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Abstract

Greedy best-first search (GBFS) and A* search (A*) are popular algorithms for path-
finding on large graphs. Both use so-called heuristic functions, which estimate how
close a vertex is to the goal. While heuristic functions have been handcrafted using
domain knowledge, recent studies demonstrate that learning heuristic functions
from data is effective in many applications. Motivated by this emerging approach,
we study the sample complexity of learning heuristic functions for GBFS and A*.
We build on a recent framework called data-driven algorithm design and evaluate
the pseudo-dimension of a class of utility functions that measure the performance of
parameterized algorithms. Assuming that a vertex set of size n is fixed, we present
O(n lg n) and O(n2 lg n) upper bounds on the pseudo-dimensions for GBFS and
A*, respectively, parameterized by heuristic function values. The upper bound for
A* can be improved to O(n2 lg d) if every vertex has a degree of at most d and
to O(n lg n) if edge weights are integers bounded by poly(n). We also give Ω(n)
lower bounds for GBFS and A*, which imply that our bounds for GBFS and A*
under the integer-weight condition are tight up to a lg n factor. Finally, we discuss a
case where the performance of A* is measured by the suboptimality and show that
we can sometimes obtain a better guarantee by combining a parameter-dependent
worst-case bound with a sample complexity bound.

1 Introduction

Given a graph with a start vertex s, a goal vertex t, and non-negative edge weights, we consider
finding an s–t path with a small total weight. The Dijkstra algorithm [16] finds an optimal path by
exploring all vertices that are as close to s as t. It, however, is sometimes impractical for large graphs
since exploring all such vertices is too costly. Heuristic search algorithms are used to address such
situations; among them, greedy best-first search (GBFS) [17] and A* search (A*) [24] are two popular
algorithms. Both GBFS and A* use so-called heuristic functions, which estimate how close an input
vertex is to t. GBFS/A* attempts to avoid redundant exploration by scoring vertices based on heuristic
function values and iteratively expanding vertices with the smallest score. If well-suited heuristic
functions are available, GBFS/A* can run much faster than the Dijkstra algorithm. Furthermore, if
A* uses an admissible heuristic function, i.e., it never overestimates the shortest-path distance to t, it
always finds an optimal path [24]. Traditionally, heuristic functions have been made based on domain
knowledge; e.g., if graphs are road networks, the Euclidean distance gives an admissible heuristic.

When applying GBFS/A* to various real-world problems, a laborious process is to handcraft heuristic
functions. Learning heuristic functions from data can be a promising approach to overcoming the
obstacle due to the recent development of technologies for collecting graph data. Researchers have
demonstrated the effectiveness of this approach in robotics [11, 32, 28, 36], computational organic
chemistry [13], and pedestrian trajectory prediction [36]. With learned heuristic functions, however,
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obtaining theoretical guarantees is difficult since we can hardly understand how the search can be
guided by such heuristic functions. (A recent paper [1] studies learning of admissible heuristics for
A*, but the optimality is confirmed only empirically.) Moreover, learned heuristic functions may be
overfitting to problem instances at hand. That is, even if GBFS/A* with learned heuristic functions
perform well over training instances, they may deliver poor future performance. In summary, the
emerging line of work on search algorithms with learned heuristic functions is awaiting a theoretical
foundation for guaranteeing their performance in a data-driven manner. Thus, a natural question is:
how many sampled instances are needed to learn heuristic functions with generalization guarantees
on the performance of resulting GBFS/A*?

1.1 Our contribution

We address the above question, assuming that path-finding instances defined on a fixed vertex set of
size n are drawn i.i.d. from an unknown distribution. Our analysis is based on so-called data-driven
algorithm design [22, 4], a PAC-learning framework for bounding the sample complexity of algorithm
configuration. In the analysis, the most crucial step is to evaluate the pseudo-dimension of a class of
utility functions that measure the performance of parameterized algorithms. We study the case where
GBFS/A* is parameterized by heuristic function values and make the following contributions:

1. Section 3 gives O(n lg n) and O(n2 lg n) upper bounds on the pseudo-dimensions for GBFS
and A*, respectively. The bound for A* can be improved to O(n2 lg d) if every vertex has an
at most d degree and to O(n lg n) if edge weights are non-negative integers at most poly(n).

