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Gradient-based bilevel optimization. A number of gradient-based bilevel algorithms have been pro-
posed via AID- and ITD-based hypergradient approximations. For example, AID-based hypergradient
computation [4, 33, 10, 11, 19] estimates the Hessian-inverse-vector product by solving a linear sys-
tem with an efficient iterative algorithm. ITD-based hypergradient computation [31, 8, 9, 6, 35, 17]
involves a backpropagation over the inner-loop gradient-based optimization path. Convergence rate
of AID- and ITD-based bilevel methods has been studied recently. For example, [10, 19] and [19, 17]
analyzed the convergence rate and complexity of AID- and ITD-based bilevel algorithms, respectively.
[18] characterized the lower complexity bounds for a class of gradient-based bilevel algorithms. As
we mentioned before, previous studies on the convergence rate of deterministic AID-BiO [10, 19] fo-
cused only on N -Q-loop, and the only convergence rate analysis on ITD-BiO [19] was for N -N -loop.
Our study here develops unified convergence analysis for all N and Q regimes.

Some works [30, 28, 25, 38] studied the convex inner-level objective function with multiple minimiz-
ers. [29] proposed an initialization auxiliary method for the setting where the inner-level problem is
generally nonconvex.

Stochastic bilevel optimization. A variety of stochastic bilevel optimization algorithms have
been proposed recently. For example, [10, 15, 19] proposed stochastic gradient descent (SGD)
type of bilevel algorithms, and analyzed their convergence rate and complexity. Some works
[13, 12, 40, 21, 3] then further improved the complexity of SGD type methods using techniques
such as variance reduction, momentum acceleration and adaptive learning rate. [39] proposed a
Hessian-free stochastic Evolution Strategies (ES)-based bilevel algorithm with performance guarantee.
[16] proposed several algorithms for escaping saddle points in bilevel optimization. Although our
study mainly focuses on determinstic bilevel optimization, our techniques can be extended to provide
refined analysis for stochastic bilevel optimization to capture the order scaling with κ, which is not
captured in most of the above studies on stochastic bilevel optimization.

Bilevel optimization for machine learning. Bilevel optimization has shown promise in many
machine learning applications such as hyperparameter optimization [33, 9, 19] and few-shot meta-
learning [6, 37, 34, 9, 1, 17, 20]. For example, [37, 1] introduced an outer-level procedure to learn a
common embedding model for all tasks. [17] analyzed the convergence rate for meta-learning with
task-specific adaptation on partial parameters.

B Discussion on Setting with Small Response Jacobian.

Our results in Theorem 3 and Theorem 4 apply to the general functions whose first- and second-order
derivatives are Lipschitz continuous, i.e., under Assumptions 2 and 3. Here, we further discuss the
extension of our results to another setting where the response Jacobian is extremely small. This
setting occurs in some deep learning applications [6, 17], where the response Jacobian ∂y∗(x)

∂x (which

is estimated by ∂yN
k (x)
∂x with a large N ) can be order-of-magnitude smaller than network gradients.

Based on eq. (60) and eq. (62) in the appendix, it can be shown that the convergence error is
proportional to the quantity 1

K

∑K−1
k=0 ∥ ∂y∗(xk)

∂xk
∥2, and hence the constant-level N = Θ(1) can still

achieve a small error in this setting.

C Discussion on Hyperparameter Selection and Stochastic Extension.

For all loop-sizes, we set the hyperparameters to achieve the best complexity as long as the con-
vergence is guaranteed. Let us elaborate on N -loop (Corollary 1) and No-loop (Corollary 2). At a
proof level, λ needs to satisfy (1− αµ)N (1 + λ) < 1 (see Lemma 2) to guarantee the convergence;
otherwise the inner-loop error will explode. Given this requirement, for N -loop with N = Θ(κ log κ),
λ = Θ(1) achieves the best complexity. However, for No-loop with N = 1, the requirement be-
comes (1 − αµ)(1 + λ) < 1, and λ = Θ(µ) achieves the best complexity. The stepsize η appears
in (1 − αµ)N η

µ
∥yN

k−1 − y∗
k−1∥2) (see Lemma 1) of the error ∥vQk − v∗k∥2. Given the requirement

(1− αµ)N η
µ
< 1, for N -loop with N = Θ(κ log κ), η = Θ(1) achieves the best complexity, whereas
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for No-loop with N = 1, the best η = Θ(µ). At a conceptual level, estimating the hypergradient and
linear system contains the inner-loop error ∥yN

k − y∗
k∥2. For N = 1, the per-iteration error is large,

and hence we need smaller stepsizes λ, η, β to ensure the accumulated error not to explode. A similar
argument holds for N -Q-loop and Q-loop.

Extension to the stochastic setting. If the mini-batch size at each iteration is chosen at an order of
ϵ−1, we have checked that our proof flow and comparisons still hold.

D Comparison to the Analysis in [2]

We note that a similar conclusion for AID-BiO (e.g., N = O(κ) is better than N = O(1)) has also
been drawn in [2] for the stochastic bilevel optimization. The theoretical comparison in [2] focuses
only on the case Q = Θ(κ), where each algorithm solves the linear system to a good accuracy with
a large Q loop. As a comparison, our theoretical comparison is more general by considering both
Q = O(κ) and Q = O(1). In addition, we also provide a comparison between Q = O(1) and
Q = O(κ) given different N , which is not covered in [2]. Also note that the choice of Q = O(1)
(not covered in [2]) is more challenging to analyze due to the nonvanishing error for Q loop, and is
more often adopted in practice, as seen in NAS [42] (Q = 1), meta-learning [34] (Q = 5), hyper-data
cleaning [19] (Q = 3).

E Further Specifications on Hyperparameter Optimization Experiments

We follow the setting of [40] to setup the experiment. We first randomly sample 20000 training
samples and 10000 test samples from MNIST dataset [24] with 10 classes, and then add a label
noise on 10% of the data. The label noise is uniform across all labels from label 0 to label 9. We
test algorithms with different values of Q and N to verify our theoretical results. Every algorithm’s
learning rates for inner and outer loops are tuned from the range of {0.1, 0.01, 0.001} and we report
the result with the best-tuned learning rates. We run 5 random seeds and report the average result. All
experiments are run over a single NVIDIA Tesla P100 GPU. The implementations of our experiments
are based on the code of [19], which is under MIT License.

F More Experiments on Hyper-Representation

In Figure 4, we plot the outer loss of AID-BiO versus the number of matrix-vector products (i.e.,
MV) and the number of gradient computations (i.e., GC) on the same hyper-representation problem
as in Table 3.

Figure 4: Outer losses of AID-BiO v.s. MV and GC on MNIST with different Q and N .

Similarly to the observation in Figure 1, the curve with N = 20 significantly outperforms N = 1,
while different choices of Q do not affect the dominant matrix-vector complexity. This is consistent
with our theoretical results provided in Table 1.

G Proof Sketch of Theorem 1

The proof of Theorem 1 contains three major steps, which include 1) decomposing the hypergradient
approximation error into the N -loop error in estimating the inner-level solution and the Q-loop error
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in solving the linear system approximately, 2) upper-bounding such two types of errors based on the
hypergradient approximation errors at previous iterations, and 3) combining all results in the previous
steps and proving the convergence guarantee. More detailed steps can be found as below.

Step 1: decomposing hypergradient approximation error.

We first show that the hypergradient approximation error at the kth iteration is bounded by

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤
(
3L2 +

3ρ2M2

µ2

)
∥y∗k − yNk ∥2︸ ︷︷ ︸

N -loop estimation error

+3L2∥v∗k − vQk ∥2.︸ ︷︷ ︸
Q-loop estimation error

(6)

where the right hand side contains two types of errors induced by solving the inner-level problem
and outer-level linear system. Note that for general choices of N and Q, such two errors cannot be
guaranteed to be sufficiently small, but fortunately we show via the following results that such errors
contain iteratively decreasing components which facilitate the final convergence.

