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Abstract

Bilevel optimization has arisen as a powerful tool for solving a variety of machine
learning problems. Two current popular bilevel optimizers AID-BiO and ITD-BiO
naturally involve solving one or two sub-problems, and consequently, whether
we solve these problems with loops (that take many iterations) or without loops
(that take only a few iterations) can significantly affect the overall computational
efficiency. Existing studies in the literature cover only some of those implemen-
tation choices, and the complexity bounds available are not refined enough to
enable rigorous comparison among different implementations. In this paper, we
first establish unified convergence analysis for both AID-BiO and ITD-BiO that are
applicable to all implementation choices of loops. We then specialize our results to
characterize the computational complexity for all implementations, which enable
an explicit comparison among them. Our result indicates that for AID-BiO, the
loop for estimating the optimal point of the inner function is beneficial for overall
efficiency, although it causes higher complexity for each update step, and the loop
for approximating the outer-level Hessian-inverse-vector product reduces the gradi-
ent complexity. For ITD-BiO, the two loops always coexist, and our convergence
upper and lower bounds show that such loops are necessary to guarantee a vanish-
ing convergence error, whereas the no-loop scheme suffers from an unavoidable
non-vanishing convergence error. Our numerical experiments further corroborate
our theoretical results.

1 Introduction

Bilevel optimization has attracted significant attention recently due to its popularity in a variety of
machine learning applications including meta-learning [9, 1, 34, 17], hyperparameter optimization [9,
35, 5], reinforcement learning [22, 15], and signal processing [23, 7]. In this paper, we consider the
bilevel optimization problem that takes the following formulation.

min
x∈Rp

Φ(x) := f(x, y∗(x)) s.t. y∗(x) = argmin
y∈Rq

g(x, y), (1)

where the outer- and inner-level functions f and g are both jointly continuously differentiable. We
focus on the setting where the lower-level function g is strongly convex with respect to (w.r.t.) y
with the condition number κ = L

µ (where L and µ are gradient Lipschitzness and strong convexity
coefficients defined respectively in Assumptions 1 and 3 in Section 3), and the outer-level objective
function Φ(x) is possibly nonconvex w.r.t. x. Such types of geometries arise in many applications
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Table 1: Comparison of computational complexities of four AID-BiO implementations for finding
an ϵ-accurate stationary point. For a fair comparison, gradient descent (GD) is used to solve the
linear system for all algorithms. MV(ϵ): the total number of Jacobian- and Hessian-vector product
computations. Gc(ϵ): the total number of gradient computations. Õ: hide ln κ

ϵ factors. We write
a(x) = Θ(b(x)) if cb(x) < a(x) < Cb(x), where c, C are universal constants.

Algorithms Q N MV(ϵ) Gc(ϵ)

BA [10] Θ(κ lnκ) (k+1)
1
4

2
(k: iteration number) Õ(κ5ϵ−1) Õ(κ5ϵ−1.25)

AID-BiO [19] Θ(κ lnκ) Θ(κ lnκ) Õ(κ4ϵ−1) Õ(κ4ϵ−1)

N -Q-loop AID (this paper) Θ(κ lnκ) Θ(κ lnκ) Õ(κ4ϵ−1) Õ(κ4ϵ−1)

Q-loop AID (this paper) Θ(κ lnκ) 1 Õ(κ6ϵ−1) Õ(κ5ϵ−1)

N -loop AID (this paper) O(1) Θ(κ lnκ) Õ(κ4ϵ−1) Õ(κ5ϵ−1)

No-loop AID (this paper) O(1) 1 Õ(κ6ϵ−1) Õ(κ6ϵ−1)

including meta-learning (which uses the last layer of neural networks as adaptation parameters),
hyperparameter optimization (e.g., data hyper-cleaning and regularized logistic regression) and
learning in communication networks (e.g., network utility maximization).

A variety of algorithms have been proposed to solve the bilevel optimization problem in eq. (1). For
example, [14, 36, 32] proposed constraint-based approaches by replacing the inner-level problem
with its optimality conditions as constraints. In comparison, gradient-based bilevel algorithms have
received intensive attention recently due to the effectiveness and simplicity, which include two popular
approaches via approximate implicit differentiation (AID) [4, 33, 11, 19] and iterative differentiation
(ITD) [31, 8, 35]. Readers can refer to Appendix A for an expanded list of related work.

