mixture data-generation process and under798

the Bellman rank condition (32), we have the upper bound799

Kπ ≤ 1 +mλ

1 + λ
‖νπ‖2Σ−1

ν
, (33)

Proof. Our proof exploits the upper bound (ii) from the claim (31) in Lemma 5. We first evaluate and800

redefine the ratio in this upper bound. Weak realizability coupled with the Bellman rank condition (32)801

implies that there exists some Qπ? such that802

0 = 〈fj ,BπQπ? 〉µ = pjEµjBπQπ? = pj
〈
νµj , ξQπ?

〉
, for all j = 1, . . . ,m, and

0 = 〈1,BπQπ? 〉π = EπBπQπ? =
〈
νπ, ξQπ?

〉
.

6The original definition essentially takes Π̃ as the set of all greedy policies with respect to Q̃. Since a dataset
need not originate from greedy policies, the definition of Bellman rank is adapted in a natural way.

7If not, one can prove a result for a suitably regularized version.
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Therefore, we have the equivalences EµjBπQ =
〈
νµj , (ξQ − ξQπ? )

〉
for all j = 1, . . . ,m, as well as803

EπBπQ =
〈
νπ, (ξQ − ξQπ? )

〉
. Introducing the shorthand ∆Q = ξQ − ξQπ? , we can bound the ratio804

as follows805

sup
Q∈Cπn

{ (〈νπ, ∆Q〉)2∑m
j=1 p

2
j (
〈
νµj , ∆Q

〉
)2

}
= sup
Q∈Cπn

{ (〈νπ, ∆Q〉)2

∆>Q

(∑m
j=1 p

2
jνµjν

>
µj

)
∆Q

}

= sup
Q∈Cπn

{ (〈νπ, Σ
− 1

2
ν ∆̃Q〉)2

‖∆̃Q‖22

}
where ∆̃Q = Σ

1
2
ν ∆Q

≤ ‖νπ‖2Σ−1
ν
,

where the final step follows from the Cauchy–Schwarz inequality.806

Thus, when performing off-policy evaluation with a mixture distribution under the Bellman rank807

condition, the coefficient Kπ is bounded by the alignment between the target policy π and the808

data-generating distribution µ, as measured in the the embedded space guaranteed by the Bellman809

rank condition. The structure of this upper bound is similar to a result that we derive in the sequel for810

linear approximation under Bellman closure (see Proposition 3).811

A.6 Further comments on the prediction error test space812

A few comments on the bound in Lemma 1: as in our previous results, the pre-factor
‖ε‖2µ+λ

‖ 1 ‖2π+λ813

serves as a normalization factor. Disregarding this leading term, the second ratio measures how the814

prediction error ε = Q − Qπ? along µ transfers to π, as measured via the operator I − γPπ. This815

interaction is complex, since it includes the bootstrapping term −γPπ. (Notably, such a term is not816

present for standard prediction or bandit problems, in which case γ = 0.) This term reflects the817

dynamics intrinsic to reinforcement learning, and plays a key role in proving “hard” lower bounds for818

offline RL (e.g., see the work [Zan20]).819

Observe that the bound in Lemma 1 requires only weak realizability, and thus it always applies. This820

fact is significant in light of a recent lower bound [FKSLX21], showing that without Bellman closure,821

off-policy learning is challenging even under strong concentrability assumption (such as bounds on822

density ratios). Lemma 1 gives a sufficient condition without Bellman closure, but with a different823

measure that accounts for bootstrapping.824

825

If, in fact, (weak) Bellman closure holds, then Lemma 1 takes the following simplified form:826

Lemma 7 (OPC coefficient under Bellman closure). If Eπ ⊆ Fπ and weak Bellman closure holds,827

then828

Kπ ≤ max
ε∈Eπ

{‖ε‖2µ + λ

1 + λ
· 〈1, ε〉

2
π

〈ε, ε〉2µ

}
≤ max

ε∈Eπ

{‖ε‖2π
‖ε‖2µ

}
.

See Appendix D.3 for the proof.829

830

In such case, the concentrability measures the increase in the discrepancy Q − Q′ of the feasible831

predictors when moving from the dataset distribution µ to the distribution of the target policy π. In832

Section 4.3, we give another bound under weak Bellman closure, and thereby recover a recent result833

due to Xie et al. [XCJ+21]. Finally, in Section 5, we provide some applications of this concentrability834

factor to the linear setting.835

A.7 From Importance Sampling to Bellman Closure836

Let us show an application of Lemma 3 on an example with just two test spaces. Suppose that we837

suspect that Bellman closure holds, but rather than committing to such assumption, we wish to fall838

back to an importance sampling estimator if Bellman closure does not hold.839

In order to streamline the presentation of the idea, let us introduce the following setup. Let πb be a840

behavioral policy that generates the dataset, i.e., such that each state-action (s, a) in the dataset is841
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sampled from its discounted state distribution dπb . Next, let the identifier o contain the trajectory842

from νstart up to the state-action pair (s, a) recorded in the dataset. That is, each tuple (s, a, r, s+, o)843

in the dataset D is such that (s, a) ∼ dπb and o contains the trajectory up to (s, a).844

We now define the test spaces. The first one is denoted with FIS
π and leverages importance sampling.845

It contains a single test function defined as the importance sampling estimator846

FIS
π = {fπ}, where fπ(s, a, o) =

1

bπ

∏
(sh,ah)∈o

π(ah | sh)

πb(ah | sh)
. (34)

The above product is over the random trajectory contained in the identifier o. The normalization847

factor bπ ∈ R is connected to the maximum range of the importance sampling estimator, and ensures848

that sup(s,a,o) fπ(s, a, o) ≤ 1. The second test space is the prediction error test space Eπ defined in849

Section 4.2.850

With this choice, let us define three concentrability coefficients. Kπ
(1) arises from importance sampling,851

Kπ
(2) from the prediction error test space when Bellman closure holds and Kπ

(3) from the prediction852

error test space when just weak realizability holds. They are defined as853

Kπ
(1) ≤

√
bπ

(1 + λbπ)

1 + λ
Kπ

(2) ≤ max
ε∈Eπ?

〈1, (I − γPπ)ε〉2π
〈ε, (I − γPπ)ε〉2µ

×
‖ε‖2µ + λ

‖1 ‖2π + λ
, Kπ

(3) ≤ c1
‖BπQ‖2π
‖BπQ‖2µ

.

Lemma 8 (From Importance Sampling to Bellman Closure). The choice Fπ = FIS
π ∪ Eπ for all π ∈854

Π ensures that with probability at least 1 − δ, the oracle inequality (9) holds with Kπ ≤855

min{Kπ
(1),K

π
(2),K

π
(3)} if weak Bellman closure holds and Kπ ≤ min{Kπ

(1),K
π
(2)} otherwise.856

Proof. Let us calculate the off-policy cost coefficient associated with FIS
π . The unbiasedness of the857

importance sampling estimator gives us the following population constraint (here µ = dπb )858

|〈fπ,BπQ〉µ| = |EµfπBπQ| =
1

bπ
|EπBπQ| =

1

bπ
|〈1,BπQ〉π| ≤

L√
n

√
‖fπ‖22 + λ

The norm of the test function reads (notice that µ generates (s, a, o) here)859

‖fπ‖2µ = Eµf2
π =

1

b2π
Eµ

[ ∏
(sh,ah)∈o

π(ah | sh)

πb(ah | sh)

]2

=
1

b2π
Eπ

[ ∏
(sh,ah)∈o

π(ah | sh)

πb(ah | sh)

]
≤ 1

bπ
.

Together with the prior display, we obtain860

〈1,BπQ〉2π
b2π(‖fπ‖22 + λ)

≤ ρ

n
.

The resulting concentrability coefficient is therefore861

Kπ ≤ max
Q∈Cπn

〈1,BπQ〉2π
1 + λ

× n

ρ
≤ max
Q∈Cπn

〈1,BπQ〉2π
1 + λ

× b2π(‖fπ‖22 + λ)

〈1,BπQ〉2π
≤ bπ

(1 + λbπ)

1 + λ
.

Chaining the above result with Lemmas 1 and 2, using Lemma 3 and plugging back into Theorem 3862

yields the thesis.863

A.8 Implementation for Off-Policy Predictions864

In this section, we describe a computationally efficient way in which to compute the upper/lower865

estimates (5). Given a finite set of nF test functions, it involves solving a quadratic program with866

2nF + 1 constraints.867

Let us first work out a concise description of the constraints defining membership in Ĉπn. Introduce the868

shorthand nf
def
= ‖fj‖2n + λ. We then define the empirical average feature vector φ̂f , the empirical869
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average reward r̂f , and the average next-state feature vector φ̂+π
f as870

φ̂f =
1
√
nf

∑
(s,a,r,s+)∈D

f(s, a)φ(s, a), r̂f =
1
√
nf

∑
(s,a,r,s+)∈D

f(s, a)r,

φ̂+π
f =

1
√
nf

∑
(s,a,r,s+)∈D

f(s, a)φ(s+, π).

In terms of this notation, each empirical constraint defining Ĉπn can be written in the more compact871

form872

|〈f, δπQ〉n|√
nf

=
∣∣∣〈φ̂f − γφ̂+π

f , w〉 − r̂f
∣∣∣ ≤√ ρ

n
.

Then the set of empirical constraints can be written as a set of constraints linear in the critic parameter873

w coupled with the assumed regularity bound on w874

Ĉπn =
{
w ∈ Rd | ‖w‖2 ≤ 1, and −

√
ρ
n ≤ 〈φ̂f − γφ̂

+π
f , w〉 − r̂f ≤

√
ρ
n for all f ∈ Fπ

}
.