2. Section 4 presents Ω(n) lower bounds on the pseudo-dimensions for GBFS and A*. We
prove this result by constructing Ω(n) instances with unweighted graphs. Thus, our bounds
for GBFS and A* under the integer edge-weight condition are tight up to a lg n factor.

3. Section 5 studies a particular case of bounding the suboptimality of A*. We show that we
can sometimes improve the guarantee obtained in Section 3 by using an alternative O(n lg n)
bound on the pseudo-dimension of a class of parameter-dependent worst-case bounds [34].

An important consequence of the above results is the tightness up to a lg n factor for GBFS and A*
under the integer-weight assumption. Note that this assumption holds in various realistic situations.
For example, the Internet network and state-space graphs of games are unweighted (unit-weight)
graphs, and A* is often applied to path-finding instances on such graphs.

1.2 Related work

Data-driven algorithm design. Gupta and Roughgarden [22] proposed a PAC approach for bound-
ing the sample complexity of algorithm configuration, which is called data-driven algorithm design
and has been applied to a broad family of algorithms, including greedy, clustering, and sequence
alignment algorithms. We refer the reader to a nice survey [4]. A recent line of work [5, 9, 10]
has extensively studied the sample complexity of configuring integer-programming methods, e.g.,
branch-and-bound and branch-and-cut. In [9, 10], upper bounds on the pseudo-dimension for general
tree search are presented, which are most closely related to our results. Our upper bounds, which are
obtained by using specific properties of GBFS/A*, are better than the previous bounds for general
tree search, as detailed in Appendix A. Balcan et al. [8] presented a general framework for evaluating
the pseudo-dimension. Their idea is to suppose that performance measures form a class of functions
of algorithm parameters, called dual functions, and characterize its complexity based on how they
are piecewise structured. This idea plays a key role in the analysis of [9, 10], and our analysis of
the upper bounds are also inspired by their idea. Its application to our setting, however, requires a
close look at the behavior of GBFS/A*. Balcan et al. [7] showed that approximating dual functions
with simpler ones is useful for improving sample complexity bounds, which is similar to our idea in
Section 5. A difference is that while they construct simpler functions with a dynamic programming
algorithm, we can use a known worst-case bound on the suboptimality of best-first search [34]. Lower
bounds on the pseudo-dimension for graph-search algorithms have not been well studied.

Heuristic search with learning. Eden et al. [18] theoretically studied how the average-case running
time of A* can be affected by the dimensions or bits of learned embeddings or labels of vertex features,
based on which heuristic function values and computed. The sample complexity of learning heuristic
functions, however, has not been studied.
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2 Preliminaries

We present the background on learning theory and our problem setting. In what follows, we let I(·) be
a boolean function that returns 1 if its argument is true and 0 otherwise. We useH ⊆ RY to denote a
class of functions that map Y toR ⊆ R. For any positive integer m, we let [m] = {1, . . . ,m}.

2.1 Background on learning theory

The following pseudo-dimension [29] is a fundamental notion for quantifying the complexity of a
class of real-valued functions.
Definition 1. Let H ⊆ RY be a class of functions that map some domain Y to R. We say a set
{y1, . . . , yN} ⊆ Y is shattered byH if there exist target values, t1, . . . , tN ∈ R, such that

|{(I(h(y1) ≥ t1), . . . , I(h(yN ) ≥ tN )) | h ∈ H}| = 2N .

The pseudo-dimension ofH, denoted by Pdim(H), is the size of a largest set shattered byH.

IfH is a set of binary-valued functions that map Y to {0, 1}, the pseudo-dimension ofH coincides
with the so-called VC-dimension [35], which is denoted by VCdim(H).
The following proposition enables us to obtain sample complexity bounds by evaluating the pseudo-
dimension (see, e.g., [2, Theorem 19.2] and [27, Theorem 11.8]).

Proposition 1. Let H > 0,H ⊆ [0, H]
Y , and D be a distribution over Y . For any δ ∈ (0, 1), with a

probability of at least 1− δ over the i.i.d. draw of {y1, . . . , yN} ∼ DN , for all h ∈ H, it holds that∣∣∣∣∣ 1N
N∑
i=1

h(yi)− E
y∼D

[h(y)]

∣∣∣∣∣ = O

H

√
Pdim(H) lg N

Pdim(H) + lg 1
δ

N

.