Step 2: upper-bounding linear system approximation error.

We then show that the Q-loop error ∥v∗k − vQk ∥2 for solving the linear system is bounded by

∥vQk − v∗k∥2 ≤ O
((

(1 + ηµ)(1− ηµ)2Q + wβ2
)
∥vQk−1 − v∗k−1∥2

+ (η2(1− αµ)N + wβ2)∥y∗k−1 − yNk−1∥2 + wβ2∥∇Φ(xk−1)∥2
)
. (7)

Note that if the stepsize β is chosen to be sufficiently small, the right hand side of eq. (7) contains an
iteratively decreasing term (1+ ηµ)(1− ηµ)2Q +wβ2

)
∥vQk−1 − v∗k−1∥2, an error term (η2(1−αµ)N +

wβ2)∥y∗
k−1 − yN

k−1∥2 induced by the N -loop updates, and gradient norm term wβ2∥∇Φ(xk−1)∥2
that captures the increment between two adjacent iterations. Similarly, we upper-bound the N -loop
updating error ∥y∗

k − yN
k ∥2 by

∥yNk − y∗k∥2 ≤ O
((

(1 + λ)(1− αµ)N + (1 + λ−1)β2
)
∥yNk−1 − y∗k−1∥2

+ (1 + λ−1)β2∥vQk−1 − v∗k−1∥2 + (1 + λ−1)β2∥∇Φ(xk−1)∥2
)
, (8)

where τ = 1 + 1
λ is inversely proportional to λ. Note that we introduce an auxiliary variable λ in the

first error term at the right hand side of eq. (8) to allow for a general choice of N . To see this, to
guarantee that (1 + λ)(1− αµ)N + (1 + λ−1)β2 < 1, a larger N allows for a smaller λ. As a result,
the outer-level stepsize β can be chosen more aggressively, which hence yields a faster convergence
rate but at a cost of N steps of N -loop updates. On the other hand, if N is chosen to be small, e.g.,
N = 1, λ needs to be as small as λ = Θ(αµ). As a result, β needs to be smaller, and hence yields a
slower convergence rate but with a more efficient N -loop update.

Step 3: combining Steps 1 and 2.

Combining eq. (6), eq. (7) and eq. (8), we upper-bound the hypergradient estimation error as

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤O
(
(1− τ)k + ωβ2

k−1∑
j=0

(1− τ)j∥∇Φ(xk−1−j)∥2
)
,

which, combined with the LΦ-smoothness property of Φ(·) and a proper choice of β, yields the final
convergence result.

H Proof of Theorem 1

We first provide some auxiliary lemmas to characterize the hypergradient approximation errors.
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Lemma 1. Suppose Assumptions 1, 2, 3 and 4 are satisfied. Let v∗k = (∇2
yg(xk, y

∗
k))

−1∇yf(xk, y
∗
k)

with y∗k = argminy g(xk, y). Then, we have

∥vQk − v∗k∥2 ≤(1 + ηµ)(1− ηµ)2Q∥vQk−1 − v∗k−1∥2

+ 2
(
1 +

1

ηµ

)
C2

Q∥y∗k − yNk ∥2

+ 2(1− ηµ)2Q
(
1 +

1

ηµ

)(L
µ
+

Mρ

µ2

)2(L
µ
+ 1

)2

∥xk − xk−1∥2,

where CQ = Q(1−ηµ)Q−1ρMη
µ

+ 1−(1−ηµ)Q(1+ηQµ)

µ2 ρM + (1− (1− ηµ)Q)L
µ

.

Proof. Let vqk be the qth (q = 0, ..., Q−1) GD iterate via solving the linear system ∇2
yg(xk, y

N
k )v =

∇yf(xk, y
N
k ), which can be written in the following iterative way.

vq+1
k = (I − η∇2

yg(xk, y
N
k ))vqk + η∇yf(xk, y

N
k ). (9)

Then, by telescoping eq. (9) over q from 0 to Q yields

vQk = (I − η∇2
yg(xk, y

N
k ))Qv0k + η

Q−1∑
q=0

(I − η2yg(xk, y
N
k ))q∇yf(xk, y

N
k ). (10)

Similarly, based on the definition of v∗k, it can be derived that the following equation holds.

v∗k = (I − η∇2
yg(xk, y

∗
k))

Qv∗k + η

Q−1∑
q=0

(I − η2yg(xk, y
∗
k))

q∇yf(xk, y
∗
k). (11)

Combining eq. (9) and eq. (10), we next characterize the difference between the estimate vQk and the
underlying truth v∗k. In specific, we have

∥vQk − v∗k∥
(i)

≤
∥∥(I − η∇2

yg(xk, y
N
k ))Q − (I − η∇2

yg(xk, y
∗
k))

Q
∥∥∥v∗k∥+ (1− ηµ)Q∥v0k − v∗k∥

+ η
∥∥∥Q−1∑

q=0

(I − η2yg(xk, y
N
k ))q −

Q−1∑
q=0

(I − η2yg(xk, y
∗
k))

q
∥∥∥∥∇yf(xk, y

∗
k)∥

+ ηL
∥∥∥Q−1∑

q=0

(I − η2yg(xk, y
N
k ))q

∥∥∥∥y∗k − yNk ∥

(ii)

≤
∥∥(I − η∇2

yg(xk, y
N
k ))Q − (I − η∇2

yg(xk, y
∗
k))

Q
∥∥M
µ

+ (1− ηµ)Q∥vQk−1 − v∗k∥

+ ηM
∥∥∥Q−1∑

q=0

(I − η2yg(xk, y
N
k ))q −

Q−1∑
q=0

(I − η2yg(xk, y
∗
k))

q
∥∥∥

+ (1− (1− ηµ)Q)
L

µ
∥y∗k − yNk ∥. (12)

where (i) follows from the strong convexity of g(x, ·) and (ii) follows from Assumption 4, the
warm start initialization v0k = vQk−1 and ∥v∗k∥ ≤ ∥(∇2

yg(xk, y
∗
k))

−1∥∥∇yf(xk, y
∗
k)∥ ≤ M

µ . We
next provide an upper bound on the quantity ∆q := ∥(I − η2yg(xk, y

N
k ))q − (I − η2yg(xk, y

∗
k))

q∥ in
eq. (12). In specific, we have

∆q

(i)

≤(1− ηµ)∆q−1 + (1− ηµ)q−1η∥∇2
yg(xk, y

∗
k)−∇2

yg(xk, y
N
k )∥

≤(1− ηµ)∆q−1 + (1− ηµ)q−1ηρ∥yNk − y∗k∥. (13)

where (i) follows from the strong convexity of g(x, ·) and Assumption 3. Telescoping eq. (13) yields

∆q ≤ (1− ηµ)q∆0 + q(1− ηµ)q−1ηρ∥yNk − y∗k∥ = q(1− ηµ)q−1ηρ∥yNk − y∗k∥,
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which, in conjunction with eq. (12), yields

∥vQk − v∗k∥ ≤Q(1− ηµ)Q−1ηρ
M

µ
∥yNk − y∗k∥+ (1− ηµ)Q∥vQk−1 − v∗k∥

+ ηM

Q−1∑
q=0

q(1− ηµ)q−1ηρ∥yNk − y∗k∥+ (1− (1− ηµ)Q)
L

µ
∥y∗k − yNk ∥. (14)

Based on the facts that
∑Q−1

q=0 qxq−1 = 1−xQ−QxQ−1+QxQ

(1−x)2 > 0, we obtain from eq. (14) that

∥vQk − v∗k∥ ≤Q(1− ηµ)Q−1ρMη

µ
∥yNk − y∗k∥+ (1− ηµ)Q∥vQk−1 − v∗k−1∥

+ (1− ηµ)Q∥v∗k−1 − v∗k∥+
1− (1− ηµ)Q(1 + ηQµ)

µ2
ρM∥yNk − y∗k∥

+ (1− (1− ηµ)Q)
L

µ
∥y∗k − yNk ∥

which, in conjunction with ∥v∗k − v∗k−1∥ ≤
(
L
µ + Mρ

µ2

)(
L
µ + 1

)
∥xk − xk−1∥ and using the Young’s

inequality that ∥a+ b∥2 ≤ (1 + ηµ)∥a∥2 + (1 + 1
ηµ )∥b∥

2, completes the proof of Lemma 1.