(35)

Thus, the estimates V̂ πmin (respectively V̂ πmax) acan be computed by minimizing (respectively maximiz-875

ing) the linear objective function w 7→ 〈[Es∼νstartEa∼πφ(s, a)], w〉 subject to the 2nF + 1 constraints876

in equation (35). Therefore, the estimates can be computed in polynomial time for any test function877

with a cardinality that grows polynomially in the problem parameters.878

A.9 Discussion of Linear Approximate Optimization879

Here we discuss the presence of the supremum over policies in the coefficientK π̃
(1) from equation (23).880

In particular, it arises because our actor-critic method iteratively approximates the maximum in the881

max-min estimate (6) using a gradient-based scheme. The ability of a gradient-based method to make882

progress is related to the estimation accuracy of the gradient, which is the Q estimates of the actor’s883

current policy πt; more specifically, the gradient is the Q function parameter wt. In the general case,884

the estimation error of the gradient wt depends on the policy under consideration through the matrix885

Σ+πt
λ,Boot, while it is independent in the special case of Bellman closure (as it depends on just Σ). As the886

actor’s policies are random, this yields the introduction of a supπ∈Π in the general bound. Notice the887

method still competes with the best comparator π̃ by measuring the errors along the distribution of the888

comparator (through the operator Eπ̃). To be clear, supπ∈Π may not arise with approximate solution889

methods that do not rely only on the gradient to make progress (such as second-order methods); we890

leave this for future research. Reassuringly, when Bellman closure, the approximate solution method891

recovers the standard guarantees established in the paper [ZWB21].892
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B General Guarantees893

B.1 A deterministic guarantee894

We begin our analysis stating a deterministic set of sufficient conditions for our estimators to satisfy895

the guarantees (8) and (9). This formulation is useful, because it reveals the structural conditions896

that underlie success of our estimators, and in particular the connection to weak realizability. In897

Section B.2, we exploit this deterministic result to show that, under a fairly general sampling model,898

our estimators enjoy these guarantees with high probability.899

In the previous section, we introduced the population level set Cπn that arises in the statement of our900

guarantees. Also central in our analysis is the infinite data limit of this set. More specifically, for901

any fixed (ρ, λ), if we take the limit n→∞, then Cπn reduces to the set of all solutions to the weak902

formulation (25)—that is903

Cπ∞(Fπ) = {Q ∈ Qπ | 〈f,BπQ〉µ = 0 for all f ∈ Fπ}. (36)

As before, we omit the dependence on the test function class Fπ when it is clear from context. By904

construction, we have the inclusion Cπ∞(Fπ) ⊆ Cπn(4ρ, λ;Fπ) for any non-negative pair (ρ, λ).905

Our first set of guarantees hold when the random set Ĉπn satisfies the sandwich relation906

Cπ∞(Fπ) ⊆ Ĉπn(ρ, λ;Fπ) ⊆ Cπn(4ρ, λ;Fπ) (37)

To provide intuition as to why this sandwich condition is natural, observe that it has two important907

implications:908

(a) Recalling the definition of weak realizability (1), the weak solution Qπ? belongs to the909

empirical constraint set Ĉπn for any choice of test function space. This important property910

follows because Qπ? must satisfy the constraints (25), and thus it belongs to Cπ∞ ⊆ Ĉπn.911

(b) All solutions in Ĉπn also belong to Cπn, which means they approximately satisfy the weak912

Bellman equations in a way quantified by Cπn.913

By leveraging these facts in the appropriate way, we can establish the following guarantee:914

915

Proposition 4. The following two statements hold.916

(a) Policy evaluation: If the set Ĉπn satisfies the sandwich relation (37), then the estimates917

(V̂ πmin, V̂
π

max) satisfy the width bound (8b). If, in addition, weak Bellman realizability for π is918

assumed, then the coverage (8a) condition holds.919

(b) Policy optimization: If the sandwich relation (37) and weak Bellman realizability hold for920

all π ∈ Π, then any max-min (6) optimal policy π̃ satisfies the oracle inequality (9).921

See Section C.1 for the proof of this claim.922

923

In summary, Proposition 4 ensures that when weak realizability is in force, then the sandwich924

relation (37) is a sufficient condition for both the policy evaluation (8) and optimization (9) guarantees925

to hold. Accordingly, the next phase of our analysis focuses on deriving sufficient conditions for the926

sandwich relation to hold with high probabability.927

B.2 Some high-probability guarantees928

As stated, Proposition 4 is a “meta-result”, in that it applies to any choice of set Ĉπn ≡ Ĉπn(ρ, λ;Fπ)929

for which the sandwich relation (37) holds. In order to obtain a more concrete guarantee, we need to930

impose assumptions on the way in which the dataset was generated, and concrete choices of (ρ, λ)931

that suffice to ensure that the associated sandwich relation (37) holds with high probability. These932

tasks are the focus of this section.933
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B.2.1 A model for data generation934

Let us begin by describing a fairly general model for data-generation. Any sample takes the form935

z
def
= (s, a, r, s+, o), where the five components are defined as follows:936

• the pair (s, a) index the current state and action.937

• the random variable r is a noisy observation of the mean reward.938

• the random state s+ is the next-state sample, drawn according to the transition P(s, a).939

• the variable o is an optional identifier.940

As one example of the use of an identifier variable, if samples might be generated by one of two941

possible policies—say π1 and π2—the identifier can take values in the set {1, 2} to indicate which942

policy was used for a particular sample.943

944

Overall, we observe a dataset D = {zi}ni=1 of n such quintuples. In the simplest of possible settings,945

each triple (s, a, o) is drawn i.i.d. from some fixed distribution µ, and the noisy reward ri is an946

unbiased estimate of the mean reward function R(si, ai). In this case, our dataset consists of n i.i.d.947

quintuples. More generally, we would like to accommodate richer sampling models in which the948

sample zi = (si, ai, oi, ri, s
+
i ) at a given time i is allowed to depend on past samples. In order to949

specify such dependence in a precise way, define the nested sequence of sigma-fields950

F1 = ∅, and Fi
def
= σ

(
{zj}i−1

j=1

)
for i = 2, . . . , n. (38)

In terms of this filtration, we make the following definition:951

Assumption 3 (Adapted dataset). An adapted dataset is a collection D = {zi}ni=1 such that for each952

i = 1, . . . , n:953

• There is a conditional distribution µi such that (si, ai, oi) ∼ µi(· | Fi).954

• Conditioned on (si, ai, oi), we observe a noisy reward ri = r(si, ai) + ηi with E[ηi | Fi] = 0,955

and |ri| ≤ 1.956

• Conditioned on (si, ai, oi), the next state s+
i is generated according to P(si, ai).957

Under this assumption, we can define the (possibly) random reference measure958

µ(s, a, o)
def
=

1

n

n∑
i=1

µi
(
s, a, o | Fi

)
. (39)

In words, it corresponds to the distribution induced by first drawing a time index i ∈ {1, . . . , n}959

uniformly at random, and then sampling a triple (s, a, o) from the conditional distribution µi
(
· | Fi

)
.960

B.2.2 A general guarantee961

Recall that there are three function classes that underlie our method: the test function class F , the962

policy class Π, and the Q-function class Q. In this section, we state a general guarantee (Theorem 3)963

that involves the metric entropies of these sets. In Section B.2.3, we provide corollaries of this964

guarantee for specific function classes.965

In more detail, we equip the test function class and the Q-function class with the usual sup-norm966

‖f − f̃‖∞
def
= sup

(s,a,o)

|f(s, a, o)− f̃(s, a, o)|, and ‖Q− Q̃‖∞
def
= sup

(s,a)

|Q(s, a)− Q̃(s, a)|,

and the policy class with the sup-TV norm967

‖π − π̃‖∞,1
def
= sup

s
‖π(· | s)− π̃(· | s)‖1 = sup

s

∑
a

|π(a | s)− π̃(a | s)|.

For a given ε > 0, we let Nε(F), Nε(Q), and Nε(Π) denote the ε-covering numbers of each of these968

function classes in the given norms. Given these covering numbers, a tolerance parameter δ ∈ (0, 1)969
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and the shorthand φ(t) = max{t,
√
t}, define the radius function970

ρ(ε, δ)
def
= n

{∫ ε

ε2
φ
( logNu(F)

n

)
du+

logNε(Q)

n
+

logNε(Π)

n
+

log(n/δ)

n

}
. (40a)

In our theorem, we implement the estimator using a radius ρ = ρ(ε, δ), where ε > 0 is any parameter971

that satisfies the bound972

ε2
(i)

≤ c̄
ρ(ε, δ)

n
, and λ

(i)
= 4

ρ(ε, δ)

n
. (40b)

Here c̄ > 0 is a suitably chosen but universal constant (whose value is determined in the proof), and973

we adopt the shorthand ρ = ρ(ε, δ) in our statement below.974

Theorem 3 (High-probability guarantees). Consider the estimates implemented using triple (Π,F,Q)975

that is weakly Bellman realizable (Assumption 1); an adapted dataset (Assumption 3); and with the976

choices (40) for (ε, ρ, λ). Then with probability at least 1− δ:977

Policy evaluation: For any π ∈ Π, the estimates (V̂ πmin, V̂
π

max) specify a confidence interval satisfying978

the coverage (8a) and width bounds (8b).979

Policy optimization: Any max-min policy (6) π̃ satisfies the oracle inequality (9).980

See Appendix C.3 for the proof of the claim.981

982

Choices of (ρ, ε, λ): Let us provide a few comments about the choices of (ρ, ε, λ) from equa-983

tions (40a) and (40b). The quality of our bounds depends on the size of the constraint set Cπn, which984

is controlled by the constraint level
√

ρ
n . Consequently, our results are tightest when ρ = ρ(ε, δ) is as985

small as possible. Note that ρ is an decreasing function of ε, so that in order to minimize it, we would986

like to choose ε as large as possible subject to the constraint (40b)(i). Ignoring the entropy integral987

term in equation (40b) for the moment—see below for some comments on it—these considerations988

lead to989

nε2 � logNε(F) + logNε(Q) + logNε(Π). (41)

This type of relation for the choice of ε in non-parametric statistics is well-known (e.g., see Chapters990