In other words, for any ϵ > 0, N = Ω
(

H2

ϵ2

(
Pdim(H) lg H

ϵ + lg 1
δ

))
sampled instances are sufficient

to ensure that with a probability of at least 1− δ, for all h ∈ H, the difference between the empirical
average and the expectation over an unknown distribution D is at most ϵ.

2.2 Problem formulation

We describe path-finding instances, GBFS/A* algorithm, and performance measures considered in
this paper.

Path-finding instances. We consider solving randomly generated path-finding instances repetitively.
Let x = (V,E, {we}e∈E , s, t) be a path-finding instance, where (V,E) is a simple directed graph
with n vertices, {we}e∈E is a set of non-negative edge weights (sometimes called costs), s ∈ V is
a start vertex, and t ∈ V is a goal vertex. We let Π be a class of possible instances. Each instance
x ∈ Π is drawn from an unknown distribution D over Π. We impose the following assumption on Π.
Assumption 1. For all x ∈ Π, the vertex set V and the goal node t are identical, and there always
exists at least one directed path from s ̸= t to t, i.e., every instance x ∈ Π is feasible.

Fixing V is necessary for evaluating the pseudo-dimension in terms of n = |V |. Note that we can
deal with the case where some instances in Π are defined on vertex subsets V ′ ⊆ V by removing
edges adjacent to V \V ′. The feasibility assumption is needed to ensure that GBFS/A* always returns
a solution, and s ̸= t simply rules out the trivial case where the empty set is optimal. In Appendix B,
we discuss how to extend our results to the case where t can change depending on instances.

Algorithm description. We sketch algorithmic procedures that are common to both GBFS and
A* (see Algorithms 1 and 2 for details, respectively). Let Aρ be a GBFS/A* algorithm, which is
parameterized by heuristic function values ρ ∈ Rn. Given an instance x ∈ Π, Aρ starts from s and
iteratively builds a set of candidate paths. These paths are maintained by OPEN and CLOSED lists,
together with pointers p(·) to parent vertices. The OPEN list contains vertices to be explored, and the
CLOSED list consists of vertices that have been explored. In each iteration, we select a vertex v from
OPEN, expand v, and move v from OPEN to CLOSED.
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Heuristic function values ρ are used when selecting vertices. For each v ∈ V , the corresponding entry
in ρ, denoted by ρv, represents an estimated shortest-path distance from v to t. (Although heuristic
function values are usually denoted by h(v), we here use ρv for convenience.) In each iteration, we
select a vertex with the smallest score, which is defined based on ρ as detailed later. We impose the
following assumption on the vertex selection step.
Assumption 2. Define an arbitrary strict total order on V ; for example, we label elements in V by
v1, . . . , vn and define a total order v1 < · · · < vn. When selecting a vertex with the smallest score,
we break ties, if any, in favor of the smallest vertex with respect to the total order.

If we allow Aρ to break ties arbitrarily, its behavior becomes too complex to obtain meaningful
bounds on the pseudo-dimension. Assumption 2 is a natural rule to exclude such troublesome cases.

Performance measure. Let Aρ be GBFS/A* with parameters ρ ∈ Rn. We measure performance
of Aρ on x ∈ Π with a utility function u. We assume u to satisfy the following condition.
Assumption 3. Let H > 0. A utility function u takes x and a series of all OPEN, CLOSED, and p(·)
generated during the execution of Aρ on x ∈ Π as input, and returns a scalar value in [0, H].

We sometimes use Aρ to represent the series of OPEN and CLOSED lists and pointers generated by Aρ.
Note that u meeting Assumption 3 can measure various kinds of performance. For example, since the
pointers indicate an s–t path returned by Aρ, u can represent its cost. Moreover, since the series of
OPEN and CLOSED lists maintain all search states, u can represent the time and space complexity of
Aρ. We let uρ : Π→ [0, H] denote the utility function that returns the performance of Aρ on any
x ∈ Π, and define a class of such functions as U = {uρ : Π→ [0, H] | ρ ∈ Rn }. The upper bound,
H , is necessary to obtain sample complexity bounds with Proposition 1. Setting such an upper bound
is usual in practice. For example, if u measures the running time, H represents a time-out deadline.