Consider the AID-based bilevel approach (which we call AID-BiO). Its base iteration loop updates
the variable x until convergence. Within such a base loop, it needs to solve two sub-problems:
finding a nearly optimal solution of the inner-level function via N iterations, and approximating
the outer-level Hessian-inverse-vector product via Q iterations. If Q and N are chosen to be large,
then the corresponding iterations form additional loops of iterations within the base loop, which
we respectively call as Q-loop and N -loop. Thus, AID-BiO can have four popular implementations
depending on different choices of N and Q: N -loop (with large N = κ lnκ and small Q = O(1)),
N -Q-loop (with large N = Θ(κ lnκ) and large Q = Θ(κ lnκ)), Q-loop (with N = 1 and Q =
Θ(κ lnκ)), and No-loop (with N = 1 and Q = O(1)). Note that No-loop refers to no additional
loops within the base loop, and can be understood as conventional single-(base)-loop algorithms.
These implementations can significantly affect the efficiency of AID-BiO. Generally, large Q (i.e., a
Q-loop) provides a good approximation of the Hessian-inverse-vector product for the hypergradient
computation, and large N (i.e., a N -loop) finds an accurate optimal point of the inner function.
Hence, an algorithm with N -loop and Q-loop require fewer base-loop steps to converge, but each
such base-loop step requires more computations due to these loops. On the other hand, small Q
and/or N avoid computations of loops in each base-loop step, but can cause the algorithm to converge
with many more base-loop steps. An intriguing question here is which implementation is overall
most efficient and whether AID-BiO benefits from having N -loop and/or Q-loop. Existing theoretical
studies on AID-BiO are far from answering this question. The studies [10, 19] on deterministic
AID-BiO focused only on the N -Q-loop scheme. A few studies analyzed the stochastic AID-BiO,
such as [26] on No-loop, and [15, 21] on Q-loop. Those studies were not refined enough to capture
the computational differences among different implementations, and further those studies collectively
did not cover all the four implementations either.

• The first contribution of this paper lies in the development of a unified convergence theory for
AID-BiO, which is applicable to all choices of N and Q. We further specialize our general
theorems to provide the computational complexity for all of the above four implementations
(as summarized in Table 1). Comparison among them suggests that AID-BiO does benefit
from both N -loop and Q-loop. This is in contrast to minimax optimization (a special case
of bilevel optimization), where it is shown in [27, 41] that (No-loop) gradient descent ascent
(GDA) with N = 1 often outperforms (N -loop) GDA with N = κ lnκ (here N denotes the
number of ascent iterations for each descent iteration). To explain the reason, the gradient

2



Table 2: Comparison of computational complexities of two ITD-BiO implementations for finding
an ϵ-accurate stationary point. For a fair comparison, gradient descent (GD) is used to solve the
inner-level problem. The analysis in [19] for ITD-BiO assumes that the inner-loop minimizer y∗(xk)
is bounded at kth iteration, which is not required in our analysis. µ: the strong-convexity constant of
inner-level function g(x, ·). For the last two columns, ’N/A’ means that the complexities to achieve an
ϵ-accuracy are not measurable due to the nonvanishing convergence error. We write a(x) = Ω(b(x))
if a(x) > cb(x), where c is a universal constant.

Algorithms N Convergence rate MV(ϵ) Gc(ϵ)

ITD-BiO [19] Θ(κ lnκ) O
(

κ3

K
+ ϵ

)
Õ(κ4ϵ−1) Õ(κ4ϵ−1)

N -N -loop ITD (this paper) Θ(κ lnκ) O
(

κ3

K
+ ϵ

)
Õ(κ4ϵ−1) Õ(κ4ϵ−1)

No-loop ITD (this paper) Θ(1) O
(

κ3

K
+ κ3

)
N/A N/A

Lower bound (this paper) Θ(1) Ω
(
κ2

)
N/A N/A

w.r.t. x in bilevel optimization involves additional second-order derivatives (that do not exist
in minimax optimization), which are more sensitive to the accuracy of the optimal point of the
inner function. Therefore, a large N finds such a more accurate solution, and is hence more
beneficial for bilevel optimization than minimax optimization.

Differently from AID-BiO, the ITD-based bilevel approach (which we call as ITD-BiO) constructs
the outer-level hypergradient estimation via backpropagation along the N -loop iteration path, and
Q = N always holds. Thus, ITD-BiO has only two implementation choices: N -N -loop (with large
N = κ lnκ) and No-loop (with small N = O(1)). Here, N -N -loop and No-loop also refer to
additional loops for solving sub-problems within the ITD-BiO’s base loop of updating the variable
x. The only convergence rate analysis on ITD-BiO was provided in [19] but only for N -N -loop,
which does not suggest how N -N -loop compares with No-loop. It is still an open question whether
ITD-BiO benefits from N -loops.

• The second contribution of this paper lies in the development of a unified convergence theory
for ITD-BiO, which is applicable to all values of N . We then specialize our general theorem to
provide the computational complexity for both of the above implementations (as summarized
in Table 2). We further develop a convergence lower bound, which suggests that N -N -loop is
necessary to guarantee a vanishing convergence error, whereas the no-loop scheme suffers
from an unavoidable non-vanishing convergence error.