13–15 in the book [Wai19] and references therein). Moreover, setting λ � ε2 as in equation (40b)(ii)991

is often the correct scale of regularization.992

Key technical steps in proof: It is worthwhile making a few comments about the structure of the993

proof so as to clarify the connections to Proposition 4 along with the weak formulation that underlies994

our methods. Recall that Proposition 4 requires the empirical Ĉπn and population sets Cπn to satisfy the995

sandwich relation (37). In order to prove that this condition holds with high probability, we need to996

establish uniform control over the family of random variables997 ∣∣ 〈f, δπ(Q)〉n − 〈f, Bπ(Q)〉µ
∣∣√

‖f‖2n + λ
, as indexed by the triple (f,Q, π). (42)

Note that the differences in the numerator of these variables correspond to moving from the empirical998

constraints on Q-functions that are enforced using the TD errors, to the population constraints that999

involve the Bellman error function.1000

Uniform control of the family (42), along with the differences ‖f‖n − ‖f‖µ uniformly over f ,1001

allows us to relate the empirical and population sets, since the associated constraints are obtained by1002

shifting between the empirical inner products 〈·, ·〉n to the reference inner products 〈·, ·〉µ. A simple1003

discretization argument allows us to control the differences uniformly in (Q, π), as reflected by the1004

metric entropies appearing in our definition (40). Deriving uniform bounds over test functions f—due1005

to the self-normalizing nature of the constraints—requires a more delicate argument. More precisely,1006

in order to obtain optimal results for non-parametric problems (see Corollary 2 to follow), we need1007

to localize the empirical process at a scale ε, and derive bounds on the localized increments. This1008

portion of the argument leads to the entropy integral—which is localized to the interval [ε2, ε]—in1009

our definition (40a) of the radius function.1010
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Intuition from the on-policy setting: In order to gain intuition for the statistical meaning of the1011

guarantees in Theorem 3, it is worthwhile understanding the implications in a rather special case—1012

namely, the simpler on-policy setting, where the discounted occupation measure induced by the target1013

policy π coincides with the dataset distribution µ. Let us consider the case in which the identity1014

function 1 belongs to the test class Fπ . Under these conditions, for any Q ∈ Cπn, we can write1015

max
Q∈Cπn

|EπBπQ|
(i)
= max

Q∈Cπn
|EµBπQ|

(ii)

≤
√

1 + λ

√
ρ

n
,

where equality (i) follows from the on-policy assumption, and step (ii) follows from the definition of1016

the set Cπn, along with the condition that 1 ∈ Fπ. Consequently, in the on-policy setting, the width1017

bound (8b) ensures that1018

|V̂ πmin − V̂ πmax| ≤ 2

√
1 + λ

1− γ

√
ρ

n
. (43)

In this simple case, we see that the confidence interval scales as
√
ρ/n, where the quantity ρ is related1019

to the metric entropy via equation (40b). In the more general off-policy setting, the bound involves1020

this term, along with additional terms that reflect the cost of off-policy data. We discuss these issues1021

in more detail in Section 4. Before doing so, however, it is useful derive some specific corollaries that1022

show the form of ρ under particular assumptions on the underlying function classes, which we now1023

do.1024

B.2.3 Some corollaries1025

Theorem 3 applies generally to triples of function classes (Π,F,Q), and the statistical error
√

ρ(ε,δ)
n1026

depends on the metric entropies of these function classes via the definition (40a) of ρ(ε, δ), and the1027

choices (40b). As shown in this section, if we make particular assumptions about the metric entropies,1028

then we can derive more concrete guarantees.1029

Parametric and finite VC classes: One form of metric entropy, typical for a relatively simple1030

function class G (such as those with finite VC dimension) scales as1031

logNε(G) � d log
(

1
ε

)
, (44)

for some dimensionality parameter d. For instance, bounds of this type hold for linear function1032

classes with d parameters, and for finite VC classes (with d proportional to the VC dimension); see1033

Chapter 5 of the book [Wai19] for more details.1034

Corollary 1. Suppose each class of the triple (Π,F,Q) has metric entropy that is at most polyno-1035

mial (44) of order d. Then for a sample size n ≥ 2d, the claims of Theorem 3 hold with ε2 = d/n1036

and1037

ρ̃
(√

d
n , δ
) def

= c
{
d log

(n
d

)
+ log

(n
δ

)}
, (45)

where c is a universal constant.1038

Proof. Our strategy is to upper bound the radius ρ from equation (40a), and then show that this1039

upper bound ρ̃ satisfies the conditions (40b) for the specified choice of ε2. We first control the term1040

logNε(F). We have1041

1√
n

∫ ε

ε2

√
logNu(F)du ≤

√
d

n

∫ ε

0

√
log(1/u)du = ε

√
d

n

∫ 1

0

√
log(1/(εt))dt = cε log(1/ε)

√
d

n
.

Similarly, we have1042

1

n

∫ ε

ε2
logNu(F)du ≤ ε d

n

{∫ 1

ε

log(1/t)dt+ log(1/ε)
}
≤ c ε log(1/ε)

d

n
.

Finally, for terms not involving entropy integrals, we have1043

max
{ logNε(Q)

n
,

logNε(Π)

n

}
≤ c d

n
log(1/ε).

Setting ε2 = d/n, we see that the required conditions (40b) hold with the specified choice (45) of1044

ρ̃.1045
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Richer function classes: In the previous section, the metric entropy scaled logarithmically in the1046

inverse precision 1/ε. For other (richer) function classes, the metric entropy exhibits a polynomial1047

scaling in the inverse precision, with an exponent α > 0 that controls the complexity. More precisely,1048

we consider classes of the form1049

logNε(G) �
(1

ε

)α
. (46)

For example, the class of Lipschitz functions in dimension d has this type of metric entropy with1050

α = d. More generally, for Sobolev spaces of functions that have s derivatives (and the sth-derivative1051

is Lipschitz), we encounter metric entropies of this type with α = d/s. See Chapter 5 of the1052

book [Wai19] for further background.1053

Corollary 2. Suppose that each function class (Π,F,Q) has metric entropy with at most1054

α-scaling (46) for some α ∈ (0, 2). Then the claims of Theorem 3 hold with ε2 = (1/n)
2

2+α ,1055

and1056

ρ̃
(
(1/n)

1
2+α , δ

)
= c

{
n

α
2+α + log(n/δ)

}
. (47)

where c is a universal constant.1057

We note that for standard regression problems over classes with α-metric entropy, the rate (1/n)
2

2+α1058

is well-known to be minimax optimal (e.g., see Chapter 15 in the book [Wai19], as well as references1059

therein).1060

Proof. We start by controlling the terms involving entropy integrals. In particular, we have1061

1√
n

∫ ε

ε2

√
logNu(F)du ≤ c√

n
u1−α2

∣∣∣ε
0

=
c√
n
ε1−

α
2 .

Requiring that this term is of order ε2 amounts to enforcing that ε1+α
2 � (1/

√
n), or equivalently1062

that ε2 � (1/n)
2

2+α .1063

If α ∈ (0, 1], then the second entropy integral converges and is of lower order. Otherwise, if1064

α ∈ (1, 2), then we have1065

1

n

∫ ε

ε2
logNu(F)du ≤ c

n

∫ ε

ε2
(1/u)αdu ≤ c

n
(ε2)1−α.

Hence the requirement that this term is bounded by ε2 is equivalent to ε2α % (1/n), or ε2 % (1/n)1/α.1066

When α ∈ (1, 2), we have 1
α >

2
2+α , so that this condition is milder than our first condition.1067

Finally, we have max
{ logNε(Q)

n , logNε(Π)
n

}
≤ c

n

(
1/ε)α, and requiring that this term scales as ε21068

amounts to requiring that ε2+α � (1/n), or equivalently ε2 � (1/n)
2

2+α , as before.1069
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C Main Proofs1070

This section is devoted to the proofs of our guarantees for general function classes—namely, Proposi-1071

tion 4 that holds in a deterministic manner, and Theorem 3 that gives high probability bounds under a1072

particular sampling model.1073

C.1 Proof of Proposition 41074

Our proof makes use of an elementary simulation lemma, which we state here:1075

Lemma 9 (Simulation lemma). For any policy π and function Q, we have1076

ES∼νstart(Q−Qπ)(S, π) =
EπBπQ
1− γ

(48)

See Appendix C.2 for the proof of this claim.1077

C.1.1 Proof of policy evaluation claims1078

First of all, we have the elementary bounds1079

|V̂ πmin − V π| = | min
Q∈Ĉπn

ES∼νstartQ(S, π)− V π| ≤ max
Q∈Ĉπn

|ES∼νstartQ(S, π)− V π|, and

|V̂ πmax − V π| = |max
Q∈Ĉπn

ES∼νstartQ(S, π)− V π| ≤ max
Q∈Ĉπn

|ES∼νstartQ(S, π)− V π|.

Consequently, in order to prove the bound (8b) it suffices to upper bound the right-hand side common1080

in the two above displays. Since Ĉπn ⊆ Cπn, we have the upper bound1081

max
Q∈Ĉπn

|ES∼νstartQ(S, π)− V π| ≤ max
Q∈Cπn

|ES∼νstartQ(S, π)− V π|

= max
Q∈Cπn

|ES∼νstart [Q(S, π)−Qπ(S, π)]|

(i)
=

1

1− γ
max
Q∈Cπn

EπBπQ
1− γ

where step (i) follows from Lemma 9. Combined with the earlier displays, this completes the proof1082

of the bound (8b).1083

We now show the inclusion [V̂ πmin, V̂
π

max] 3 V π when weak realizability holds. By definition of weak1084

realizability, there exists some Qπ? ∈ Cπ∞. In conjunction with our sandwich assumption, we are1085

guaranteed that Qπ? ∈ Cπ∞ ⊆ Ĉπn, and consequently1086

V̂ πmin = min
Q∈Ĉπn

ES∼νstartQ(S, π) ≤ min
Q∈Cπ∞

ES∼νstartQ(S, π) ≤ ES∼νstartQ
π
? (S, π) = V π, and

V̂ πmax = max
Q∈Ĉπn

ES∼νstartQ(S, π) ≥ max
Q∈Cπ∞

ES∼νstartQ(S, π) ≥ ES∼νstartQ
π
? (S, π) = V π.