Generalization guarantees on performance. Given the above setting, we want to learn ρ̂ values
that attain an optimal Ex∼D[uρ̂(x)] value, where available information consists of sampled instances
x1, . . . , xN and uρ(x1), . . . , uρ(xN ) values for any ρ ∈ Rn. To obtain generalization guarantees on
the performance of Aρ̂, we bound | 1N

∑N
i=1 uρ(xi)−Ex∼D[uρ(x)]| uniformly for all ρ ∈ Rn. Note

that the uniform bound offers performance guarantees that are independent of learning procedures,
e.g., manual or automated (without being uniform, learned ρ̂ may be overfitting sampled instances).
As in Proposition 1, to bound the sample complexity of learning ρ values, we need to evaluate the
pseudo-dimension of U , denoted by Pdim(U), which is the main subject of this study.

Remarks on heuristic functions. While we allow heuristic function values ρ to be any point in
Rn, the range of heuristic functions may be restricted to some subspace of Rn. Note that our upper
bounds are applicable to such situations since restricting the space of possible ρ values does not
increase Pdim(U). Meanwhile, such restriction may be useful for improving the upper bounds on
Pdim(U); exploring this direction is left for future work. Also, our setting cannot deal with heuristic
functions that take some instance-dependent features as input. To study such cases, we need more
analysis that is specific to heuristic function models, which goes beyond the scope of this paper. Thus,
we leave this for future work. Note that our setting still includes important heuristic function models
on fixed vertex sets. For example, we can set ρ using learned distances to landmarks [21], or we can
let ρ be distances measured on some metric space by learning metric embeddings of vertices [37].

3 Upper bounds on the pseudo-dimension

We present details of GBFS and A* and upper bounds on the pseudo-dimensions of U . In this section,
we suppose that vertices in V are labeled by v1, . . . , vn as in Assumption 2.

3.1 Greedy best-first search

Algorithm 1 shows the details of GBFS Aρ with heuristic function values ρ ∈ Rn. When selecting
vertices in Step 3, the scores are determined only by ρ. This implies an obvious but important fact.
Lemma 1. Let ρ,ρ′ ∈ Rn be a pair of heuristic function values with an identical total order up to
ties on their entries, i.e., I(ρvi ≤ ρvj ) = I(ρ′vi ≤ ρ′vj ) for all i, j ∈ [n] such that i < j. Then, we
have uρ(x) = uρ′(x) for all x ∈ Π.
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Algorithm 1 GBFS with heuristic function values ρ

1: OPEN = {s}, CLOSED = ∅, and p(s) = None.
2: while OPEN is not empty :
3: v ← argmin{ρv′ | v′ ∈ OPEN}. ▷ Break ties as in Assumption 2.
4: for each child c of v :
5: if c = t :
6: return s–t path by tracing pointers p(·), where p(t) = v.
7: if c /∈ OPEN ∪ CLOSED :
8: p(c)← v and OPEN← OPEN ∪ {c}.
9: Move v from OPEN to CLOSED.

Algorithm 2 A* with heuristic function values ρ

1: OPEN = {s}, CLOSED = ∅, p(s) = None, and gs = 0.
2: while OPEN is not empty :
3: v ← argmin{gv′ + ρv′ | v′ ∈ OPEN}. ▷ Break ties as in Assumption 2.
4: if v = t :
5: return s–t path by tracing pointers p(·).
6: for each child c of v :
7: gnew ← gv + w(v,c).
8: if c /∈ OPEN ∪ CLOSED :
9: gc ← gnew, p(c)← v, and OPEN← OPEN ∪ {c}.

10: else if c ∈ OPEN and gnew < gc :
11: gc ← gnew and p(c)← v.
12: else if c ∈ CLOSED and gnew < gc : ▷ Steps 12–14 are for reopening.
13: gc ← gnew and p(c)← v.
14: Move c from CLOSED to OPEN.
15: Move v from OPEN to CLOSED.