Lemma 2. Suppose Assumptions 1 and 2 are satisfied.

∥y∗k − yNk ∥2 ≤ (1− αµ)N (1 + λ)∥yNk−1 − y∗k−1∥2 + (1− αµ)N
(
1 +

1

λ

)L2

µ2
∥xk − xk−1∥2

(15)

where λ is a positive constant.

Proof. Note that y∗k = argminy g(xk, y). Using the strong convexity (i.e., Assumption 1) and
smoothness (i.e., Assumption 2) of g(xk, ·), we have

∥yNk − y∗k∥2 ≤ (1− αµ)N∥y0k − y∗k∥2, (16)

which, in conjunction with the warm start initialization y0k = yNk−1 and using the Young’s inequality,
yields

∥yNk − y∗k∥2 ≤(1 + λ)(1− αµ)N∥yNk−1 − y∗k−1∥2 +
(
1 +

1

λ

)
(1− αµ)N∥y∗k−1 − y∗k∥2

(i)

≤(1 + λ)(1− αµ)N∥yNk−1 − y∗k−1∥2 +
(
1 +

1

λ

)
(1− αµ)N

L2

µ2
∥xk−1 − xk∥2,

(17)

where (i) follows from Lemma 2.2 in [10].

Lemma 3. Suppose Assumptions 1, 2, 3 and 4 are satisfied. Choose parameters such that (1 +

λ)(1 − αµ)N (1 + 4r(1 + 1
ηµ )L

2) ≤ 1 − ηµ, where the notation r =
C2

Q

( ρM
µ +L)2

with CQ given in

Lemma 1. Then, we have the following inequality.

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤3L2(1− ηµ+ 6wL2β2)kδ0

+ 6wL2β2
k−1∑
j=0

(1− ηµ+ 6wL2β2)j∥∇Φ(xk−1−j)∥2, (18)

where δ0 :=
(
1 + ρ2M2

L2µ2

)
∥yN0 − y∗0∥2 + ∥vQ0 − v∗0∥2 and the notation w is given by

w =
(
1 +

1

λ

)
(1− αµ)N

(
1 +

ρ2M2

L2µ2

)L2

µ2

+ 4
(
1 +

1

ηµ

)L4

µ2

(
1 +

ρ2M2

L2µ2

)(4(1− ηµ)2Q

µ2
+ r(1− αµ)N

(
1 +

1

λ

))
. (19)
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Proof. Combining Lemma 1 and Lemma 2, we have

∥vQk − v∗k∥2 ≤(1 + ηµ)(1− ηµ)2Q∥vQk−1 − v∗k−1∥2

+ 2(1− αµ)N (1 + λ)
(
1 +

1

ηµ

)
C2

Q∥yNk−1 − y∗k∥2

+ 2(1− αµ)N
(
1 +

1

λ

)(
1 +

1

ηµ

)
C2

Q

L2

µ2
∥xk−1 − xk∥2

+ 2(1− ηµ)2Q
(
1 +

1

ηµ

)(L
µ
+

Mρ

µ2

)2(L
µ
+ 1

)2

∥xk − xk−1∥2,

which, in conjunction with (Lµ + 1)2 ≤ 4L2

µ2 and the notation r =
C2

Q

( ρM
µ +L)2

, yields

∥vQk −v∗k∥2 ≤ (1 + ηµ)(1− ηµ)2Q∥vQk−1 − v∗k−1∥2

+ 2
(
1 +

1

ηµ

)L2

µ2

(
L+

ρM

µ

)2(4(1− ηµ)2Q

µ2
+ r(1− αµ)N

(
1 +

1

λ

))
∥xk − xk−1∥2

+ 2(1 + λ)(1− αµ)N
(
1 +

1

ηµ

)(ρM
µ

+ L
)2

r∥yNk−1 − y∗k−1∥2. (20)

Then, combining Lemma 2 and eq. (20), we have(
1 +

ρ2M2

L2µ2

)
∥yNk − y∗k∥2 + ∥vQk − v∗k∥2

≤(1 + λ)(1− αµ)N
(
1 +

ρ2M2

L2µ2

)
∥yNk−1 − y∗k−1∥2

+
(
1 +

1

λ

)
(1− αµ)N

(
1 +

ρ2M2

L2µ2

)L2

µ2
∥xk−1 − xk∥2

+ (1 + ηµ)(1− ηµ)2Q∥vQk−1 − v∗k−1∥2

+ 4
(
1 +

1

ηµ

)
(1 + λ)

(
L2 +

ρ2M2

µ2

)
(1− αµ)Nr∥yNk−1 − y∗k−1∥2

+ 4
(
1 +

1

ηµ

)L4

µ2

(
1 +

ρ2M2

µ2L2

)(4(1− ηµ)2Q

µ2
+ r(1− αµ)N

(
1 +

1

λ

))
∥xk−1 − xk∥2

which, in conjunction with the definition of w in eq. (19), yields(
1+

ρ2M2

L2µ2

)
∥yNk − y∗k∥2 + ∥vQk − v∗k∥2

≤(1 + λ)(1− αµ)N
(
1 +

ρ2M2

L2µ2

)(
1 + 4r

(
1 +

1

ηµ

)
L2

)
∥yNk−1 − y∗k−1∥2

+ (1 + ηµ)(1− ηµ)2Q∥vQk−1 − v∗k−1∥2 + w∥xk−1 − xk∥2. (21)

For notational convenience, we define δk :=
(
1+ ρ2M2

L2µ2

)
∥yNk −y∗k∥2+∥vQk −v∗k∥2 as the per-iteration

error induced by yNk and vQk . Then, recalling that (1 + λ)(1− αµ)N (1 + 4r(1 + 1
ηµ )L

2) ≤ 1− ηµ,
we obtain from eq. (21) that

δk ≤(1− ηµ)δk−1 + 2wβ2∥∇Φ(xk−1)− ∇̂Φ(xk−1)∥2 + 2wβ2∥∇Φ(xk−1)∥2. (22)

Based on the form of ∇̂Φ(xk) and ∇Φ(xk) in eq. (3) and eq. (2), we have

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤3∥∇xf(xk, y
∗
k)−∇xf(xk, y

N
k )∥2 + 3∥∇x∇yg(xk, y

N
k )∥2∥v∗k − vQk ∥2

+ 3∥∇x∇yg(xk, y
∗
k)−∇x∇yg(xk, y

N
k )∥2∥v∗k∥2,

which, in conjunction with Assumptions 1, 2, 3 and 4, yields

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤
(
3L2 +

3ρ2M2

µ2

)
∥y∗k − yNk ∥2 + 3L2∥v∗k − vQk ∥2. (23)

Substituting eq. (23) into eq. (22) yields
δk ≤(1− ηµ+ 6wL2β2)δk−1 + 2wβ2∥∇Φ(xk−1)∥2,

which, by telescoping and using eq. (23), finishes the proof.
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Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1 with full parameter specifications). Suppose Assumptions 1,
2, 3 and 4 hold. Choose parameters α, η and λ such that (1 + λ)(1− αµ)N (1 + 4r(1 + 1

ηµ )L
2) ≤

1− ηµ, where r =
C2

Q

( ρM
µ +L)2

with CQ = Q(1−ηµ)Q−1ρMη
µ

+ 1−(1−ηµ)Q(1+ηQµ)

µ2 ρM +(1− (1− ηµ)Q)L
µ

.