The technical contribution of this paper is two-fold. For AID methods, most existing studies including
[19] solve the linear system with large Q = Θ(κ log κ) so that the upper-level Hessian-inverse-vector
product approximation error can vanish. In contrast, we allow arbitrary (possibly small) Q, and
hence this upper-level error can be large and nondecreasing, posing a key challenge to guarantee
convergence. We come up with a novel idea to prove the convergence by showing that this error,
not by itself but jointly with the inner-loop error, admits an (approximately) iteratively decreasing
property, which bounds the hypergradient error and yields convergence. The analysis contains new
developments to handle the coupling between this error and the inner-loop error, which is critical
in our proof. For ITD methods, unlike existing studies including [19], we remove the boundedness
assumption on y∗(x) via a novel error analysis over the entire execution rather than a single iteration.
Our analysis tools are general and can be extended to stochastic and acceleration bilevel optimizers.

2 Algorithms

2.1 AID-based Bilevel Optimization Algorithm

As shown in Algorithm 1, we present the general AID-based bilevel optimizer (which we refer to
AID-BiO for short). At each iteration k of the base loop, AID-BiO first executes N steps of gradient
decent (GD) over the inner function g(x, y) to find an approximation point yNk , where N can be
chosen either at a constant level or as large as N = κ lnκ (which forms an N -loop of iterations).
Moreover, to accelerate the practical training and achieve a stronger performance guarantee, AID-BiO
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Algorithm 1 AID-based bilevel optimization (AID-BiO) with double warm starts
1: Input: Stepsizes α, β > 0, initializations x0, y0, v0.
2: for k = 0, 1, 2, ...,K do
3: Set y0

k = yN
k−1 if k > 0 and y0 otherwise (warm start initialization)

4: for t = 1, ...., N do
5: Update yt

k = yt−1
k − α∇yg(xk, y

t−1
k )

6: end for
7: Hypergradient estimation via:

Set v0k = vQk−1 if k > 0 and v0 otherwise (warm start initalization).
Solve vQk from ∇2

yg(xk, y
N
k )v = ∇yf(xk, y

N
k ) via Q steps of iterative algorithms starting from v0k

Compute ∇̂Φ(xk) = ∇xf(xk, y
N
k )−∇x∇yg(xk, y

N
k )vQk

8: Update xk+1 = xk − β∇̂Φ(xk)
9: end for

often adopts a warm-start strategy by setting the initialization y0k of each N -loop to be the output
yNk−1 of the preceding N -loop rather than a random start.

To update the outer variable, AID-BiO adopts the gradient descent, by approximating the true gradient
∇Φ(xk) of the outer function w.r.t. x (called hypergradient [33, 11]) that takes the following form:

(True hypergradient:) ∇Φ(xk) =∇xf(xk, y
∗(xk))−∇x∇yg(xk, y

∗(xk))v
∗
k, (2)

where v∗k is the solution of the linear system ∇2
yg(xk, y

∗(xk))v = ∇yf(xk, y
∗(xk)). To approximate

the above true hypergradient, AID-BiO first solves vQk as an approximate solution to a linear system
∇2

yg(xk, y
N
k )v = ∇yf(xk, y

N
k ) using Q steps of GD iterations starting from v0k. Here, Q can also be

chosen either at a constant level or as large as Q = κ ln κ
µ (which forms a Q-loop of iterations).

Note that a warm start is also adopted here by setting v0k = vQk−1, which is critical to achieve
the convergence guarantee for small Q. If Q is large enough, e.g., at an order of κ ln κ

µ , a zero
initialization with v0k = 0 suffices to solve the linear system well. Then, AID-BiO constructs a
hypergradient estimator ∇̂Φ(xk) given by

(AID-based hypergradient estimate:) ∇̂Φ(xk) = ∇xf(xk, y
N
k )−∇x∇yg(xk, y

N
k )vQk . (3)

Note that the execution of AID-BiO involves only Hessian-vector products in solving the linear
system and Jacobian-vector product ∇x∇yg(xk, y

N
k )vQk which are more computationally tractable

than the calculation of second-order derivatives.

It is clear that different choices of N and Q lead to four implementations within the base loop of
AID-BiO: N -loop (with large N = κ lnκ and small Q = O(1)), N -Q-loop (with large N = κ lnκ
and Q = κ lnκ), Q-loop (with small N = 1 and large Q = κ lnκ) and No-loop (with small N = 1
and Q = O(1)). In Section 4, we will establish a unified convergence theory for AID-BiO applicable
to all its implementations in order to formally compare their computational efficiency.

2.2 ITD-Based Bilevel Optimization Algorithm

As shown in Algorithm 2, the ITD-based bilevel optimizer (which we refer to as ITD-BiO)
updates the inner variable y similarly to AID-BiO, and obtains the N -step output yNk of GD
with a warm-start initialization. ITD-BiO differentiates from AID-BiO mainly in its estima-
tion of the hypergradient. Without leveraging the implicit gradient formulation, ITD-BiO com-
putes a direct derivative ∂f(xk,y

N
k )

∂xk
via automatic differentiation for hypergradient approximation.