Proof. For any x ∈ Π, if ρ and ρ′ have an identical strict total order on their entries, vertices selected
in Step 3 are the same in each iteration of Aρ and Aρ′ . Since this is the only step ρ and ρ′ can affect,
we have Aρ = Aρ′ for all x ∈ Π, hence uρ(x) = uρ′(x). Moreover, this holds even if ρ and/or ρ′

have ties on their entries because of Assumption 2. That is, the total order uniquely determines a
vertex selected in Step 3 even in case of ties. Therefore, the statement holds.

From Lemma 1, the behavior of GBFS is uniquely determined once a total order on {ρv}v∈V is fixed.
Thus, for any x ∈ Π, the number of distinct uρ(x) values is at most n!, the number of permutations
of {ρv}v∈V . This fact enables us to obtain an O(n lg n) upper bound on the pseudo-dimension of U .

Theorem 1. For GBFS Aρ with parameters ρ ∈ Rn, it holds that Pdim(U) = O(n lg n).

Proof. Lemma 1 implies that we can partition Rn into n! regions, P1,P2, . . . , so that for every Pi,
any pair of ρ,ρ′ ∈ Pi satisfies uρ(x) = uρ′(x) for all x ∈ Π. Note that the construction of the
regions, P1,P2, . . . , does not depend on x. Thus, given any N instances x1, . . . , xN , even if ρ moves
over whole Rn, the number of distinct tuples of form (uρ(x1), . . . , uρ(xN )) is at most n!. To shatter
N instances, n! ≥ 2N must hold. Solving this for the largest N yields Pdim(U) = O(n lg n).

3.2 A* search

Algorithm 2 is the details of A*. As with GBFS, ρ only affects the vertex selection step (Step 3).
However, unlike GBFS, the scores, gv + ρv , involve not only ρ but also {gv}v∈V . Each gv is called a
g-cost and maintains a cost of some path from s to v. As in Algorithm 2, when v is expanded and a
shorter path to c is found, whose cost is denoted by gnew, we update the gc value. Thus, each gv always
gives an upper bound on the shortest-path distance from s to v. For each v ∈ V , there are at most∑n−2

k=0 k! ≤ (n− 1)! simple paths connecting s to v, and thus gv can take at most (n− 1)! distinct
values. We denote the set of those distinct values by Gv , and define GV = {(v, gv) | v ∈ V, gv ∈ Gv }
as the set of all pairs of a vertex and its possible g-cost. It holds that |GV | ≤ n× (n− 1)! = n!.
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Note that once x ∈ Π is fixed, Gv for v ∈ V and GV are uniquely determined. To emphasize this
fact, we sometimes use notation with references to x: gv(x), Gv(x), and GV (x). As with the case of
GBFS (Lemma 1), we can define a total order on the scores to determine the behavior of A* uniquely.
Lemma 2. Fix any instance x ∈ Π. Let ρ,ρ′ ∈ Rn be a pair of heuristic function values
such that total orders on the sets of all possible scores, {gv(x) + ρv | (v, gv(x)) ∈ GV (x)} and
{gv(x) + ρ′v | (v, gv(x)) ∈ GV (x)}, are identical up to ties. Then, it holds that uρ(x) = uρ′(x).

Proof. If the two sets of scores have an identical strict total order, we select the same vertex in Step 3
in each iteration of Aρ and Aρ′ . Thus, we have Aρ = Aρ′ for any fixed x, implying uρ(x) = uρ′(x).
We show that this holds even in the presence of ties by using Assumption 2. First, any two scores of
the same vertices, gv(x) + ρv and g′v(x) + ρv, never have ties since Gv consists of distinct g-costs.
Next, if gvi(x) + ρvi = gvj (x) + ρvj holds for some i < j, we always prefer vi to vj in Step 3 due
to Assumption 2. Therefore, even in the presence of ties, we select a vertex in Step 3 as if the set of
scores has a strict total order. Thus, if ρ and ρ′ induce the same total order up to ties on the sets of
possible scores, it holds that uρ(x) = uρ′(x).

By using Lemma 2, we can obtain an O(n2 lg n) upper bound on the pseudo-dimension of U .
Theorem 2. For A* Aρ with parameters ρ ∈ Rn, it holds that Pdim(U) = O(n2 lg n).