Let LΦ = L + 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 be the smoothness parameter of Φ(·). Let w̃ :=

(1−ηµ)ηµ
3λrL2

(
1 + ρ2M2

L2µ2

)
L2

µ2 +
(
1 + 1

ηµ

)(
L2 + ρ2M2

µ2

)( 16(1−ηµ)2Q

µ2 + 4(1−ηµ)ηµ
3λL2

)
L2

µ2 . Choose the outer
stepsize β such that β = min

{
1

12LΦ
,
√

ηµ
18L2w̃

}
. Then,

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤ 8(Φ(x0)− Φ(x∗))

βK
+

21L2((1 + ρ2M2

L2µ2 )∥y∗0∥2 + ( 3Mµ + 2L
µ ∥y∗0∥)2)

ηµK
.

Proof. First, based on Lemma 2 in [19], we have ∇Φ(·) is LΦ-Lipschitz, where LΦ = L+ 2L2+ρM2

µ +
2ρLM+L3

µ2 + ρL2M
µ3 = Θ(κ3). Then, we have

Φ(xk+1) ≤Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+
LΦ

2
∥xk+1 − xk∥2

≤Φ(xk)−
(β
2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(β
2
+ β2LΦ

)
∥∇Φ(xk)− ∇̂Φ(xk)∥2

(i)

≤Φ(xk)−
(β
2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(β
2
+ β2LΦ

)
3L2δ0(1− ηµ+ 6wL2β2)k

+ 6wL2β2
(β
2
+ β2LΦ

) k−1∑
j=0

(1− ηµ+ 6wL2β2)j∥∇Φ(xk−1−j)∥2, (24)

where (i) follows from Lemma 3, δ0 is defined in Lemma 3 and w is given by eq. (19). Then,
telescoping eq. (24) over k from 0 to K − 1, denoting x∗ = argminx Φ(x) and using, we have(β

2
−β2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(x∗) +
3L2δ0(

β
2 + β2LΦ)

ηµ− 6wL2β2

+ 6wL2β2
(β
2
+ β2LΦ

)K−1∑
k=0

k−1∑
j=0

(1− ηµ+ 6wL2β2)j∥∇Φ(xk−1−j)∥2

(i)

≤Φ(x0)− Φ(x∗) +
3L2δ0(

β
2 + β2LΦ)

ηµ− 6wL2β2
+ 6wL2β2

(β
2
+ β2LΦ

)∑K−1
j=0 ∥∇Φ(xj)∥2

ηµ− 6wL2β2
(25)

where (i) follows because
∑K−1

k=0

∑k−1
j=0 ajbk−1−j ≤

∑K−1
k=0 ak

∑K−1
j=0 bj . Rearranging eq. (25) yields(1

2
− βLΦ−

6wL2β2( 12 + βLΦ)

ηµ− 6wL2β2

) 1

K

K−1∑
k=0

∥∇Φ(xk)∥2

≤ Φ(x0)− Φ(x∗)

βK
+

3L2δ0(
1
2 + βLΦ)

ηµ− 6wL2β2

1

K
. (26)

Note that (1 + λ)(1− αµ)N (1 + 4r(1 + 1
ηµ )L

2) ≤ 1− ηµ and r > 1, we have

3η2(1− αµ)N
(
1 +

1

λ

)
≤ 1− ηµ

1 + λ

3η2(1 + 1
λ )

1 + 4r(1 + 1
ηµ )L

2
≤ 1− ηµ

λ

η3µ

rL2
, (27)

which, combined with the definitions of w and w̃ given by eq. (19) and theorem 1, yields w ≤ w̃.
Then, since we set 6w̃L2β2 ≤ ηµ

3 in Theorem 1, we have 6wL2β2

ηµ−6wL2β2 < 6w̃L2β2

ηµ−6w̃L2β2 < 1
2 , which,
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combined with eq. (26), yields(1
4
− 3

2
βLΦ

) 1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤ Φ(x0)− Φ(x∗)

βK
+

9L2δ0(
1
2 + βLΦ)

2ηµK
,

which, in conjunction with β ≤ 1
12LΦ

, yields

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤ 8(Φ(x0)− Φ(x∗))

βK
+

21L2δ0
ηµK

. (28)

Based on the updates of y and v, we have

∥yN0 − y∗0∥2 ≤∥y00 − y∗0∥2 = ∥y∗0∥2

∥vQ0 − v∗0∥ ≤∥v∗0∥+ ∥vQ0 − (∇2
yg(x0, y

N
0 ))−1∇yf(x0, y

N
0 )∥+ ∥(∇2

yg(x0, y
N
0 ))−1∇yf(x0, y

N
0 )∥

(i)

≤M

µ
+

2

µ
(L∥y∗0∥+M), (29)

where (i) follows because the initialization v00 = 0 and y00 = 0. Substituting eq. (29) into δ0 :=(
1 + ρ2M2

L2µ2

)
∥yN0 − y∗0∥2 + ∥vQ0 − v∗0∥2 and eq. (28), we complete the proof.

I Proof of Corollary 1

In this case, first note that all choices of η, α, λ and N satisfy the conditions in Theorem 1. First

recall that r =
C2

Q

( ρM
µ +L)2

, where

CQ =
Q(1− ηµ)Q−1ρMη

µ
+

1− (1− ηµ)Q(1 + ηQµ)

µ2
ρM + (1− (1− ηµ)Q)

L

µ
,

which, combined with Q = Θ(1) and η = Θ(1), yields C2
Q = Θ(κ2) and hence r = Θ(1). Note

that w̃ := (1−ηµ)ηµ
3λrL2

(
1 + ρ2M2

L2µ2

)
L2

µ2 +
(
1 + 1

ηµ

)(
L2 + ρ2M2

µ2

)( 16(1−ηµ)2Q

µ2 + 4(1−ηµ)ηµ
3λL2

)
L2

µ2 , which,
combined with η = 1

L and λ = 1, yields w̃ = Θ(κ3 + κ7) = Θ(κ7). Based on the choice of β, we
have

β = min
{ 1

12LΦ
,

√
ηµ

18L2w̃

}
= Θ(κ−4).

Then, we have the following convergence result.

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(κ4

K
+

κ3

K

)
.

Then, to achieve an ϵ-accurate stationary point, we have K = O(κ4ϵ−1), and hence we have the
following complexity results.

• Gradient complexity: Gc(ϵ) = K(N + 2) = Õ(κ5ϵ−1).

• Matrix-vector product complexities (dominant computational cost):

MV(ϵ) = K +KQ = Õ
(
κ4ϵ−1

)
.

Then, the proof is complete.