Since yNk has a dependence on xk through the N -loop iterative GD updates, the execution of
ITD-BiO takes the backpropagation over the entire N -loop trajectory. To elaborate, it can be
shown via the chain rule that the hypergradient estimate ∂f(xk,y

N
k )

∂xk
takes the following form

of ∂f(xk,y
N
k )

∂xk
= ∇xf(xk, y

N
k ) − α

∑N−1
t=0 ∇x∇yg(xk, y

t
k)

∏N−1
j=t+1(I − α∇2

yg(xk, y
j
k))∇yf(xk, y

N
k ). As

shown in this equation, the differentiation does not compute the second-order derivatives directly
but compute more tractable and economical Hessian-vector products ∇2

yg(xk, y
j−1
k )vj , j = 1, ..., N
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Algorithm 2 ITD-based bilevel optimization algorithm (ITD-BiO) with warm start
1: Input: Stepsize α > 0, initializations x0 and y0 .
2: for k = 0, 1, 2, ...,K do
3: Set y0

k = yN
k−1 if k > 0 and y0 otherwise (warm start initialization)

4: for t = 1, ...., N do
5: Update yt

k = yt−1
k − α∇yg(xk, y

t−1
k )

6: end for
7: Compute ∇̂Φ(xk) =

∂f(xk,y
N
k )

xk
via backpropagation w.r.t. xk

8: Update xk+1 = xk − β∇̂Φ(xk)
9: end for

(similarly for Jacobian-vector products), where each vj is obtained recursively via vj−1 =
(I − α∇2

yg(xm, yjm))vj with vN = ∇yf(xm, yNm).

Clearly, the implementation of ITD-BiO implies that N = Q always holds. Hence, ITD-BiO takes
only two possible architectures within its base loop: N -N -loop (with large N = κ ln κ

ϵ ) and No-loop
(with small N = 1). In Section 5, we will establish a unified convergence theory for ITD-BiO
applicable to both of its implementations in order to formally compare their computational efficiency.

3 Definitions and Assumptions

This paper focuses on the following types of objective functions.

Assumption 1. The inner-level function g(x, y) is µ-strongly-convex w.r.t. y.

Since the objective function Φ(x) in eq. (1) is possibly nonconvex, algorithms are expected to find an
ϵ-accurate stationary point defined as follows.

Definition 1. We say x̄ is an ϵ-accurate stationary point for the bilevel optimization problem given in
eq. (1) if ∥∇Φ(x̄)∥2 ≤ ϵ, where x̄ is the output of an algorithm.

In order to compare the performance of different bilevel algorithms, we adopt the following metrics
of computational complexity.

Definition 2. Let Gc(ϵ) be the number of gradient evaluations, and MV(ϵ) be the total number of
Jacobian- and Hession-vector product evaluations to achieve an ϵ-accurate stationary point of the
bilevel optimization problem in eq. (1).

Let z = (x, y). We take the following standard assumptions, as also widely adopted by [10, 17].

Assumption 2. Gradients ∇f(z) and ∇g(z) are L-Lipschitz, i.e., for any z, z′,

∥∇f(z)−∇f(z′)∥ ≤ L∥z − z′∥, ∥∇g(z)−∇g(z′)∥ ≤ L∥z − z′∥.

As shown in eq. (2), the gradient of the objective function Φ(x) involves the second-order derivatives
∇x∇yg(z) and ∇2

yg(z). The following assumption imposes the Lipschitz conditions on such higher-
order derivatives, as also made in [10].

Assumption 3. Suppose the derivatives ∇x∇yg(z) and ∇2
yg(z) are ρ-Lipschitz, i.e., for any z, z′

∥∇x∇yg(z)−∇x∇yg(z
′)∥ ≤ ρ∥z − z′∥, ∥∇2

yg(z)−∇2
yg(z

′)∥ ≤ ρ∥z − z′∥.

To guarantee the boundedness the hypergradient estimation error, existing works [10, 17, 11] assume
that the gradient ∇f(z) is bounded for all z = (x, y). Instead, we make a weaker boundedness
assumption on the gradients ∇yf(x, y

∗(x)).

Assumption 4. There exists a constant M such that for any x, ∥∇yf(x, y
∗(x))∥ ≤ M .

For the case where the total objective function Φ(·) has some benign structures, e.g., convexity or
strong convexity, Assumption 4 can be removed by an induction analysis that all iterates are bounded
as in [18]. Assumption 4 can also be removed by projecting x onto a bounded constraint set X .
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4 Convergence Analysis of AID-BiO

As we describe in Section 2.1, AID-BiO can have four possible implementations depending on
whether N and Q are chosen to be large enough to form an N -loop and/or Q-loop. In this section, we
will provide the convergence analysis and characterize the overall computational complexity for all of
the four implementations, which will provide the general guidance on which algorithmic architecture
is computationally most efficient.