Proof. As with the proof of Theorem 1, we partition Rn into some regions so that in each region,
the behavior of A* is unique. Unlike the case of GBFS, boundaries of such regions change over
N instances. To deal with this situation, we use a geometric fact: for m ≥ n ≥ 1, m hyperplanes
partition Rn into O((em)

n
) regions.1

Fix a tuple of any N instances (x1, . . . , xN ). We consider hyperplanes in Rn of form gvi(xk)+ρvi =
gvj (xk) + ρvj for all k ∈ [N ] and all pairs of (vi, gvi

(xk)), (vj , gvj (xk)) ∈ GV such that i ̸= j.
These hyperplanes partition Rn into some regions, P1,P2, . . . , so that the following condition holds:
for every Pi, any ρ,ρ′ ∈ Pi have the same total order on {gv(xk) + ρv | (v, gv(xk)) ∈ GV (x)} and
{gv(xk) + ρ′v | (v, gv(xk)) ∈ GV (xk)} up to ties for all k ∈ [N ], which implies uρ(xk) = uρ′(xk)
for all k ∈ [N ] due to Lemma 2. That is, for every k ∈ [N ], if we see uρ(xk) as a function of ρ, it is
piecewise constant where pieces are given by P1,P2, . . . . Therefore, when ρ moves over whole Rn,
the number of distinct tuples of form (uρ(x1), . . . , uρ(xN )) is at most the number of the pieces. Note
that the pieces are generated by partitioning Rn with

∑
k∈[N ]

(|GV (xk)|
2

)
≤ N

(
n!
2

)
hyperplanes, which

means there are at most O
((

eN
(
n!
2

))n)
pieces. To shatter N instances, O

((
eN

(
n!
2

))n)
≥ 2N is

necessary. Solving this for the largest N yields Pdim(U) = O(n2 lg n).

Compared with GBFS, the additional n factor comes from the bound of (n− 1)! on |Gv|. This bound
may seem too pessimistic, but it is almost tight in some cases, as implied by the following example.
Example 1. Let (V,E) be a complete graph with edges labeled as

{
e1, . . . , e|E|

}
. Set each edge

weight wei to 2i−1 for i ∈ [|E|]. Considering the binary representation of the edge weights, the costs
of all simple s–v paths are mutually different for v ∈ V , which implies |Gv| =

∑n−2
k=0 k! ≥ (n− 2)!.

This example suggests that improving the O(n2 lg n) bound is not straightforward. Under some
realistic assumptions, however, we can improve it by deriving smaller upper bounds on |Gv|.
First, if the maximum degree of vertices is always bounded, we can obtain the following bound.
Theorem 3. Assume that the maximum out-degrees of directed graphs (V,E) of all instances in Π
are upper bounded by d. Then, it holds that Pdim(U) = O(n2 lg d).

Proof. Under the assumption on the maximum degree, there are at most
∑n−2

k=0 d
k ≤ (n− 1)dn−2

simple s–v paths, which implies |Gv| ≤ (n− 1)dn−2 for every v ∈ V . Therefore, we have |GV | ≤
n× (n− 1)dn−2. Following the proof of Theorem 2, we can obtain an upper bound on Pdim(U) by
solving O

(
Nn

(
n(n−1)dn−2

2

)n)
≥ 2N for the largest N , which yields Pdim(U) = O(n2 lg d).

1Even if some regions degenerate, from [23, Theorem 28.1.1] and [12, Proposition A2.1], the number of all
d-dimensional regions for d = 0, . . . , n is

∑n
d=0

∑d
i=0

(
n−i
d−i

)(
m

n−i

)
≤ 2(em)n. The fact has a close connection

to Sauer’s lemma [30] (see [20]). In this sense, our analysis is in a similar spirit to the general framework of [8].
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Figure 1: An illustration of the instances x1, . . . , xn−4 for n = 8. Each vertex is labeled by s, r, t, or
i ∈ [n− 3], as shown nearby the vertex circles. The values in vertex circles represent ρ that makes
Aρ return suboptimal paths to x2 and x3, i.e., S = {2, 3}. The thick edges indicate returned paths.

Second, if edge weights are non-negative integers bounded by W , we can obtain the following bound.
Theorem 4. Assume that edge weights {we}e∈E of all instances in Π are non-negative integers
bounded by a constant W from above. Then, it holds that Pdim(U) = O(n lg(nW )).