J Proof of Corollary 2

Based on the choices of α, λ and η ≤ 1
µQ , recalling r =

C2
Q

( ρM
µ +L)2

and using the inequality that

(1− x)Q ≥ 1−Qx for any 0 < x < 1, we have

r ≤
(ρMηQ

µ + η2Q2ρM + ηQL)2

(ρMµ + L)2
≤ 4η2Q2,
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which, in conjunction with η ≤ 1
128

αµ2

Q2L2 , yields

(1 + λ)(1− αµ)N (1 + 4r(1 +
1

ηµ
)L2) ≤ (1 + λ)(1− αµ)N (1 + 16(1 +

1

ηµ
)η2Q2L2)

≤ 1− αµ

4
≤ 1− ηµ,

and hence all requirements in Theorem 1 are satisfied. Also, similarly to the proof of Corollary 1, we
have r = Θ(1), which, combined with η = Θ(κ−2), yields w̃ = Θ(κ6 + κ9) = Θ(κ9), and hence

β = min
{ 1

12LΦ
,

√
ηµ

18L2w̃

}
= Θ(κ−6).

Then, we have the following convergence result.

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(κ6

K
+

κ5

K

)
.

Then, to achieve an ϵ-accurate stationary point, we have K = O(κ6ϵ−1), and hence we have the
following complexity results.

• Gradient complexity: Gc(ϵ) = 3K = Õ(κ6ϵ−1).

• Matrix-vector product complexities (dominant computational cost):

MV(ϵ) = K +KQ = Õ
(
κ6ϵ−1

)
.

Then, the proof is complete.

K Proof of Theorem 2

Theorem 6 (Restatement of Theorem 2 with full parameter specifications). Suppose Assumptions 1,
2, 3 and 4 hold. Define τ = (1− αµ)N (1 + λ+ 6(1+ λ−1)(L2 + ρ2M2µ−2 + 2L2C2

Q

)
L2β2µ−2), w =

6(1− αµ)N (L2 + ρ2M2µ−2 + 2L2C2
Q)(1 + λ−1)L2µ−2, where CQ is a positive constant defined as in

Theorem 1. Choose parameters α, β such that τ < 1 and βLΦ + wβ2
(
1
2
+ βLΦ

)
1

1−τ
≤ 1

4
hold. Then,

the output of AID-BiO satisfies

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤4(Φ(x0)− Φ(x∗))

βK
+

3

K

δ0
1− τ

+
27L2M2

µ2
(1− ηµ)2Q,

where δ0 = 3
(
L2 + ρ2M2

µ2 + 2L2C2
Q

)
(1− αµ)N∥y∗

0 − y0∥2 is the initial distance.

Proof. Using an approach similar to eq. (14) in Lemma 1, we have

∥vQk − v∗k∥2 ≤ 2C2
Q∥y∗k − yNk ∥2 + 2(1− ηµ)2Q∥v0k − v∗k∥2, (30)

where CQ is defined in Lemma 1. Using the zero initialization v0k and based on the fact that
∥v∗k∥ ≤ M

µ , we obtain from eq. (30) that

∥vQk − v∗k∥2 ≤ 2C2
Q∥y∗k − yNk ∥2 + 2(1− ηµ)2QM2

µ2
,

which, in conjunction with eq. (23), yields

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤
(
3L2 +

3ρ2M2

µ2
+ 6L2C2

Q

)
∥yNk − y∗k∥2 +

6L2(1− ηµ)2QM2

µ2
. (31)
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Then, substituting eq. (31) into Lemma 2, and using the definition of τ in Theorem 2, we have

∥y∗k − yNk ∥2 ≤(1− αµ)N (1 + λ)∥yNk−1 − y∗k−1∥2 + 2(1− αµ)N
(
1 +

1

λ

)L2

µ2
β2∥∇Φ(xk−1)∥2

+ 2(1− αµ)N
(
1 +

1

λ

)L2

µ2
β2∥∇̂Φ(xk−1)−∇Φ(xk−1)∥2

≤τ∥yNk−1 − y∗k−1∥2 + 2(1− αµ)N
(
1 +

1

λ

)L2

µ2
β2∥∇Φ(xk−1)∥2

+ 12(1− αµ)N
(
1 +

1

λ

)L4M2

µ4
β2(1− ηµ)2Q. (32)

Telescoping eq. (32) over k yields

∥y∗k − yNk ∥2 ≤τk∥y∗0 − yN0 ∥2 + 2(1− αµ)N
(
1 +

1

λ

)L2

µ2
β2

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+
12

1− τ
(1− αµ)N

(
1 +

1

λ

)L4M2

µ4
β2(1− ηµ)2Q,

which, in conjunction with eq. (31), ∥y∗0 − yN0 ∥2 ≤ (1 − αµ)N∥y0 − y∗0∥2, the notation of w in
Theorem 2 and δ0 = 3

(
L2 + ρ2M2

µ2 + 2L2C2
Q

)
(1− αµ)N∥y∗

0 − y0∥2, yields

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤δ0τ
k + 6L2(1− ηµ)2Q

M2

µ2
+ wβ2

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+
6wL2M2

(1− τ)µ2
(1− ηµ)2Qβ2. (33)

Then, using an approach similar to eq. (24), we have

Φ(xk+1) ≤Φ(xk)−
(β
2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(β
2
+ β2LΦ

)
∥∇Φ(xk)− ∇̂Φ(xk)∥2

(i)

≤Φ(xk)−
(β
2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(β
2
+ β2LΦ

)
δ0τ

k

+ wβ2
(β
2
+ β2LΦ

) k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 +
6L2M2

µ2

(β
2
+ β2LΦ

)
(1− ηµ)2Q

+
(β
2
+ β2LΦ

) 6wL2M2

(1− τ)µ2
(1− ηµ)2Qβ2, (34)

where (i) follows from eq. (33). Then, rearranging the above eq. (34), we have

1

K

(1
2
− βLΦ

)K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(x∗)

βK
+

1

K

(1
2
+ βLΦ

) δ0
1− τ

+ wβ2
(1
2
+ βLΦ

) 1

K

K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 +
6L2M2

µ2

(1
2
+ βLΦ

)
(1− ηµ)2Q

+
(1
2
+ βLΦ

) 6wL2M2

(1− τ)µ2
(1− ηµ)2Qβ2,
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which, in conjunction with the inequality that
∑K−1

k=0

∑k−1
j=0 ajbk−1−j ≤

∑K−1
k=0 ak

∑K−1
j=0 bj , yields

(1
2
−βLΦ − wβ2

(1
2
+ βLΦ

) 1

1− τ

) 1

K

K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(x∗)

βK
+

1

K

(1
2
+ βLΦ

) δ0
1− τ

+
6L2M2

µ2

(1
2
+ βLΦ

)
(1− ηµ)2Q

+
(1
2
+ βLΦ

) 6wL2M2

(1− τ)µ2
(1− ηµ)2Qβ2. (35)

Using βLΦ + wβ2
(

1
2 + βLΦ

)
1

1−τ ≤ 1
4 in the above eq. (35) yields

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤4(Φ(x0)− Φ(x∗))

βK
+

3

K

δ0
1− τ

+
27L2M2

µ2
(1− ηµ)2Q,

which finishes the proof.

L Proof of Corollary 3

Note that we choose N = cnκ lnκ and Q = cqκ ln
κ
ϵ . Then, for proper constants cn and cq , we have

βLΦ < 1
8 , CQ = Θ(κ2), τ = Θ(1) and wβ2

(
1
2 + βLΦ

)
1

1−τ < 1
8 . Then, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(κ3

K
+ ϵ

)
.

To achieve an ϵ-accurate stationary point, the complexity is given by

• Gradient complexity: Gc(ϵ) = K(N + 2) = Õ(κ4ϵ−1).

• Matrix-vector product complexities (dominant cost): MV(ϵ) = K +KQ = Õ
(
κ4ϵ−1

)
.

The proof is then complete.