4.1 Convergence Rate and Computational Complexity

In this subsection, we develop two unified theorems for AID-BiO, both of which are applicable to
all the regimes of N and Q. We then specialize these theorems to provide the complexity bounds
(as corollaries) for the four implementations of AID-BiO. It turns out that the first theorem provides
tighter complexity bounds for the implementations with small Q = Θ(1), and the second theorem
provides tighter complexity bounds for the implementations with large Q = κ ln κ

ϵ . Our presentation
of those corollaries below will thus focus only on the tighter bounds. The following theorem provides
our first unified convergence analysis for AID-BiO.
Theorem 1. Suppose Assumptions 1, 2, 3 and 4 hold. Choose parameters α, η and λ such that
(1 + λ)(1 − αµ)N (1 + r(1 + 1

ηµ
)) ≤ 1 − ηµ, where r = Θ(µ2C2

Q) with CQ = Θ
(
(1 − ηµ)Q−1 ηQ

µ
+

1−(1−ηµ)Q(1+ηQµ)

µ2 + (1− (1− ηµ)Q)L
µ

)
. Let LΦ = Θ(κ3) be the smoothness parameter of Φ(·). Let

w̃ := Θ
(
ηµκ4

λr + κ4

ηµ

( (1−ηµ)2Q

µ2 + ηµ
λ

))
. Choose β such that β = min

{
1
LΦ

,
√

ηµ
w̃

}
. Then,

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(Φ(x0)− Φ(x∗)

βK
+

κ2∥y∗0∥2 + ( 3Mµ + κ2)

ηµK

)
. (4)

The complete version of Theorem 1 with full parameter specifications can be found in Appendix H.
Theorem 1 also elaborates the precise requirements on the stepsizes α, η and β and the auxiliary
parameter λ, which take complicated forms. In the following, by further specifying these parameters,
we characterize the complexities for AID-BiO in more explicit forms. We focus on the implemen-
tations with Q = Θ(1) (for which Theorem 1 specializes to tighter bound than Theorem 2 below),
which includes the N -loop scheme (with N = Θ(κ lnκ)) and the No-loop scheme (with N = 1).
Corollary 1 (N -loop). Consider N -loop AID-BiO with N = Θ(κ lnκ) and Q = Θ(1), where
κ = L

µ denotes the condition number of the inner problem. Under the same setting of Theorem 1,

choose η = 1
L , α = 1

L , and λ = 1. Then, we have 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ4

K
+ κ3

K

)
, and the

complexity to achieve an ϵ-accurate stationary point is Gc(ϵ) = Õ(κ5ϵ−1),MV(ϵ) = Õ
(
κ4ϵ−1

)
.

Corollary 2 (No-loop). Consider No-loop AID-BiO with N = 1 and Q = Θ(1). Under the same
setting of Theorem 1, choose parameters α = 1

L , λ = αµ
2 and η = min{ 1

128
αµ2

Q2L2 ,
α
4 ,

1
µQ}. Then,

1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ6

K
+ κ5

K

)
, and the complexity is Gc(ϵ) = Õ(κ6ϵ−1),MV(ϵ) = Õ(κ6ϵ−1).

The analysis of Theorem 1 can be further improved for the large Q regime, which guarantees a
sufficiently small outer-level approximation error, and helps to relax the requirement on the stepsize η.
Such an adaptation yields the following alternative unified convergence characterization for AID-BiO,
which is applicable for all Q and N , but specializes to tighter complexity bounds than Theorem 1 in
the large Q regime. For simplicity, we set the initialization v0k = 0 in Algorithm 1.
Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold. Define τ = Θ

(
(1−αµ)N (1+λ+(1+λ−1)(κ2+

C2
Q

)
κ2β2)

)
, w = Θ

(
(1− αµ)N (κ2 +C2

Q)(1 + λ−1)κ2
)
, where CQ is a positive constant defined as in

Theorem 1. Choose parameters α, β such that τ < 1 and βLΦ + wβ2
(
1
2
+ βLΦ

)
1

1−τ
≤ 1

4
hold. Then,

the output of AID-BiO satisfies

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(Φ(x0)− Φ(x∗)

βK
+

1

K

δ0
1− τ

+ κ2(1− ηµ)2Q
)
,

where δ0 = Θ((κ2 + C2
Q

)
(1− αµ)N∥y∗

0 − y0∥2) is the initial distance.

The complete version of Theorem 2 with full parameter specifications can be found in Appendix K.
We next specialize Theorem 2 to obtain the complexity for two implementations of AID-BiO with
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Q = Θ(κ lnκ): N -Q-loop (with N = Θ(κ lnκ)) and Q-loop (with N = 1), as shown in the following
two corollaries. For each case, we need to set the parameters λ, η and α in Theorem 2 properly.

Corollary 3 (N -Q-loop). Consider N -Q-loop AID-BiO with N = Θ(κ lnκ) and Q = Θ(κ ln κ
ϵ
).

Under the same setting of Theorem 2, choose η = α = 1
L , λ = 1 and β = Θ(κ−3). Then,

1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ3

K
+ ϵ

)
, and the complexity is Gc(ϵ) = Õ(κ4ϵ−1), MV(ϵ) = Õ(κ4ϵ−1).