Proof. Under the assumption, every g-cost gv takes a non-negative integer value at most nW .
Since Gv consists of distinct g-cost values, |Gv| ≤ nW holds, hence |GV | ≤ n2W . Solving
O
(
Nn

(
n2W
2

)n)
≥ 2N for the largest N , we obtain Pdim(U) = O(n lg(nW )).

Note that if W = O(poly(n)) holds, we have Pdim(U) = O(n lg n).

On reopening. A* is usually allowed to reopen closed vertices as in Steps 12–14. This, however,
causes Ω(2n) iterations in general [26], albeit always finite [33]. A popular workaround is to simply
remove Steps 12–14, and such A* without reopening has also been extensively studied [34, 31, 14, 15].
Note that our results are applicable to A* both with and without reopening.

4 Lower bounds on the pseudo-dimension

We present lower bounds on the pseudo-dimension for GBFS/A*. We prove the result by constructing
Ω(n) shatterable instances with unweighted graphs. Therefore, the O(n lg n) upper bounds for GBFS
(Theorem 1) and A* under the edge-weight assumption (Theorem 4) are tight up to a lg n factor.
Theorem 5. For GBFS/A* Aρ with parameters ρ ∈ Rn, it holds that Pdim(U) = Ω(n).

Proof. We construct a series of n−4 instances, x1, . . . , xn−4, that can be shattered by U , where each
uρ returns the length of an s–t path found by Aρ. We label vertices in V by s, r, t, or i ∈ [n− 3].
See Figure 1 for an example with n = 8. We define M = V \ {s, r, t}. For each xi (i ∈ [n − 4]),
we draw edges (s, v) for v ∈M and (v, t) for v ∈ {v′ ∈M | v′ > i}, which constitute optimal s–t
paths of length 2. In addition, for each xi, we draw edges (i, r) and (r, t), where s→ i→ r → t is
the only suboptimal path of length 3. Letting ti = 2.5 for i ∈ [n− 4], we prove that U can shatter
those n− 4 instances, i.e., Aρ can return suboptimal solutions to any subset of {x1 . . . , xn−4} by
appropriately setting ρ.

Let S ⊆ [n− 4] indicate a subset of instances, to which we will make Aρ return suboptimal solutions.
We show that for any S, we can set ρ so that Aρ returns s→ i→ r → t to xi if and only if i ∈ S. We
refer to the vertex labeled by n− 3 as m, which we use to ensure that every instance has an optimal
path s → m → t. We set ρ as follows: ρs = n (or an arbitrary value), ρr = ρt = 0, ρi = i+ 2 if
i ∈ S ∪ {m}, and ρi = n (or a sufficiently large value) if i ∈ [n− 4] \S. If Aρ with this ρ is applied
to xi, it iteratively selects vertices in S ∪ {m} in increasing order of their labels until a vertex that
has a child is selected. Once a vertex with a child is expanded, it ends up returning s→ i→ r → t if
i ∈ S and s→ v → t for some v > i if i /∈ S. We below confirm this more precisely, separately for
GBFS and A*.
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GBFS. We consider applying GBFS Aρ to xi. Aρ first expands s and add vertices in M to OPEN.
Since vertices in v ∈ [n− 4] \S have sufficiently large scores of n, they are never selected before any
vertex in S ∪ {m}. Thus, Aρ selects a vertex from S ∪ {m} with the smallest score. If the selected
vertex, denoted by v, satisfies v < i, there is no child of v; hence, nothing is added to OPEN, and we
go back to Step 3. In this way, Aρ iteratively moves v ∈ S ∪ {m} that has no child from OPEN to
CLOSED. Consider the first time when the selected vertex v ∈ S ∪ {m} has a child c (this situation is
guaranteed to occur since m always has a child). If i /∈ S, we have v ̸= i since v is selected from
S ∪ {m}. Then, since v’s child is c = t, Aρ returns s→ v → t with v ̸= i. If i ∈ S, then i has the
smallest score (ρi = i+ 2) among all vertices in S ∪ {m} that have a child. Thus, Aρ selects i and
opens r. Now, r has the smallest score of ρr = 0. Therefore, Aρ selects r and reaches t, returning
s→ i→ r → t. Consequently, Aρ returns the suboptimal path if and only if i ∈ S.