M Proof of Corollary 4

Choose Q = cqκ ln
κ
ϵ . Then, for a proper selection of the constant cq, we have CQ = Θ(κ2). To

guarantee 6
(
1 + 1

λ

)
L2

µ2

(
L2 + ρ2M2

µ2 + 2L2C2
Q

)
β2 ≤ αµ

4 , we choose β = Θ(κ−4), which implies
1− τ = Θ(αµ). In addition, we have w = Θ(κ7) and hence δ0/(1− τ) = O(κ5). Then, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(κ5

K
+

κ4

K
+ ϵ

)
.

Then, to achieve an ϵ-accurate stationary point, the complexity is given by

• Gradient complexity: Gc(ϵ) = K(N + 2) = Õ(κ5ϵ−1).

• Matrix-vector product complexities (dominant cost): MV(ϵ) = K +KQ = Õ
(
κ6ϵ−1

)
.

Then, the proof is complete.

N Proof of Theorem 3

We first provide two useful lemmas, which are then used to prove Theorem 3.
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Lemma 4. Suppose Assumptions 1, 2 and 3 are satisfied. Choose inner stepsize α < 1
L . Then, we

have ∥∥∥∂yNk
∂xk

− ∂y∗(xk)

∂xk

∥∥∥ ≤ (1− αµ)N
∥∥∥∂y∗(xk)

∂xk

∥∥∥+ wN∥y0k − y∗(xk)∥,

where we define

wN = α
(
ρ+

αρL(1− (1− αµ)
N
2 )

1−
√
1− αµ

)
(1− αµ)

N
2 −1 1− (1− αµ)

N
2

1−
√
1− αµ

. (36)

Proof. Based on the updates of ITD-based method in Algorithm 2, we have, for j = 1, ...., N ,

∂yjk
∂xk

=
∂yj−1

k

∂xk
− α∇x∇yg(xk, y

j−1
k )− α

∂yj−1
k

∂xk
∇2

yg(xk, y
j−1
k ),

which, in conjunction with the fact that ∂y0
k

∂xk
= 0, yields

∂yNk
∂xk

= −α

N−1∑
j=0

∇x∇yg(xk, y
j
k)

N−1∏
i=j+1

(I − α∇2
yg(xk, y

i
k)). (37)

Then, based on the optimality condition of y∗(x) and using the chain rule, we have

∇x∇yg(xk, y
∗(xk)) +

∂y∗(xk)

∂xk
∇2

yg(xk, y
∗(xk)) = 0,

which further yields

∂y∗(xk)

∂xk
=

∂y∗(xk)

∂xk

N−1∏
j=0

(I − α∇2
yg(xk, y

∗(xk)))

− α

N−1∑
j=0

∇x∇yg(xk, y
∗(xk))

N−1∏
i=j+1

(I − α∇2
yg(xk, y

∗(xk))). (38)

For the case where N = 1, based on eq. (37) and eq. (38), we have∥∥∥∂yNk
∂xk

− ∂y∗(xk)

∂xk

∥∥∥ ≤ (1− αµ)
∥∥∥∂y∗(xk)

∂xk

∥∥∥+ αρ∥y0k − y∗(xk)∥. (39)

Next, we prove the case where N ≥ 2. By subtracting eq. (37) by eq. (38), we have∥∥∥∂yN
k

∂xk
− ∂y∗(xk)

∂xk

∥∥∥ ≤ (1− αµ)N
∥∥∥∂y∗(xk)

∂xk

∥∥∥
+ α

N−1∑
j=0

∥∥∥∇x∇yg(xk, y
j
k)

N−1∏
i=j+1

(I − α∇2
yg(xk, y

i
k))−∇x∇yg(xk, y

∗(xk))

N−1∏
i=j+1

(I − α∇2
yg(xk, y

∗(xk)))
∥∥∥︸ ︷︷ ︸

∆j

,

(40)

where we define ∆j for notational convenience. Note that ∆j is upper-bounded by

∆j ≤(1− αµ)N−1−jρ∥yjk − y∗(xk)∥

+ L
∥∥∥ N−1∏

i=j+1

(I − α∇2
yg(xk, y

i
k))−

N−1∏
i=j+1

(I − α∇2
yg(xk, y

∗(xk)))
∥∥∥︸ ︷︷ ︸

Mj+1

. (41)

For notational simplicity, we define a quantity Mj+1 in eq. (41) for the case where the product index
starts from j + 1. Next we upper-bound Mj+1 via the following steps.

Mj+1 ≤(1− αµ)Mj+2 + (1− αµ)N−j−2αρ∥yj+1
k − y∗(xk)∥

(i)

≤(1− αµ)Mj+2 + (1− αµ)N−j−2αρ(1− αµ)
j+1
2 ∥y0k − y∗(xk)∥

≤(1− αµ)Mj+2 + (1− αµ)N− j
2−

3
2αρ∥y0k − y∗(xk)∥, (42)
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where (i) follows by applying gradient descent to the strongly-convex smooth function g(xk, ·).
Telescoping eq. (42) further yields

Mj+1 ≤(1− αµ)N−j−2MN−1 +

N−1∑
i=j+2

(1− αµ)i−j−2(1− αµ)N− i−2
2 − 3

2αρ∥y0k − y∗(xk)∥

≤(1− αµ)N−j−2MN−1 +

N−j−3∑
i=0

(1− αµ)i(1− αµ)N− j
2−

i
2−

3
2αρ∥y0k − y∗(xk)∥

≤(1− αµ)N−j−2αρ(1− αµ)
N−1

2 ∥y0k − y∗(xk)∥

+

N−j−3∑
i=0

(1− αµ)N− j
2+

i
2−

3
2αρ∥y0k − y∗(xk)∥

≤
N−j−2∑

i=0

(1− αµ)N− j
2+

i
2−

3
2αρ∥y0k − y∗(xk)∥,

which, in conjunction with
∑N−j−2

i=0 (1− αµ)
i
2 ≤ 1−(1−αµ)

N
2

1−
√
1−αµ

, yields

Mj+1 ≤ αρ(1− (1− αµ)
N
2 )

1−
√
1− αµ

(1− αµ)N− j
2−

3
2 ∥y0k − y∗(xk)∥. (43)

Then, substituting eq. (43) into eq. (41) yields

∆j ≤(1− αµ)N−1− j
2 ρ∥y0k − y∗(xk)∥

+
αρL(1− (1− αµ)

N
2 )

1−
√
1− αµ

(1− αµ)N− 3
2−

j
2 ∥y0k − y∗(xk)∥. (44)

Summing up eq. (44) over j from 0 to N − 1 yields
N−1∑
j=0

∆j ≤
(
ρ+

αρL(1− (1− αµ)
N
2 )

1−
√
1− αµ

)
∥y0k − y∗(xk)∥(1− αµ)

N
2 −1 1− (1− αµ)

N
2

1−
√
1− αµ

. (45)

Then, substituting eq. (45) into eq. (40) and using the notation wN in eq. (36), we have∥∥∥∂yNk
∂xk

− ∂y∗(xk)

∂xk

∥∥∥ ≤ (1− αµ)N
∥∥∥∂y∗(xk)

∂xk

∥∥∥+ wN∥y0k − y∗(xk)∥. (46)

Combining eq. (39) (i.e., N = 1 case) and eq. (46) (i.e., N ≥ 2 case) completes the proof.

Lemma 5. Suppose Assumptions 1, 2, 3 and 4 hold. Define

λN =
4M2w2

N + 4(1− 1
4αµ)L

2(1 + αLN)2

1− 1
4αµ− (1− αµ)N (1 + 1

2αµ)

and w =
(
1 + 2

αµ

)
L2

µ2 (1 − αµ)NλN +
4M2w2

NL2

µ2 , where wN is given in eq. (36). Let δk =

∥∇̂Φ(xk)−∇Φ(xk)∥2+
(
λN − 4L2

(
1+αLN

)2)∥yNk − y∗(xk)∥2 denote the approximation error

at the kth iteration. Choose stepsizes β2 ≤ 1− 1
4αµ

2w and α ≤ 1
2L . Then, we have

δk ≤
(
1− 1

4
αµ

)k

δ0 + Jk(1− αµ)2N + 2wβ2
k−1∑
j=0

(
1− 1

4
αµ

)k−1−j

∥∇Φ(xj)∥2,

where Jk =
∑k−1

j=0

(
1− 1

4αµ
)j

4M2
∥∥∥∂y∗(xk−j)

∂xk−j

∥∥∥2 is related to Jacobian matrix of response function.