Corollary 4 (Q-loop). Consider Q-loop AID-BiO with N = 1 and Q = Θ(κ ln κ
ϵ
). Under the same

setting of Theorem 2, choose α = η = 1
L , λ = αµ

2 and β = Θ(κ−4). Then, 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 =

O
(
κ5

K
+ κ4

K
+ ϵ

)
, and the complexity is Gc(ϵ) = Õ(κ5ϵ−1), MV(ϵ) = Õ(κ6ϵ−1).

4.2 Comparison among Four Implementations

Impact of N -loop (N = 1 vs N = κ lnκ). We fix Q, and compare how the choice of N affects
the computational complexity. First, let Q = Θ(1), and compare the results between the two
implementations N -loop with Θ(κ lnκ) (Corollary 1) and No-loop with N = 1 (Corollary 2). Clearly,
the N -loop scheme significantly improves the convergence rate of the No-loop scheme from O(κ

6

K ) to
O(κ

4

K ), and improves the matrix-vector and gradient complexities from Õ(κ6ϵ−1) and Õ(κ6ϵ−1) to
Õ(κ4ϵ−1) and Õ(κ5ϵ−1), respectively. To explain intuitively, the hypergradient estimation involves
a coupled error η∥yN

k − y∗(xk)∥ induced from solving the linear system ∇2
yg(xk, y

N
k )v = ∇yf(xk, y

N
k )

with stepsize η. Therefore, a smaller inner-level approximation error ∥yN
k − y∗(xk)∥ allows a more

aggressive stepsize η, and hence yields a faster convergence rate as well as a lower total complexity,
as also demonstrated in our experiments. It is worth noting that such a comparison is generally
different from that in minimax optimization [27, 41], where alternative (i.e., No-loop) gradient
descent ascent (GDA) with N = 1 outperforms (N-loop) GDA with N = κ lnκ, where N denotes
the number of ascent iterations for each descent iteration. To explain the reason, in constrast to
minimax optimization, the gradient w.r.t. x in bilevel optimization involves additional second-order
derivatives, which are more sensitive to the inner-level approximation error. Therefore, a larger N
is more beneficial for bilevel optimization than minimax optimization. Similarly, we can also fix
Q = Θ(κ lnκ), the N -Q-loop scheme with N = κ lnκ (Corollary 3) significantly outperforms the
Q-loop scheme with N = 1 (Corollary 4) in terms of the convergence rate and complexity.

Impact of Q-loop (Q = 1 vs Q = Θ(κ ln κ
ϵ )). We fix N , and characterize the impact of the choice of

Q on the complexity. For N = 1, comparing No-loop with Q = Θ(1) in Corollary 2 and Q-loop with
Q = Θ(κ lnκ) in Corollary 4 shows that both choices of Q yield the same matrix-vector complexity
Õ(κ6ϵ−1), but Q-loop with a larger Q improves the gradient complexity of No-loop with Q = Θ(1)

from Õ(κ6ϵ−1) to Õ(κ5ϵ−1). A similar phenomenon can be observed for N = Θ(κ lnκ) based on
the comparision between N -Q-loop in Corollary 3 and N -loop in Corollary 1.

In deep learning. Also note that in the setting where the matrix-vector complexity dominates the
gradient complexity, e.g., in deep learning, such two choices of Q do not affect the total computational
complexity. However, a smaller Q can help reduce the per-iteration load on the computational resource
and memory, and hence is preferred in practical applications with large models.

Comparison among four implementations. By comparing the complexity results in Corollaries 1, 2,
3 and 4, it can be seen that N -Q-loop and N -loop (both with a large N = Θ(κ lnκ)) achieve the
best matrix-vector complexity Õ(κ4ϵ−1), whereas Q-loop and No-loop (both with a smaller N = 1)
require higher matrix-vector complexity of Õ(κ6ϵ−1). Also note that N -Q-loop has the lowest
gradient complexity. This suggests that the introduction of the inner loop with large N can help to
reduce the total computational complexity.

5 Convergence Analysis of ITD-BiO

In this section, we first provide a unified theory for ITD-BiO, which is applicable for all choices of
N , and then specialize the convergence theory to characterize the computational complexity for the
two implementations of ITD-BiO: No loop and N -N -loop. We also provide a convergence lower
bound to justify the necessity of choosing large N to achieve a vanishing convergence error. The
following theorem characterizes the convergence rate of ITD-BiO for all choices of N .
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Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold. Define w = Θ
(
κ2

αµ
(1−αµ)NλN +

w2
N

µ2

)
and τ =

(λN +N2)(1−αµ)N +w2
N , where λN and wN are given by λN = Θ

(
w2

N+(1+αLN)2

1− 1
4
αµ−(1−αµ)N (1+ 1

2
αµ)

)
, wN =

Θ
((

1+ α(1−(1−αµ)
N
2 )

1−
√
1−αµ

)
α(1−(1−αµ)

N
2 )

1−
√

1−αµ
(1−αµ)

N
2
−1

)
. Choose parameters such that β2 ≤ 1− 1

4
αµ

2w
, α ≤

1
2L

and βLΦ + 8
αµ

(
1
2
+ βLΦ

)
wβ2 < 1

4
, where LΦ = Θ(κ3) denotes the smoothness parameter of

Φ(·). Then, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 =O
(∆Φ

βK
+

τ∆y

µ2K
+

(1− αµ)2N

µ3K
+

M2
(
1− αµ

)2N
L2

αµ3

)
, (5)

where ∆Φ = Φ(x0)−minx Φ(x) and ∆y = ∥y0 − y∗(x0)∥2.