C.1.2 Proof of policy optimization claims1087

We now prove the oracle inequality (9) on the value V π̃ of a policy π̃ that optimizes the max-min1088

criterion. Fix an arbitrary comparator policy π. Starting with the inclusion [V̂ π̃min, V̂
π̃

max] 3 V π̃, we1089

have1090

V π̃
(i)

≥ V̂ π̃min

(ii)

≥ V̂ πmin = V π −
(
V π − V̂ πmin

) (iii)

≥ V π − 1

1− γ
max
Q∈Cπn

|EπBπQ|
1− γ

,

where step (i) follows from the stated inclusion at the start of the argument; step (ii) follows1091

since π̃ solves the max-min program; and step (iii) follows from the bound |V π − V̂ πmin| ≤1092

1
1−γ maxQ∈Cπn

EπBπQ
1−γ , as proved in the preceding section. This lower bound holds uniformly1093

for all comparators π, from which the stated claim follows.1094
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C.2 Proof of Lemma 91095

For each t = 1, 2, . . ., let Et be the expectation over the state-action pair at timestep t upon starting1096

from νstart, so that we have ES∼νstart(Q−Qπ)(S, π) = E0[Q−Qπ] by definition. We claim that1097

E0[Q−Qπ] =

t∑
τ=1

γτ−1Eτ−1BπQ+ γtEt[Q−Qπ] for all t = 1, 2, . . .. (49)

For the base case t = 1, we have1098

E0[Q−Qπ] = E0[Q− T πQ] + E0[T πQ− T πQπ] = E0[Q− T πQ] + γE1[Q−Qπ], (50)

where we have used the definition of the Bellman evaluation operator to assert that1099

E0[T πQ− T πQπ] = γE1[Q−Qπ]. Since Q − T πQ = BπQ, the equality (50) is equivalent1100

to the claim (49) with t = 1.1101

Turning to the induction step, we now assume that the claim (49) holds for some t ≥ 1, and show1102

that it holds at step t+ 1. By a similar argument, we can write1103

γtEt[Q−Qπ] = γtEt[Q− T πQ+ T πQ− T πQπ] = γtEt[Q− T πQ] + γt+1Et+1[Q−Qπ]

= γtEtBπQ+ γt+1Et+1[Q−Qπ].

By the induction hypothesis, equality (49) holds for t, and substituting the above equality shows that1104

it also holds at time t+ 1.1105

Since the equivalence (49) holds for all t, we can take the limit as t→∞, and doing so yields the1106

claim.1107

C.3 Proof of Theorem 31108

In the statement of the theorem, we require choosing ε > 0 to satisfy the upper bound ε2 - ρ(ε,δ)
n ,1109

and then provide an upper bound in terms of
√
ρ(ε, δ)/n. It is equivalent to instead choose ε to1110

satisfy the lower bound ε2 % ρ(ε,δ)
n , and then provide upper bounds proportional to ε. For the1111

purposes of the proof, the latter formulation turns out to be more convenient and we pursue it here.1112

1113

To streamline notation, let us introduce the shorthand 〈f, Dπ(Q)〉 def= 〈f, δπ(Q)〉n − 〈f, Bπ(Q)〉µ.1114

For each pair (Q, π), we then define the random variable1115

Zn(Q, π)
def
= sup

f∈Fπ

∣∣〈f,Dπ(Q)〉
∣∣√

‖f‖2n + λ
.

Central to our proof of the theorem is a uniform bound on this random variable, one that holds for all1116

pairs (Q, π). In particular, our strategy is to exhibit some ε > 0 for which, upon setting λ = 4ε2, we1117

have the guarantees1118

1

4
≤
√
‖f‖2n + λ√
‖f‖2µ + λ

≤ 2 uniformly for all f ∈ F , and (51a)

Zn(Q, π) ≤ ε uniformly for all (Q, π), (51b)

both with probability at least 1− δ. In particular, consistent with the theorem statement, we show1119

that this claim holds if we choose ε > 0 to satisfy the inequality1120

ε2 ≥ c̄ ρ(ε, δ)

n
(52)

where c̄ > 0 is a sufficiently large (but universal) constant.1121

Supposing that the bounds (51a) and (51b) hold, let us now establish the set inclusions claimed in the1122

theorem.1123
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Inclusion Cπ∞ ⊆ Ĉπn(ε): Define the random variable Mn(Q, π)
def
= sup

f∈Fπ
|〈f,Bπ(Q)〉µ|√
‖f‖2n+λ

, and observe1124

that Q ∈ Cπ∞ implies that Mn(Q, π) = 0. With this definition, we have1125

sup
f∈Fπ

∣∣〈f, δπ(Q)〉n
∣∣√

‖f‖2n + λ

(i)

≤ Mn(Q, π) + Zn(Q, π)
(ii)

≤ ε

where step (i) follows from the triangle inequality; and step (ii) follows since Mn(Q, π) = 0, and1126

Zn(Q, π) ≤ ε from the bound (51b).1127

Inclusion Ĉπn(ε) ⊆ Cπn(4ε) By the definition of Cπn(4ε), we need to show that1128

M̄(Q, π)
def
= sup

f∈Fπ

∣∣〈f,Bπ(Q)〉µ
∣∣√

‖f‖2µ + λ
≤ 4ε for any Q ∈ Ĉπn(ε).

Now we have1129

M̄(Q, π)
(i)

≤ 2Mn(Q, π)
(ii)

≤ 2

{
sup
f∈Fπ

∣∣〈f, δπ(Q)〉n
∣∣√

‖f‖2n + λ
+ Zn(Q, π)

}
(iii)

≤ 2
{
ε+ ε} = 4ε,

where step (i) follows from the sandwich relation (51a); step (ii) follows from the triangle inequality1130

and the definition of Zn(Q, π); and step (iii) follows since Zn(Q, π) ≤ ε from the bound (51b), and1131

sup
f∈Fπ

∣∣〈f, δπ(Q)〉n
∣∣√

‖f‖2n + λ
≤ ε, using the inclusion Q ∈ Ĉπn(ε).

Consequently, the remainder of our proof is devoted to establishing the claims (51a) and (51b).1132

In doing so, we make repeated use of some Bernstein bounds, stated in terms of the shorthand1133

Ψn(δ) = log(n/δ)
n .1134

Lemma 10. There is a universal constant c such each the following statements holds with probability1135

at least 1− δ. For any f , we have1136 ∣∣∣‖f‖2n − ‖f‖2µ∣∣∣ ≤ c {‖f‖µ√Ψn(δ) + Ψn(δ)
}
, (53a)

and for any (Q, π) and any function f , we have1137 ∣∣ 〈f, δπ(Q)〉n − 〈f, B
π(Q)〉µ

∣∣ ≤ c {‖f‖µ√Ψn(δ) + ‖f‖∞Ψn(δ)
}
. (53b)

These bounds follow by identifying a martingale difference sequence, and applying a form of1138

Bernstein’s inequality tailored to the martingale setting. See Section C.6.3 for the details.1139

C.4 Proof of the sandwich relation (51a)1140

We claim that (modulo the choice of constants) it suffices to show that1141 ∣∣∣‖f‖n − ‖f‖µ∣∣∣ ≤ ε uniformly for all f ∈ F (54)

for some universal constant c′. Indeed, when this bound holds, we have1142

‖f‖n + 2ε ≤ ‖f‖µ + 3ε ≤ 3
2{‖f‖µ + 2ε}, and ‖f‖n + 2ε ≥ ‖f‖µ + ε ≥ 1

2

{
‖f‖µ + 2ε},

so that ‖f‖µ+2ε
‖f‖n+2ε ∈

[
1
2 ,

3
2

]
. To relate this statement to the claimed sandwich, observe the inclusion1143

‖f‖+
√

2ε√
‖f‖2+4ε2

∈ [1,
√

2], where ‖f‖ can be either ‖f‖n or ‖f‖µ. Combining this fact with our previous1144

bound, we see that
√
‖f‖2n+4ε2√
‖f‖2µ+4ε2

∈
[

1√
2

1
2 ,

3
√

2
2

]
⊂
[

1
4 , 3
]
, as claimed.1145

1146

The remainder of our analysis is focused on proving the bound (54). Defining the random variable1147

Yn(f) =
∣∣‖f‖n − ‖f‖µ∣∣, we need to establish a high probability bound on supf∈F Yn(f). Let1148
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{f1, . . . , fN} be an ε-cover of F in the sup-norm. For any f ∈ F , we can find some f j such that1149

‖f − f j‖∞ ≤ ε, whence1150

Yn(f) ≤ Yn(f j) +
∣∣Yn(f j)− Yn(f)

∣∣ (i)

≤ Yn(f j) +
∣∣‖f j‖n − ‖f‖n∣∣+

∣∣‖f j‖µ − ‖f‖µ∣∣
(ii)

≤ Yn(f j) + ‖f j − f‖n + ‖f j − f‖µ
(iii)

≤ Yn(f j) + 2ε,

where steps (i) and (ii) follow from the triangle inequality; and step (iii) follows from the inequality1151

max{‖f j − f‖n, ‖f j − f‖µ} ≤ ‖f j − f‖∞ ≤ ε. Thus, we have reduced the problem to bounding a1152

finite maximum.1153

Note that if max{‖f j‖n, ‖f j‖µ} ≤ ε, then we have Yn(f j) ≤ 2ε by the triangle inequality. Other-1154

wise, we may assume that ‖f j‖n + ‖f j‖n ≥ ε. With probability at least 1− δ, we have1155 ∣∣∣‖f j‖n − ‖f‖µ∣∣∣ =