Proof. First note that using the chain rule, ∇̂Φ(xk) and ∇Φ(xk) can be written as

∇̂Φ(xk) =∇xf(xk, y
N
k ) +

∂yNk
∂xk

∇yf(xk, y
N
k ),

∇Φ(xk) =∇xf(xk, y
∗(xk)) +

∂y∗(xk)

∂xk
∇yf(xk, y

∗(xk)). (47)
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Subtracting two equations in eq. (47), we have

∥∇̂Φ(xk)−∇Φ(xk)∥ ≤L∥yNk − y∗(xk)∥

+
∥∥∥∂yNk
∂xk

∥∥∥L∥yNk − y∗(xk)∥+M
∥∥∥∂y∗(xk)

∂xk
− ∂yNk

∂xk

∥∥∥, (48)

which, in conjunction with
∥∥ ∂yN

k
∂xk

∥∥ = ∥α
∑N−1

j=0 ∇x∇yg(xk, y
j
k)

∏N−1
i=j+1(I − α∇2

yg(xk, y
i
k))∥ ≤

αL
∑N−1

j=0 (1− αµ)N−1−j ≤ αLN , yields

∥∇̂Φ(xk)−∇Φ(xk)∥ ≤L
(
1 + αLN

)
∥yNk − y∗(xk)∥+M

∥∥∥∂y∗(xk)

∂xk
− ∂yNk

∂xk

∥∥∥
(i)

≤
(
L+ αL2N

)
∥yNk − y∗(xk)∥+M

∥∥∥∂y∗(xk)

∂xk

∥∥∥(1− αµ)N

+MwN∥y0k − y∗(xk)∥, (49)
where (i) follows from Lemma 4. Using ∥y0k−y∗(xk)∥ = ∥yNk−1−y∗(xk)∥ ≤ ∥yNk−1−y∗(xk−1)∥+
L
µ ∥xk − xk−1∥ and taking the square on both sides of eq. (49), we have

∥∇̂Φ(xk)−∇Φ(xk)∥2 ≤4L2
(
1 + αLN

)2

∥yNk − y∗(xk)∥2 + 4M2
∥∥∥∂y∗(xk)

∂xk

∥∥∥2(1− αµ)2N

+ 4M2w2
N∥yNk−1 − y∗(xk−1)∥2 + 4M2w2

N

L2

µ2
∥xk − xk−1∥2. (50)

In the meanwhile, based on Lemma 2, we have,

∥yNk − y∗(xk)∥2 ≤(1− αµ)N
(
1 +

1

2
αµ

)
∥yNk−1 − y∗(xk−1)∥2

+
(
1 +

2

αµ

)L2

µ2
(1− αµ)N∥xk−1 − xk∥2. (51)

Based on α ≤ 1
2L and the form of λN in Lemma 5, we have λN > 4L2(1 + αLN)2 > 0. Then,

multiplying eq. (51) by λN and adding eq. (50), we have

∥∇̂Φ(xk)−∇Φ(xk)∥2 +
(
λN − 4L2

(
1 + αLN

)2)
∥yNk − y∗(xk)∥2

≤
(
1− 1

4
αµ

)(
λN − 4L2

(
1 + αLN

)2)
∥yNk−1 − y∗(xk−1)∥2 + 4M2

∥∥∥∂y∗(xk)

∂xk

∥∥∥2(1− αµ)2N

+
((

1 +
2

αµ

)L2

µ2
(1− αµ)NλN + 4M2w2

N

L2

µ2

)
∥xk − xk−1∥2, (52)

which, in conjunction with ∥xk − xk−1∥2 = β2∥∇̂Φ(xk−1)∥2 ≤ 2β2∥∇̂Φ(xk−1)−∇Φ(xk−1)∥2 +
2β2∥∇Φ(xk−1)∥2 and using the notation of w in Lemma 5, yields

∥∇̂Φ(xk)−∇Φ(xk)∥2 +
(
λN − 4L2

(
1 + αLN

)2)
∥yNk − y∗(xk)∥2

≤
(
1− 1

4
αµ

)(
λN − 4L2

(
1 + αLN

)2)
∥yNk−1 − y∗(xk−1)∥2 + 4M2

∥∥∥∂y∗(xk)

∂xk

∥∥∥2(1− αµ)2N

+ 2β2w∥∇̂Φ(xk−1)−∇Φ(xk−1)∥2 + 2β2w∥∇Φ(xk−1)∥2. (53)

Using β2 ≤ 1− 1
4αµ

2w and the notation δk = ∥∇̂Φ(xk)−∇Φ(xk)∥2+
(
λN −4L2

(
1+αLN

)2)∥yNk −
y∗(xk)∥2 in the above eq. (53) yields

δk ≤ 4M2
∥∥∥∂y∗(xk)

∂xk

∥∥∥2(1− αµ)2N +
(
1− 1

4
αµ

)
δk−1 + 2wβ2∥∇Φ(xk−1)∥2. (54)

Telescoping the above eq. (54) over k yields

δk ≤
(
1− 1

4
αµ

)k

δ0 +

k−1∑
j=0

(
1− 1

4
αµ

)j

4M2
∥∥∥∂y∗(xk−j)

∂xk−j

∥∥∥2(1− αµ)2N

+ 2wβ2
k−1∑
j=0

(
1− 1

4
αµ

)k−1−j

∥∇Φ(xj)∥2,

which, in conjunction with the definition of Jk, finishes the proof.
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Proof of Theorem 3

Theorem 7 (Restatement of Theorem 3 with parameter specifications). Suppose Assumptions 1,
2, 3 and 4 hold. Define w =

(
1 + 2

αµ

)
L2

µ2 (1 − αµ)NλN +
4M2w2

NL2

µ2 and τ = N2(1 − αµ)N +

w2
N + λN (1 − αµ)N , where λN and wN are given by λN =

4M2w2
N+4(1− 1

4
αµ)L2(1+αLN)2

1− 1
4
αµ−(1−αµ)N (1+ 1

2
αµ)

, wN =

α
(
ρ+ αρL(1−(1−αµ)

N
2 )

1−
√
1−αµ

)
(1−αµ)

N
2
−1 1−(1−αµ)

N
2

1−
√
1−αµ

. Choose parameters such that β2 ≤ 1− 1
4
αµ

2w
, α ≤ 1

2L

and βLΦ + 8
αµ

(
1
2
+ βLΦ

)
wβ2 < 1

4
, where LΦ = L + 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 denotes the

smoothness parameter of Φ(·). Then, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤O
(∆Φ

βK
+

τ∆y

µ2K
+

(1− αµ)2N

µ3K
+

M2
(
1− αµ

)2N
L2

αµ3

)
,

where ∆Φ = Φ(x0)−minx Φ(x) and ∆y = ∥y0 − y∗(x0)∥2.