The complete version of Theorem 3 with full parameter specifications can be found in Appendix N.
In Theorem 3, the upper bound on the convergence rate for ITD-BiO contains a convergent term
O( 1

K ) (which converges to zero sublinearly with K) and an error term O
(M2(1−αµ)2N

αµ3

)
(which is

independent of K, and possibly non-vanishing if N is chosen to be small). To show that such a
possibly non-vanishing error term (when N is chosen to be small) fundamentally exists, we next
provide the following lower bound on the convergence rate of ITD-BiO.

Theorem 4 (Lower Bound). Consider the ITD-BiO algorithm in Algorithm 2 with α ≤ 1
L , β ≤ 1

LΦ

and N ≤ O(1), where LΦ is the smoothness parameter of Φ(x). There exist objective functions
f(x, y) and g(x, y) that satisfy Assumptions 1, 2, 3 and 4 such that for all iterates xK (where K ≥ 1)
generated by ITD-BiO in Algorithm 2, ∥∇Φ(xK)∥2 ≥ Θ

(
L2M2

µ2

(
1− αµ

)2N)
.

Clearly, the error term in the upper bound given in Theorem 3 matches the lower bound given in
Theorem 4 in terms of M2L2

µ2 (1− αµ)2N , and there is still a gap on the order of αµ, which requires
future efforts to address. Theorem 3 and Theorem 4 together indicate that in order to achieve an
ϵ-accurate stationary point, N has to be chosen as large as N = Θ(κ log κ

ϵ ). This corresponds to
the N -N -loop implementation of ITD-BiO, where large N achieves a highly accurate hypergradient
estimation in each step. Another No-loop implementation chooses a small constant-level N =
Θ(1) to achieve an efficient execution per step, where a large N can cause large memory usage
and computation cost. Following from Theorem 3 and Theorem 4, such No-loop implementation
necessarily suffers from a non-vanishing error.

In the following corollaries, we further specialize Theorem 3 to obtain the complexity analysis for
ITD-BiO under the two aforementioned implementations of ITD-BiO.

Corollary 5 (N -N -loop). Consider N -N -loop ITD-BiO with N = Θ(κ ln κ
ϵ ). Under the same set-

ting of Theorem 3, choose β = min
{√

αµ
40w

,

√
1−αµ

4
2w

, 1
8LΦ

}
, α = 1

2L . Then, 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 =

O
(
κ3

K + ϵ
)
, and the complexity is Gc(ϵ) = Õ(κ4ϵ−1), MV(ϵ) = Õ(κ4ϵ−1).

Corollary 5 shows that for a large N = Θ(κ ln κ
ϵ ), we can guarantee that ITD-BiO converges

to an ϵ-accurate stationary point, and the gradient and matrix-vector product complexities are
given by Õ(κ4ϵ−1). We note that [19] also analyzed the ITD-BiO with N = Θ(κ ln κ

ϵ ), and
provided the same complexities as our results in Corollary 5. In comparison, our analysis has several
differences. First, [19] assumed that the minimizer y∗(xk) at the kth iteration is bounded, whereas
our analysis does not impose this assumption. Second, [19] involved an additional error term
maxk=1,...,K ∥y∗(xk)∥L2M2(1−αµ)N

µ4 , which can be very large (or even unbounded) under standard
Assumptions 1, 2, 3 and 4. We next characterize the convergence for the small N = Θ(1).

Corollary 6 (No-loop). Consider No-loop ITD-BiO with N = Θ(1). Under the same setting of

Theorem 3, choose stepsizes α = 1
2NL and β = min

{√
αµ
40w ,

√
1−αµ

4

2w , 1
8LΦ

}
. Then, we have

1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ3

K + M2L2

αµ3

)
.

Corollary 6 indicates that for the constant-level N = Θ(1), the convergence bound contains a
non-vanishing error O(M

2L2

αµ3 ). As shown in the convergence lower bound in Theorem 4, under
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standard Assumptions 1, 2, 3 and 4, such an error is unavoidable. Comparison between the above
two corollaries suggests that for ITD-BiO, the N -N -loop is necessary to guarantee a vanishing
convergence error, whereas No-loop necessarily suffers from a non-vanishing convergence error.