∣∣∣‖f j‖2n − ‖f‖2µ∣∣∣
‖f j‖n + ‖f j‖µ

(i)

≤
c
{
‖f j‖µ

√
Ψn(δ) + Ψn(δ)

}
‖f j‖µ + ‖f j‖n

(ii)

≤ c
{√

Ψn(δ) + Ψn(δ)
ε

}
,

where step (i) follows from the Bernstein bound (53a) from Lemma 10, and step (ii) uses the fact that1156

‖f j‖n + ‖f j‖n ≥ ε.1157

Taking union bound over all N elements in the cover and replacing δ with δ/N , we have1158

max
j∈[N ]

Yn(f j) ≤ c
{√

Ψn(δ/N) +
Ψn(δ/N)

ε

}
with probability at least 1 − δ. Recalling that N = Nε(F), our choice (52) of ε ensures that1159 √

Ψn(δ/N) ≤ c ε for some universal constant c. Putting together the pieces (and increasing the1160

constant c̄ in the choice (52) of ε as needed) yields the claim.1161

C.5 Proof of the uniform upper bound (51b)1162

We need to establish an upper bound on Zn(Q, π) that that holds uniformly for all (Q, π). Our first1163

step is to prove a high probability bound for a fixed pair. We then apply a standard discretization1164

argument to make it uniform in the pair.1165

Note that we can write Zn(Q, π) = supf∈F
Vn(f)√
‖f‖2n+λ

, where we have defined Vn(f)
def
=1166

| 〈f, Dπ(Q)〉 |. Our first lemma provides a uniform bound on the latter random variables:1167

Lemma 11. Suppose that ε2 ≥ Ψn

(
δ/Nε(F)

)
. Then we have1168

Vn(f) ≤ c
{
‖f‖µε+ ε2

}
for all f ∈ F (55)

with probability at least 1− δ.1169

See Appendix C.6.1 for the proof of this claim.1170

1171

We claim that the bound (55) implies that, for any fixed pair (Q, π), we have1172

Yn(Q, π) ≤ c′ε with probability at least 1− δ.

Indeed, when Lemma 11 holds, for any f ∈ F , we can write1173

Vn(f)√
‖f‖2n + λ

=

√
‖f‖2µ + λ√
‖f‖2n + λ

Vn(f)√
‖f‖2µ + λ

(i)

≤ 3
c
{
‖f‖µε+ ε2

}√
‖f‖2µ + λ

(ii)

≤ c′ε,

where step (i) uses the sandwich relation (51a), along with the bound (55); and step (ii) follows given1174

the choice λ = 4ε2. We have thus proved that for any fixed (Q, π) and ε ≥ Ψn

(
δ/Nε(F)

)
, we have1175

Zn(Q, π) ≤ c′ε with probability at least 1− δ. (56)
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Our next step is to upgrade this bound to one that is uniform over all pairs (Q, π). We do so via a1176

discretization argument: let {Qj}Jj=1 and {πk}Kk=1 be ε-coverings of Q and Π, respectively.1177

Lemma 12. We have the upper bound1178

sup
Q,π

Zn(Q, π) ≤ max
(j,k)∈[J]×[K]

Zn(Qj , πk) + 4ε. (57)

See Section C.6.2 for the proof of this claim.1179

If we replace δ with δ/(JK), then we are guaranteed that the bound (56) holds uniformly over the1180

family {Qj}Jj=1 × {πk}Kk=1. Recalling that J = Nε(Q) and K = Nε(Π), we conclude that for any1181

ε satisfying the inequality (52), we have supQ,π Zn(Q, π) ≤ c̃ε with probability at least 1− δ. (Note1182

that by suitably scaling up ε via the choice of constant c̄ in the bound (52), we can arrange for c̃ = 1,1183

as in the stated claim.)1184

C.6 Proofs of supporting lemmas1185

In this section, we collect together the proofs of Lemmas 11 and 12, which were stated and used1186

in Appendix C.5.1187

C.6.1 Proof of Lemma 111188

We first localize the problem to the class F(ε) = {f ∈ F | ‖f‖µ ≤ ε}. In particular, if there exists1189

some f̃ ∈ F that violates (55), then the rescaled function f = εf̃/‖f̃‖µ belongs to F(ε), and satisfies1190

Vn(f) ≥ cε2. Consequently, it suffices to show that Vn(f) ≤ cε2 for all f ∈ F(ε).1191

Choose an ε-cover of F in the sup-norm with N = Nε(F) elements. Using this cover, for any1192

f ∈ F(ε), we can find some f j such that ‖f − f j‖∞ ≤ ε. Thus, for any f ∈ F(ε), we can write1193

Vn(f) ≤ Vn(f j) + Vn(f − f j) ≤ Vn(f j)︸ ︷︷ ︸
T1

+ sup
g∈G(ε)

Vn(g)︸ ︷︷ ︸
T2

, (58)

where G(ε)
def
= {f1 − f2 | f1, f2 ∈ F, ‖f1 − f2‖∞ ≤ ε}. We bound each of these two terms in turn.1194

In particular, we show that each of T1 and T2 are upper bounded by cε2 with high probability.1195

Bounding T1: From the Bernstein bound (53b), we have1196

Vn(fk) ≤ c
{
‖fk‖µ

√
Ψn(δ/N) + ‖fk‖∞Ψn(δ/N)

}
for all k ∈ [N ]

with probability at least 1− δ. Now for the particular f j chosen to approximate f ∈ F(ε), we have1197

‖f j‖µ ≤ ‖f j − f‖µ + ‖f‖µ ≤ 2ε,

where the inequality follows since ‖f j − f‖µ ≤ ‖f j − f‖∞ ≤ ε, and ‖f‖µ ≤ ε. Consequently, we1198

conclude that1199

T1 ≤ c
{

2ε
√

Ψn(δ/N) + Ψn(δ/N)
}
≤ c′ε2 with probability at least 1− δ.

where the final inequality follows from our choice of ε.1200

Bounding T2: Define G def
= {f1 − f2 | f1, f2 ∈ F}. We need to bound a supremum of the1201

process {Vn(g), g ∈ G} over the subset G(ε). From the Bernstein bound (53b), the increments1202

Vn(g1)− Vn(g2) of this process are sub-Gaussian with parameter ‖g1 − g2‖µ ≤ ‖g1 − g2‖∞, and1203

sub-exponential with parameter ‖g1 − g2‖∞. Therefore, we can apply a chaining argument that uses1204

the metric entropy logNt(G) in the supremum norm. Moreover, we can terminate the chaining at 2ε,1205

because we are taking the supremum over the subset G(ε), and it has sup-norm diameter at most 2ε.1206

Moreover, the lower interval of the chain can terminate at 2ε2, since our goal is to prove an upper1207

bound of this order. Then, by using high probability bounds for the suprema of empirical processes1208

(e.g., Theorem 5.36 in the book [Wai19]), we have1209

T2 ≤ c1
∫ 2ε

2ε2
φ
( logNt(G)

n

)
dt+ c2

{
ε
√

Ψn(δ) + εΨn(δ)
}

+ 2ε2

34



with probability at least 1− δ. (Here the reader should recall our shorthand φ(s) = max{s,
√
s}.)1210

Since G consists of differences from F , we have the upper bound logNt(G) ≤ 2 logNt/2(F), and1211

hence (after making the change of variable u = t/2 in the integrals)1212

T2 ≤ c′1
∫ ε

ε2
φ
( logNu(F)

n

)
du+ c2

{
ε
√

Ψn(δ) + εΨn(δ)
}
≤ c̃ε2,

where the last inequality follows from our choice of ε.1213

C.6.2 Proof of Lemma 121214

By our choice of the ε-covers, for any (Q, π), there is a pair (Qj , πk) such that1215

‖Qj −Q‖∞ ≤ ε, and ‖πk − π‖∞,1 = sup
s
‖πk(· | s)− π(· | s)‖1 ≤ ε.

Using this pair, an application of the triangle inequality yields1216 ∣∣Zn(Q, π)− Zn(Qj , πk)
∣∣ ≤ ∣∣Zn(Q, π)− Zn(Q, πk)

∣∣︸ ︷︷ ︸
T1

+
∣∣Zn(Q, πk)− Zn(Qj , πk)

∣∣︸ ︷︷ ︸
T2

We bound each of these terms in turn, in particular proving that T1 + T2 ≤ 24ε. Putting together the1217

pieces yields the bound stated in the lemma.1218

Bounding T2: From the definition of Zn, we have1219

T2 =
∣∣Zn(Q, πk)− Zn(Qj , πk)

∣∣ ≤ sup
f∈F

∣∣〈f, Dπk(Q−Qj)〉|√
‖f‖2n + λ

.

Now another application of the triangle inequality yields1220

|〈f, Dπ
k

(Q−Qj)〉| ≤ |〈f, δπ
k

(Q−Qj)〉n|+ ||〈f, Bπ
k

(Q−Qj)〉|µ
≤ ‖f‖n‖δπ

k

(Q−Qj)‖n + ‖f‖µ‖Bπ
k

(Q−Qj)‖µ

≤ max{‖f‖n, ‖f‖µ}
{
‖δπ

k

(Q−Qj)‖∞ + ‖Bπ
k

(Q−Qj)‖∞
}

where step (i) follows from the Cauchy–Schwarz inequality. Now in terms of the shorthand1221

∆
def
= Q−Qj , we have1222

‖Bπ
k

(Q−Qj)‖∞ = sup
(s,a)

∣∣∣∆(s, a)− γEs+∼P(s,a)

[
∆(s+, π)

]∣∣∣ ≤ 2‖∆‖∞ ≤ 2ε. (59a)

An entirely analogous argument yields1223

‖δπ
k

(Q−Qj)‖∞ ≤ 2ε (59b)

Conditioned on the sandwich relation (51a), we have supf∈F
max{‖f‖n,‖f‖µ}√

‖f‖2n+λ
≤ 4. Combining this1224

bound with inequalities (59a) and (59b), we have shown that T2 ≤ 4
{

2ε+ 2ε} = 16ε.1225

Bounding T1: In this case, a similar argument yields1226

|〈f, (Dπ −Dπ
k

)(Q)〉| ≤ max{‖f‖n, ‖f‖µ}
{
‖(δπ − δπ

k

)(Q)‖n + ‖(Bπ − Bπ
k

)(Q)‖µ}.