Proof. Choose the same stepsizes α and β as in Lemma 5. Then, based on the smoothness of Φ(·)
(i.e., Lemma 2 in [19]), we have

Φ(xk+1) ≤Φ(xk)−
(β
2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(β
2
+ β2LΦ

)
∥∇Φ(xk)− ∇̂Φ(xk)∥2

(i)

≤Φ(xk)−
(β
2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(β
2
+ β2LΦ

)
δ0

(
1− 1

4
αµ

)k

+ 2
(β
2
+ β2LΦ

)
wβ2

k−1∑
j=0

(
1− 1

4
αµ

)k−1−j

∥∇Φ(xj)∥2

+
(β
2
+ β2LΦ

)
Jk(1− αµ)2N (55)

where (i) follows from Lemma 5 with δk ≥ ∥∇̂Φ(xk)−∇Φ(xk)∥2. Then, telescoping the above
eq. (55) over k from 0 to K − 1 yields(β

2
− β2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 ≤ Φ(x0)− Φ(x∗) +
4β( 12 + βLΦ)δ0

αµ

+

K−1∑
k=0

Jkβ
(1
2
+ βLϕ

)
(1− αµ)2N

+ 2
(β
2
+ β2LΦ

)
wβ2

K−1∑
k=0

k−1∑
j=0

(
1− 1

4
αµ

)k−1−j

∥∇Φ(xj)∥2, (56)

which, combined with
∑K−1

k=0

∑k−1
j=0

(
1− 1

4αµ
)k−1−j∥∇Φ(xj)∥2 ≤ 4

αµ

∑K−1
j=0 ∥∇Φ(xj)∥2, yields

(1
2
− βLΦ−

8

αµ

(1
2
+ βLΦ

)
wβ2

) 1

K

K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(x∗)

βK
+

4( 12 + βLΦ)δ0

αµK
+
(1
2
+ βLΦ

)
(1− αµ)2N

1

K

K−1∑
k=0

Jk. (57)

Based on the definition of Jk in Lemma 5, we have
K−1∑
k=0

Jk =

K−1∑
k=0

k−1∑
j=0

(
1− 1

4
αµ

)j

4M2
∥∥∥∂y∗(xk−j)

∂xk−j

∥∥∥2 (i)

≤ 16M2

αµ

K−1∑
k=0

∥∥∥∂y∗(xk)

∂xk

∥∥∥2, (58)

where (i) follows from the inequality that
∑K−1

k=0

∑k−1
j=0 ajbk−1−j ≤

∑K−1
k=0 ak

∑K−1
j=0 bj . Choose

β such that βLΦ + 8
αµ

(
1
2 + βLΦ

)
wβ2 < 1

4 . In addition, based on eq. (49), recalling the definition
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that δ0 = ∥∇̂Φ(x0)−∇Φ(x0)∥2 +
(
λN − 4L2

(
1 + αLN

)2)∥yN0 − y∗(x0)∥2, using the fact that
∥∂y∗(x0)

∂x0
∥ ≤ L

µ , we have

δ0 ≤ O
((

N2(1− αµ)N + w2
N + λN (1− αµ)N

)
∥y0 − y∗(x0)∥2 +

L2M2

µ2
(1− αµ)2N

)
. (59)

Recall the definition τ = N2(1 − αµ)N + w2
N + λN (1 − αµ)N . Then, substituting eq. (58) and

eq. (59) into eq. (57) yields

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤ O
(Φ(x0)− Φ(x∗)

βK
+

τ∥y0 − y∗(x0)∥2

µ2K
+

(1− αµ)2N

µ3K

+
M2

αµ

(
1− αµ

)2N 1

K

K−1∑
k=0

∥∥∥∂y∗(xk)

∂xk

∥∥∥2), (60)

which, in conjunction with ∥∂y∗(x)
∂x ∥ ≤ L

µ , completes the proof.

O Proof of Corollary 5

Based on the choice of α and N and using ϵ < 1, we have w = Θ(
√
ϵκ2)

τ =
(ln κ

ϵ )
2

κ2

√
ϵ+

√
ϵ+

ϵ+
√
ϵκ2(ln κ

ϵ )
2

κ4
= O(1), (61)

which, in conjunction with β = min
{√

αµ
40w ,

√
1−αµ

4

2w , 1
8LΦ

}
, yields β = Θ(κ−3). Substituting

eq. (61) and β = Θ(κ−3) into eq. (5) yields

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(κ3

K
+ ϵ

)
.

Then, to achieve an ϵ-accurate stationary point, we have K = O(κ3ϵ−1), and hence we have the
following complexity results.

• Gradient complexity: Gc(ϵ) = K(N + 2) = O(κ4ϵ−1 ln κ
ϵ ).

• Matrix-vector product complexities (dominant computational cost):

MV(ϵ) = 2KN = O(κ4ϵ−1 ln
κ

ϵ
).

Then, the proof is complete.

P Proof of Corollary 6

Based on the choice of α and N , we have

wN = Θ(α(ρ+ αρLN)N) = Θ(1),

λN =
4M2w2

N + 4(1− 1
4αµ)L

2(1 + αLN)2

1− 1
4αµ− (1− αµ)N (1 + 1

2αµ)
= Θ(κ),

and hence w = Θ(κ4) and τ = Θ(κ). Then, we have β = Θ(κ3), and hence we obtain from eq. (5)
that

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 =O
(κ3

K
+

M2L2

αµ3

)
,

which finishes the proof.
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Q Proof of Theorem 4

We consider the following construction of loss functions.

f(x, y) =
1

2
xTZxx+M1T y

g(x, y) =
1

2
yTZyy − LxT y + 1T y, (62)

where Zx = Zy =

[
L 0
0 µ

]
and M is a positive constant. First note that the minimizer of inner-level

function g(x, ·) and the total gradient ∇Φ(x) are given by

y∗(x) = Z−1
y (Lx− 1),

∇Φ(x) = Zxx+ LMZ−1
y 1. (63)

Based on the updates of ITD-based method in Algorithm 2, we have, for t = 0, ..., N

ytk = yt−1
k − α(Zyy

t−1
k − Lxk + 1). (64)

Taking the derivative w.r.t. xk on the both sides of eq. (64) yields

∂ytk
∂xk

= (I − αZy)
∂yt−1

k

∂xk
+ αLI, (65)

Telescoping the above eq. (65) over t from 1 to N and using the fact that ∂y0
k

∂xk
= 0, yields

∂yNk
∂xk

= αL

N−1∑
t=0

(I − αZy)
t,

which, in conjunction with the update xk+1 = xk − β
∂f(xk,y

N
k )

∂xk
, yields

xk+1 = xk − β
(
Zxxk + αLM

N−1∑
t=0

(I − αZy)
t1
)
. (66)

For notational convenience, let ZN = α
∑N−1

t=0 (I − αZy)
t and x0 = 1. Telescoping eq. (66) over k

from 0 to K − 1 yields

xK =(I − βZx)
K1− LM

K−1∑
k=0

(I − βZx)
kβZN1

=(I − βZx)
K1− LMZ−1

x ZN1+ LM

∞∑
k=K

(I − βZx)
kβZN1

=(I − βZx)
K1− LMZ−1

x ZN1+ LM(I − βZx)
KZ−1

x ZN1. (67)

Rearranging the above eq. (67) yields

∥Zx(xK+LMZ−1
x Z−1

y )1∥2

=
∥∥Zx(I − βZx)

K1+ LM(I − αZy)
NZ−1

y 1+ LM(I − βZx)
KZN1

∥∥2
≥L2M2∥(I − αZy)

NZ−1
y 1∥2 +

∥∥Zx(I − βZx)
K1

∥∥2 + L2M2
∥∥(I − βZx)

KZN1
∥∥2

which, in conjunction with α ≤ 1
L , yields

∥∇Φ(xK)∥2 ≥ L2M2∥(I − αZy)
NZ−1

y 1∥2 = Θ
(L2M2

µ2
(1− αµ)2N

)
, (68)

which holds for all K.
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