6 Empirical Verification

Experiments on hyperparameter optimization on MNIST. We first conduct experiments to verify
our theoretical results in Corollaries 1, 2, 3 and 4 on AID-BiO with different implementations. We
consider the following hyperparameter optimization problem.

min
λ

LDval(λ) =
1

|Dval|
∑

ξ∈Dval

L(w∗; ξ), s.t. w∗ = argmin
w

1

|Dtr|
∑
ξ∈Dtr

(
L(w; ξ) + λ

2
∥w∥22

)
,

where Dtr and Dval stand for training and validation datasets, L(w; ξ) denotes the loss function
induced by the model parameter w and sample ξ, and λ > 0 denotes the regularization parameter.
The goal is to find a good hyperparameter λ to minimize the validation loss evaluated at the optimal
model parameters for the regularized empirical risk minimization problem.
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Figure 1: Training & test losses v.s. time (seconds) by AID-BiO on MNIST with different Q and N .

From Figure 1, we can make the following observations for AID-BiO. First, the learning curves with
N = 20 are significantly better than those with N = 1, indicating that running multiple steps of
gradient descent in the inner loop (i.e., N > 1) is crucial for fast convergence. This observation is
consistent with our complexity result that N -loop is better than No-loop, and N -Q-loop is better
than Q-loop, as shown in Table 1. The reason is that a more accurate hypergradient estimation
can accelerate the convergence rate and lead to a reduction on the Jacobian- and Hessian-vector
computational complexity. Second, N -Q-loop (N = 20, Q = 20) and N -loop (N = 20, Q = 1)
achieve a comparable convergence performance, and a similar observation can be made for Q-loop
(N = 1, Q = 20) and No-loop (N = 1, Q = 1). This is also consistent with the complexity
result provided in Table 1, where different choices of Q do not affect the dominant matrix-vector
complexity.
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Figure 2: Training & test losses v.s. time (seconds) by AID-BiO on MNIST with different Q and N .

In Figure 2, we plot the training and test losses versus running time for AID-BiO, where we consider
a hyperparameter optimization problem on MNIST as in Figure 1 and choose loop sizes Q and N
from {1, 50}. Similarly to Figure 1, it can be observed that the empirical results in Figure 2 are also
in consistence with our theoretical results in Table 1.
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Figure 3: Training & test losses v.s. time (seconds) by ITD-BiO on MNIST with different N .

In Figure 3, we plot the performance of ITD-BiO with different choices of N from {1, 20} on
the hyperparameter optimization on MNIST. Figure 3 illustrates that N -loop ITD-BiO (i.e., N=20)
converges to a much smaller loss value than No-loop ITD-BiO (i.e., N=1). This is in consistence with
our thereotical results in Table 2.

Experiments on hyper-representation. We consider a hyper-representation problem in [39], where
the inner problem is to find optimal regression parameters w and the outer procedure is to find the
best representation parameters λ. In specific, the bilevel problem takes the following form:

min
λ

Φ(λ) =
1

2p
∥h(XV ;λ)w

∗ − YV ∥2 , s.t. w∗ = argmin
w

1

2q
∥h(XT ;λ)w − YT ∥2 +

γ

2
∥w∥2

where XT ∈ Rq×m and XV ∈ Rp×m are synthesized training and validation data, YT ∈ Rq, YV ∈
Rp are their response vectors, and h(·) is a linear transformation. The generation of XT , XV , YT , YV

and the experimental setup follow from [39]. For ITD-BiO, we choose N = 20 for N -N -loop ITD
and N = 1 for No-loop ITD. The results are reported with the best-tuned hyperparameters.

Algorithm k = 10 k = 50 k = 100 k = 500 k = 1000

N -N -loop ITD 9.32 0.11 0.01 0.004 0.004
No-loop ITD 435 6.9 0.04 0.04 0.04

Table 3: Validation loss v.s. the number of iterations for ITD-based algorithms.

Table 3 indicates that N -N -loop with N = 20 can achieve a small loss value of 0.004 after 500 total
iterations, whereas No-loop with N = 1 converges to a much larger loss value of 0.04. This is in
consistence with our theoretical results in Table 2, where N = 1 can cause a non-vanishing error.

We also conduct the experiment for AID-BiO, where we choose N and Q from {1, 20} for four
different loop implementations. We present the results for AID-BiO in Appendix F, which also
support our theoretical results in Table 1.

7 Conclusion

In this paper, we study two popular bilevel optimizers AID-BiO and ITD-BiO, whose implementations
potentially involve additional loops of iterations within their base-loop update. By developing
unified convergence analysis for all choices of the loop parameters, we are able to provide formal
comparison among different implementations. Our result suggests that N -loops are beneficial for
better computational efficiency for AID-BiO and for better convergence accuracy for ITD-BiO. This
is in contrast to conventional minimax optimization, where No-loop (i.e., single-base-loop) scheme
achieves better computational efficiency. Our analysis techniques can be useful to study other bilevel
optimizers such as stochastic optimizers and variance reduced optimizers.
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