Now we have1227

‖(δπ − δπ
k

)(Q)‖n ≤ max
i=1,...,n

∣∣∣∑
a′

(
π(a′ | si)− πk(a′ | si)

)
Q(s+

i , a
′)
∣∣∣

≤ max
s

∑
a′

|π(a′ | s)− πk(a | s)| ‖Q‖∞

≤ ε.

A similar argument yields that ‖(Bπ − Bπk)(Q)‖µ| ≤ ε, and arguing as before, we conclude that1228

T1 ≤ 4{ε+ ε} = 8ε.1229
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C.6.3 Proof of Lemma 101230

Our proof of this claim makes use of the following known Bernstein bound for martingale differences1231

(cf. Theorem 1 in the paper [BLL+11]). Recall the shorthand notation Ψn(δ) = log(n/δ)
n .1232

Lemma 13 (Bernstein’s Inequality for Martingales). Let {Xt}t≥1 be a martingale difference se-1233

quence with respect to the filtration {Ft}t≥1. Suppose that |Xt| ≤ 1 almost surely, and let Et denote1234

expectation conditional on Ft. Then for all δ ∈ (0, 1), we have1235 ∣∣∣ 1
n

n∑
t=1

Xt

∣∣∣ ≤ 2
[( 1

n

n∑
t=1

EtX2
t

)
Ψn(2δ)

]1/2
+ 2Ψn(2δ) (60)

with probability at least 1− δ.1236

With this result in place, we divide our proof into two parts, corresponding to the two claims (53b)1237

and (53a) stated in Lemma 10.1238

Proof of the bound (53b): Recall that at step i, the triple (s, a, o) is drawn according to a condi-1239

tional distribution µi(· | Fi). Similarly, we let di denote the distribution of (s, a, r, s+, o) conditioned1240

on the filtration Fi. Note that µi is obtained from di by marginalizing out the pair (r, s+). Moreover,1241

by the tower property of expectation, the Bellman error is equivalent to the average TD error.1242

Using these facts, we have the equivalence1243

〈f, δπQ〉di = Edi
{
f(s, a, o)[Q(s, a)− r − γQ(s+, π)]

}
= E(s,a,o)∼µi

{
f(s, a, o)Er∼R(s,a),s+∼P(s,a)[Q(s, a)− r − γQ(s+, π)]

}
= E(s,a,o)∼µi

{
f(s, a, o)[Q(s, a)− (T πQ)(s, a)]

}
= 〈f,BπQ〉µi .

As a consequence, we can write 〈f, δπ(Q)〉n − 〈f, Bπ(Q)〉µ = 1
n

∑n
i=1Wi where1244

Wi
def
= f(si, ai, oi)[Q(si, ai)− ri − γQ(s+

i , π)]− Edi
{
f(s, a, o)[Q(s, a)− r − γQ(s+, π)]

}
defines a martingale difference sequence (MDS). Thus, we can prove the claim by applying a1245

Bernstein martingale inequality.1246

Since ‖r‖∞ ≤ 1 and ‖Q‖∞ ≤ 1 by assumption, we have ‖Wi‖∞ ≤ 3‖f‖∞, and1247

1

n

n∑
i=1

Edi [W 2
i ] ≤ 9

1

n

n∑
i=1

Eµi [f2(si, ai, oi)] = 9‖f‖2µ.

Consequently, the claimed bound (53b) follows by applying the Bernstein bound stated in Lemma 13.1248

Proof of the bound (53a): In this case, we have the additive decomposition1249

‖f‖2n − ‖f‖2µ =
1

n

n∑
i=1

{
f2(si, ai, oi)− Eµi [f2(s, a, o)]︸ ︷︷ ︸

W ′i

}
,

where {W ′i}ni=1 again defines a martingale difference sequence. Note that ‖W ′i‖∞ ≤ 2‖f‖2∞ ≤ 2,1250

and1251

1

n

n∑
i=1

Eµi [(W ′i )2]
(i)

≤ 1

n

n∑
i=1

Eµi
[
f4(S,A,O)

]
≤ ‖f‖2∞

1

n

n∑
i=1

Eµi
[
f2(S,A,O)

] (ii)

≤ ‖f‖2µ,

where step (i) uses the fact that the variance of f2 is at most the fourth moment, and step (ii) uses the1252

bound ‖f‖∞ ≤ 1. Consequently, the claimed bound (53a) follows by applying the Bernstein bound1253

stated in Lemma 13.1254
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D Proofs for Section 4 and Appendix A.51255

In this section, we collect together the proofs of results stated without proof in Section 4 and1256

Appendix A.5.1257

D.1 Proof of Proposition 11258

Proof. Since f∗ ∈ Fπ , we are guaranteed that the corresponding constraint must hold. It reads as1259

|Eµ
1

bπ

dπ
µ
BπQ|2 =

1

b2π
|EπBπQ|2

(iii)

≤
( 1

b2π
‖dπ
µ
‖2µ + λ

) ρ
n
.

where step (iii) follows from the definition of population constraint. Re-arranging yields the upper1260

bound1261

|Eµ dπµ B
πQ|2

(1 + λ) ρn
≤
(
‖dπµ ‖

2
µ + b2πλ

)
ρ
n

(1 + λ) ρn
=

Eπ
[
dπ(S,A)
µ(S,A)

]
+ b2πλ

1 + λ
,

where the final step uses the fact that1262

‖dπ
µ
‖2µ = Eµ

d2
π(S,A)

µ2(S,A)
= Eπ

dπ(S,A)

µ(S,A)

Thus, we have established the bound (i) in our claim (12).1263

The upper bound (ii) follows immediately since Eπ dπ(s,a)
µ(s,a) ≤ sup(s,a)

dπ(s,a)
µ(s,a) ≤ bπ .1264

1265

D.2 Proof of Lemma 11266

Some simple algebra yields1267

BπQ− BπQπ? = [Q− T πQ]− [Qπ? − T πQπ? ] = (I − γPπ)(Q−Qπ? ) = (I − γPπ)ε.

Taking expectations under π and recalling that 〈f,BπQπ? 〉π = 0 for all f ∈ Fπ yields1268

〈f,BπQ〉π = 〈f, (I − γPπ)ε〉π.
Notice that for any Q ∈ Qπ there exists a test function ε = Q − Qπ? ∈ Eπ, and the associated1269

population constraint reads1270 ∣∣〈ε, (I − γPπ)ε〉µ
∣∣√

‖ε‖2µ + λ
≤
√
ρ

n
.

Consequently, the off-policy cost coefficient can be upper bounded as1271

Kπ ≤ max
ε∈Eπ?

{ ρ
n

〈1, (I − γPπ)ε〉2π
1 + λ

}
≤ max

ε∈Eπ?

{ ‖ε‖2µ + λ

‖1 ‖2π + λ

〈1, (I − γPπ)ε〉2π
〈ε, (I − γPπ)ε〉2µ

}
,

as claimed in the bound (14).1272

D.3 Proof of Lemma 71273

If weak Bellman closure holds, then we can write1274

BπQ = Q− T πQ = Q− Pπ(Q) ∈ Eπ.
For anyQ ∈ Qπ , the function ε = Q−Pπ(Q) belongs to Eπ , and the associated population constraint1275

reads |〈ε,ε〉µ|√
‖ε‖2µ+λ

≤
√

ρ
n . Consequently, the off-policy cost coefficient is upper bounded as1276

Kπ ≤ max
ε∈Eπ

{n
ρ

v〈1, ε〉2π
1 + λ

}
≤ max

ε∈Eπ

{‖ε‖2µ + λ

1 + λ

〈1, ε〉2π
〈ε, ε〉2µ

}
≤ max

ε∈Eπ

{ 〈1, ε〉2π
〈ε, ε〉2µ

}
,

where the final inequality follows from the fact that ‖ε‖µ ≤ 1.1277
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D.4 Proof of Lemma 21278

We split our proof into the two separate claims.1279

Proof of the bound (16a): When the test function class includes FBπ , then any Q feasible must1280

satisfy the population constraints1281

〈BπQ′,BπQ〉µ√
‖BπQ′‖2µ + λ

≤
√
ρ

n
, for all Q′ ∈ Qπ .

Setting Q′ = Q yields
‖BπQ‖2µ√
‖BπQ‖2µ+λ

≤
√

ρ
n . If ‖BπQ‖2µ ≥ λ, then the claim holds, given our choice1282

λ = c ρn for some constant c. Otherwise, the constraint can be weakened to
‖BπQ‖2µ√
2‖BπQ‖2µ

≤
√

ρ
n , which1283

yields the bound (16a).1284

Proof of the bound (16b): We now prove the sequence of inequalities stated in equation (16b).1285

Inequality (i) follows directly from the definition of Kπ and Lemma 2. Turning to inequality (ii), an1286

application of Jensen’s inequality yields1287

〈1,BπQ〉2π = [EπBπQ]2 ≤ Eπ[BπQ]2 = ‖BπQ‖2π.

Finally, inequality (iii) follows by observing that1288

sup
Q∈Qπ

‖BπQ‖2π
‖BπQ‖2µ

= sup
Q∈Qπ

Eπ[(BπQ)(s, a)]2

Eµ[(BπQ)(s, a)]2
= sup
Q∈Qπ

Eµ
[
dπ(s,a)
µ(s,a)

]
[(BπQ)(s, a)]2

Eµ[(BπQ)(s, a)]2
≤ sup

(s,a)

dπ(s, a)

µ(s, a)
.
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E Proofs for the Linear Setting1289

We now prove the results stated in Section 5. Throughout this section, the reader should recall that Q1290

takes the linear function Q(s, a) = 〈w, φ(s, a)〉, so that the bulk of our arguments operate directly1291

on the weight vector w ∈ Rd.1292

Given the linear structure, the population and empirical covariance matrices of the feature vectors1293

play a central role. We make use of the following known result (cf. Lemma 1 in the paper [ZJZ21])1294

that relates these objects:1295

Lemma 14 (Covariance Concentration). There are universal constants (c1, c2, c3) such that for any1296

δ ∈ (0, 1), we have1297

c1Eµφφ> �
1

n

n∑
i=1

φiφ
>
i +

c2
n

log
nd

δ
I � c3Eµφφ> +

c4
n

log
nd

δ
I. (61)

with probability at least 1− δ.1298

E.1 Proof of Proposition 21299

Under weak realizability, we have1300

〈fj ,BπQπ? 〉µ = 0 for all j = 1, . . . , d. (62)

Thus, at (s, a) the Bellman error difference reads1301

BπQ(s, a)− BπQπ? (s, a) = [Q− T πQ](s, a)− [Qπ? − T πQπ? ](s, a)

= [Q−Qπ? ](s, a)− γEs+∼P(s,a)[Q−Qπ? ](s+, π)

=
〈
w − wπ? , φ(s, a)− γφ+π(s, a)

〉
(63)

To proceed we need the following auxiliary result:1302

Lemma 15 (Linear Parameter Constraints). With probability at least 1− δ, there exists a universal1303

constant c1 > 0 such that if Q ∈ Cπn then ‖w − wπ? ‖2Σ+π
λ,Boot
≤ c1 dρn .1304

See Appendix E.2 for the proof.1305

Using this lemma, we can bound the OPC coefficient as follows1306

Kπ
(i)

≤ n

ρ
max
Q∈Cπn

〈1,BπQ− BπQπ? 〉2π
(ii)

≤ n

ρ
[Eπ(φ− γφ+π)>(w − wπ? )]2

(iii)

≤ n

ρ
‖Eπφ− γφ+π‖2

(Σ+π
λ,Boot)

−1‖w − wπ? ‖2Σ+π
λ,Boot

≤ c1d‖Eπφ− γφ+π‖2
(Σ+π
λ,Boot)

−1 .

Here step (i) follows from the definition of off-policy cost coefficient, (ii) leverages the linear1307

structure and (iii) is Cauchy-Schwartz.1308

E.2 Proof of Lemma 151309

Under the event of Theorem 3, the statement of Eq. (51a) holds, and in particular1310

1

c1(
√
‖f‖2µ + λ)

≥ 1√
‖f‖2n + λ

≥ 1

c2(
√
‖f‖2µ + λ)

.

Thus, the j constraint reads1311

L√
n
&
〈fj ,BπQ〉µ√
‖f‖2n + λ

=
〈fj ,BπQ〉µ√

λ̂j + λ
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where the last step follows from1312

‖fj‖2D =
1

n

∑
(s,a,r,s+)∈D

(fj(s, a))2 =
1

n

n∑
i=1

(û>j φi)
2 = û>j Σ̂ûj = λ̂j .

Now, squaring and summing over the constraints and using Eq. (63) yields1313

d
L2

n
&

m∑
j=1

〈
û>j φ√
λ̂j + λ

, (φ− γφ+π)>(w − wπ? )〉2µ

=

m∑
j=1

[ û>j√
λ̂j + λ

Eµφ(φ− γφ+π)>(w − wπ? )
]2

=

m∑
j=1

[ û>j√
λ̂j + λ

(Σ− γΣ+π)(w − wπ? )︸ ︷︷ ︸
def
= y

]2

= y>
( m∑
j=1

ûj û
>
j

λ̂j + λ

)
y

= y>
(

Σ̂ + λI
)−1

y

& y>Σ−1
λ y.

The last inequality holds via Lemma 14 (Covariance Concentration) with probability at least 1− δ1314

since λ is a large enough regularizer. Let us complete the quadratic form:1315

‖y + λ(w − wπ? )‖2
Σ−1
λ

≤ (‖y‖Σ−1
λ

+ λ‖(w − wπ? )‖Σ−1
λ

)2 . ‖y‖2
Σ−1
λ

+ λ.

Therefore, adding λ to both sides of the prior display and noticing that λ . L2

n gives1316

d
L2

n
& ‖y + λ(w − wπ? )‖2

Σ−1
λ

= (w − wπ? )(Σλ − γΣ+π)>
(

Σ−1
λ

)
(Σλ − γΣ+π)(w − wπ? )

= (w − wπ? )(Σ+π
λ,Boot)(w − w

π
? )

= ‖(w − wπ? )‖2
Σ+π
λ,Boot

.

E.3 Proof of Proposition 31317

Under weak Bellman closure, we have1318

BπQ = Q− T πQ = φ>(w − Pπ(w)). (64)

With a slight abuse of notation, let Pπ(w) denote the weight vector that defines the action-value1319

function Pπ(Q). We introduce the following auxiliary lemma:1320

Lemma 16 (Linear Parameter Constraints with Bellman Closure). With probability at least 1− δ, if1321

Q ∈ Cπn then ‖w − Pπ(w)‖2Σλ ≤ c1
dρ
n .1322

See Appendix E.4 for the proof. Using this lemma, we can bound the OPC coefficient as follows1323

Kπ
(i)

≤ n

ρ
max
Q∈Cπn

〈1,BπQ〉2π
(ii)

≤ n

ρ
[Eπ(φ)>(w − Pπ(w))]2

(iii)

≤ n

ρ
‖Eπφ‖2(Σλ)−1‖w − Pπ(w)‖2Σλ

≤ c1d‖Eπφ‖2(Σλ)−1 .

Here step (i) follows from the definition of off-policy cost coefficient, (ii) leverages the linear1324

structure and (iii) is Cauchy-Schwartz.1325
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E.4 Proof of Appendix E.41326

Under the event of Theorem 3, the statement of Eq. (51a) holds, and in particular1327

1

c1(
√
‖f‖2µ + λ)

≥ 1√
‖f‖2n + λ

≥ 1

c2(
√
‖f‖2µ + λ)

.

Thus, the j constraint reads1328

L√
n
&
〈fj ,BπQ〉µ√
‖f‖2n + λ

=
〈fj ,BπQ〉µ√

λ̂j + λ

where the last step follows from1329

‖fj‖2D =
1

n

∑
(s,a,r,s+)∈D

(fj(s, a))2 =
1

n

n∑
i=1

(û>j φi)
2 = û>j Σ̂ûj = λ̂j .

Now, squaring and summing over the constraints and using Eq. (64) yields1330

d
L2

n
&

m∑
j=1

〈
û>j φ√
λ̂j + λ

, φ>(w − Pπ(w))〉2µ

=

m∑
j=1

[ û>j√
λ̂j + λ

Eµφφ>(w − Pπ(w))
]2

=

m∑
j=1

[ û>j√
λ̂j + λ

Σ(w − Pπ(w))︸ ︷︷ ︸
def
= y

]2

= y>
( m∑
j=1

ûj û
>
j

λ̂j + λ

)
y

= y>
(

Σ̂ + λI
)−1

y

& y>Σ−1
λ y.

The last inequality holds via Lemma 14 (Covariance Concentration) with probability at least 1− δ1331

since λ is a large enough regularizer. Let us complete the quadratic form:1332

‖y + λ(w − Pπ(w))‖2
Σ−1
λ

≤ (‖y‖Σ−1
λ

+ λ‖(w − Pπ(w))‖Σ−1
λ

)2 . ‖y‖2
Σ−1
λ

+ λ.

Therefore, adding λ to both sides of the prior display and noticing that λ . L2

n gives1333

d
L2

n
& ‖y + λ(w − Pπ(w))‖2

Σ−1
λ

= (w − Pπ(w))Σ>λ

(
Σ−1
λ

)
Σλ(w − Pπ(w))

= (w − Pπ(w))(Σλ)(w − Pπ(w))

= ‖(w − Pπ(w))‖2Σλ .
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F Proof of Theorem 21334

In this section, we prove the guarantee on our actor-critic procedure stated in Theorem 2.1335

F.1 Adversarial MDPs1336

We now introduce sequence of adversarial MDPs {Mt}Tt=1 used in the analysis. Each MDPMt1337

is defined by the same state-action space and transition law as the original MDPM, but with the1338

reward functions R perturbed by Rt—that is1339

Mt
def
= 〈S,A, R+Rt,P, γ〉. (65)

For an arbitrary policy π, we denote withQπt and withAπt the action value function and the advantage1340

function onMt; the value of π from the starting distribution νstart is denoted by V πt . We immediately1341

have the following expression for the value function, which follows because the dynamics ofMt and1342

M are identical and the reward function ofMt equals that ofM plus Rt1343

V πt
def
=

1

1− γ
Eπ
[
R+Rt

]
. (66)

Consider the action value function Q̂
πt

returned by the critic, and let the reward perturbation1344

Rt = BπtQ̂
πt

be the Bellman error of the critic value function Q̂
πt

. The special property ofMt is1345

that the action value function of πt onMt equals the critic lower estimate Q̂
πt

.1346

Lemma 17 (Adversarial MDP Equivalence). Given the perturbed MDPMt from equation (65) with1347

Rt
def
= BπtQ̂

πt
, we have the equivalence1348

Qπtt = Q̂
πt
.

Proof. We need to check that Q̂
πt

solves the Bellman evaluation equations for the adversarial MDP,1349

ensuring that Q̂
πt

is the action-value function of πt on Mt. Let T πtt be the Bellman evaluation1350

operator onMt for policy πt. We have1351

Q̂
πt
− T πtt (Q̂

πt
) = Q̂

πt
− T πt(Q̂

πt
)−Rt = BπtQ̂

πt
− BπtQ̂

πt
= 0.

Thus, the function Q̂
πt

is the action value function of πt onMt, and it is by definition denoted by1352

Qπtt .1353

This lemma shows that the action-value function Q̂
πt

computed by the critic is equivalent to the1354

action-value function of πt onMt. Thus, we can interpret the critic as performing a model-based1355

pessimistic estimate of πt; this view is useful in the rest of the analysis.1356

F.2 Equivalence of Updates1357

The second step is to establish the equivalence between the update rule (22), or equivalently as the1358

update (67a), to the exponentiated gradient update rule (67b).1359

Lemma 18 (Equivalence of Updates). For linear Q-functions of the form Qt(s, a) = 〈wt, φ(s, a)〉,1360

the parameter update1361

πt+1(a | s) ∝ exp(φ(s, a)>(θt + ηwt)), (67a)

is equivalent to the policy update1362

πt+1(a | s) ∝ πt(a | s) exp(ηQt(s, a)), π1(a | s) =
1

|As|
. (67b)
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Proof. We prove this claim via induction on t. The base case (t = 1) holds by a direct calculation.1363

Now let us show that the two update rules update πt in the same way. As an inductive step, assume1364

that both rules maintain the same policy πt ∝ exp(φ(s, a)>θt) at iteration t; we will show the1365

policies are still the same at iteration t+ 1. At any (s, a), we have1366

πt+1(a | s) ∝ exp(φ(s, a)>(θt + ηwt)) ∝ exp(φ(s, a)>θt) exp(ηφ(s, a)>wt)

∝ πt(a | s) exp(ηQt(s, a)).

1367

Recall that θt is the parameter associated to πt and that wt is the parameter associated to Q̂
πt

. Using1368

Lemma 18 together with Lemma 17 we obtain that the actor policy πt satisfies through its parameter1369

θt the mirror descent update rule (67b) with Qt = Q̂
πt

= Qπtt and π1(a | s) = 1/|As|, ∀(s, a). In1370

words, the actor is using Mirror descent to find the best policy on the sequence of adversarial MDPs1371

{Mt} implicitly identified by the critic.1372

F.3 Mirror Descent on Adversarial MDPs1373

Our third step is to analyze the behavior of mirror descent on the MDP sequence {Mt}Tt=1, and then1374

translate such guarantees back to the original MDPM. The following result provides a bound on the1375

average of the value functions {V πt}Tt=1 induced by the actor’s policy sequence. This bound involves1376

a form of optimization error8 given by1377

Eopt(T ) = 2

√
2 log |A|

T
,

as is standard in mirror descent schemes. It also involves the perturbed rewards given by Rt
def
=1378

BπtQπtt .1379

Lemma 19 (Mirror Descent on Adversarial MDPs). For any positive integer T , applying the update1380

rule (67b) with Qt = Qπtt for T rounds yields a sequence such that1381

1

T

T∑
t=1

[
V π̃ − V πt

]
≤ 1

1− γ

{
Eopt(T ) +

1

T

T∑
t=1

[
− Eπ̃Rt + EπtRt

]}
, (68)

valid for any comparator policy π̃.1382

See Appendix F.6 for the proof.1383

1384

To be clear, the comparator policy π̃ need belong to the soft-max policy class. Apart from the1385

optimization error term, our bound (68) involves the behavior of the perturbed rewards Rt along the1386

comparator π̃ and πt, respectively. These correction terms arise because the actor performs the policy1387

update using the action-value function Qπtt on the perturbed MDPs instead of the real underlying1388

MDP.1389

F.4 Pessimism: Bound on EπtRt1390

The fourth step of the proof is to leverage the pessimistic estimates returned by critic to simplify1391

equation (68). Using Lemma 9 and the definition of adversarial reward Rt we can write1392

V̂ πmin − V
πt =

1

1− γ
〈1,BπtQ̂

πt
〉πt =

1

1− γ
EπtBπtQ̂πt =

1

1− γ
EπtRt.

Since weak realizability holds, Theorem 3 guarantees that V̂ πmin ≤ V π uniformly for all π ∈ Π with1393

probability at least 1− δ. Coupled with the prior display, we find that1394

EπtRt ≤ 0. (69)

Using the above display, the result in Eq. (68) can be further upper bounded and simplified.1395

8Technically, this error should depend on |As|, if we were to allow the action spaces to have varyign
cardinality, but we elide this distinction here.
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F.5 Concentrability: Bound on Eπ̃Rt1396

The term Eπ̃Rt can be interpreted as an approximate concentrability factor for the approximate1397

algorithm that we are investigating.1398

Bound under only weak realizability: Lemma 15 gives with probability at least 1 − δ that any1399

surviving Q in Cπtn must satisfy: ‖w − wπt? ‖2Σ+πt
λ,Boot

. dρ
n where wπt? is the parameter associated to1400

the weak solution Qπt? . Such bound must apply to the parameter wt ∈ Ĉπtn identified by the critic.9.1401

We are now ready to bound the remaining adversarial reward along the distribution of the comparator1402

π̃.1403

|Eπ̃Rt| = |Eπ̃BπtQ̂πt |
(i)
= |Eπ̃(φ− γφ+πt)>(wt − wπt? )|
≤ ‖Eπ̃[φ− γφ+πt ]‖

(Σ
+πt
λ,Boot)

−1‖wt − wπt? ‖Σ+πt
λ,Boot

≤ c
√
dρ

n
sup
π∈Π

{
‖Eπ̃[φ− γφ+π]‖(Σ+π

λ,Boot)
−1

}
. (70)

Step (i) follows from the expression (63) for the weak Bellman error, along with the definition of the1404

weak solution Qπt? .1405

Bound under weak Bellman closure: When Bellman closure holds we proceed analogously. The1406

bound in Lemma 16 ensures with probability at least 1 − δ that ‖w − Pπt(w)‖2Σλ ≤ c dρ
n for all1407

w ∈ Cπtn ; as before, this relation must apply to the parameter chosen by the critic wt ∈ Ĉπtn . The1408

bound on the adversarial reward along the distribution of the comparator π̃ now reads1409

|Eπ̃Rt| = |Eπ̃BπtQ̂πt |
(i)
= |Eπ̃φ>(wt − Pπt(wt))|

≤ ‖Eπ̃φ‖Σ−1
λ
‖wt − Pπt(wt)‖Σλ

≤ c ‖Eπ̃φ‖Σ−1
λ

√
dρ

n
. (71)

Here step (i) follows from the expression (64) for the Bellman error under weak closure.1410

F.6 Proof of Lemma 191411

We now prove our guarantee for a mirror descent procedure on the sequence of adversarial MDPs.1412

Our analysis makes use of a standard result on online mirror descent for linear functions (e.g., see1413

Section 5.4.2 of Hazan [Haz21]), which we state here for reference. Given a finite cardinality set1414

X , a function f : X → R, and a distribution ν over X , we define f(ν)
def
=
∑
x∈X ν(x)f(x). The1415

following result gives a guarantee that holds uniformly for any sequence of functions {ft}Tt=1, thereby1416

allowing for the possibility of adversarial behavior.1417

Proposition 5 (Adversarial Guarantees for Mirror Descent). Suppose that we initialize with the1418

uniform distribution ν1(x) = 1
|X | for all x ∈ X , and then perform T rounds of the update1419

νt+1(x) ∝ νt(x) exp(ηft(x)), for all x ∈ X , (72)

using η =
√

log|X |
2T . If ‖ft‖∞ ≤ 1 for all t ∈ [T ] then we have the bound1420

1

T

T∑
t=1

[
ft(ν̃)− ft(νt)

]
≤ Eopt(T )

def
= 2

√
2 log|X |

T
. (73)

where ν̃ is any comparator distribution over X .1421

9We abuse the notation and write w ∈ Ĉπn in place of Q ∈ Ĉπn
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We now use this result to prove our claim. So as to streamline the presentation, it is convenient to1422

introduce the advantage function corresponding to πt. It is a function of the state-action pair (s, a)1423

given by1424

Aπtt (s, a)
def
= Qπtt (s, a)− Ea+∼πt(·|s)Q

πt
t (s, a+).

In the sequel, we omit dependence on (s, a) when referring to this function, consistent with the rest1425

of the paper.1426

From our earlier observation (66), recall that the reward function of the perturbed MDPMt corre-1427

sponds to that ofM plus the perturbation Rt. Combining this fact with a standard simulation lemma1428

(e.g., [K+03]) applied toMt, we find that1429

V π̃ − V πt = V π̃t − V
πt
t +

1

1− γ

[
− Eπ̃Rt + EπtRt

]
=

1

1− γ

[
Eπ̃Aπtt − Eπ̃Rt + EπtRt

]
.

(74a)

Now for any given state s, we introduce the linear objective function1430

ft(ν)
def
= Ea∼νQπtt (s, a) =

∑
a∈A

ν(a)Qπtt (s, a),

where ν is a distribution over the action space. With this choice, we have the equivalence1431

Ea∼π̃Aπtt (s, a) = ft(π̃(· | s))− ft
(
πt(· | s)

)
,

where the reader should recall that we have fixed an arbitrary state s. Consequently, applying the1432

bound (73) with X = A and these choices of linear functions, we conclude that1433

1

T

T∑
t=1

Ea∼π̃Aπtt (s, a) ≤ Eopt(T ). (74b)

This bound holds for any state, and also for any average over the states.1434

We now combine the pieces to conclude. By computing the average of the bound (74a) over all T1435

iterations, we find that1436

1

T

T∑
t=1

[
V π̃ − V πt

]
≤ 1

1− γ

{
1

T

T∑
t=1

Eπ̃Aπtt +
1

T

T∑
t=1

[
− Eπ̃Rt + EπtRt

]}

≤ 1

1− γ

{
Eopt(T ) +

1

T

T∑
t=1

[
− Eπ̃Rt + EπtRt

]}
,

where the final inequality follow from the bound (73), applied for each s. We have thus established1437

the claim.1438
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