A*. It first expands s and add M to OPEN. Since gv = 1 for all v ∈M , only ρ values matter when
comparing the scores, as with the case of GBFS. Therefore, A* iterates to move vertices in S ∪ {m}
from OPEN to CLOSED until a vertex that has a child is selected. Consider the first time a selected
vertex v has a child c (so far, s is not reopened since gs = 0). As with the case of GBFS, we have
v ̸= i and c = t if i /∈ S, or v = i and c = r if i ∈ S. Now, every v′ ∈ OPEN \ {c} has a score of at
least 4 since gv′ = 1 and ρv′ ≥ 3 for v′ ∈M . Therefore, if i /∈ S, t ∈ OPEN has the smallest score of
gt + ρt = 2 + 0 = 2. Thus, Aρ next selects t and returns s→ v → t, where v ̸= i. If i ∈ S, since
r ∈ OPEN has the smallest score of gr + ρr = 2 + 0 = 2, Aρ selects r and opens t. Then, since t has
the score of gt + ρt = 3 + 0 = 3, Aρ selects t and returns s→ i→ r → t. To conclude, Aρ returns
the suboptimal path if and only if i ∈ S.

5 Toward better guarantees on the suboptimality of A*

Given the results in Sections 3 and 4, a major open problem is to close the Õ(n) gap2 between the
O(n2 lg n) upper bound and the Ω(n) lower bound for A* in general cases. This problem seems very
complicated, as we will discuss in Section 6. Instead, we here study a particular case where we want
to bound the expected suboptimality of A*, which is an important performance measure since learned
heuristic values are not always admissible. We show that a general bound obtained from Theorem 2
can be sometimes improved by using a ρ-dependent worst-case bound [34].

For any x ∈ Π, let Opt(x) and Costρ(x) be the costs of an optimal solution and an s–t path returned
by Aρ, respectively, and let uρ(x) = Costρ(x)−Opt(x) be the suboptimality. From Theorem 2 and
Proposition 1, we can obtain the following high-probability bound on the expected suboptimality:

E
x∼D

[Costρ(x)−Opt(x)] ≤ 1

N

N∑
i=1

(Costρ(x)−Opt(x)) + Õ

H

√
n2 + lg 1

δ

N

. (1)

That is, the expected suboptimality can be bounded from above by the empirical suboptimality over
the N training instances (an empirical term) plus an Õ(H

√
n2/N) term (a complexity term). While

this bound is useful when N ≫ n2, we may not have enough training instances in practice. In such
cases, the complexity term becomes dominant and prevents us from obtaining meaningful guarantees.
In what follows, we present an alternative bound of the form “an empirical term + a complexity term”
that can strike a better balance between the two terms when N is not large enough relative to n2.

To this end, we use the notion of consistency. We say ρ is consistent if ρv ≤ ρc +w(v,c) holds for all
(v, c) ∈ E. If ρ is consistent, A* without reopening returns an optimal solution. Valenzano et al. [34,
Theorem 4.6] revealed that for any instance x ∈ Π, the suboptimality of A* can be bounded by the
inconsistency accumulated along an optimal path (excluding the first edge containing s) as follows:3

Costρ(x)−Opt(x) ≤ ∆ρ(x) :=
∑

(v,c)∈S∗(x),v ̸=s

max
{
ρv − ρc − w(v,c), 0

}
, (2)

where S∗(x) ⊆ E is an optimal solution to x (if there are multiple optimal solutions, we break ties
by using the lexicographical order induced from the total order defined in Assumption 2). We call
∆ρ(x) the inconsistency (of ρ on S∗(x)).

2We use Õ and Ω̃ to hide logarithmic factors of n and N for simplicity.
3The original theorem in [34] is applicable only to the case where A* does not reopen vertices and ρt = 0.

These restrictions are unnecessary as detailed in Appendix C, and thus our result holds regardless of reopening.
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Given N instances x1, . . . , xN , we can compute the empirical inconsistency, 1
N

∑N
i=1 ∆ρ(xi), at the

cost of solving the N instances, which we will use as an empirical term. To define the corresponding
complexity term, we regard ∆ρ(·) : Π → [0, Ĥ] as an inconsistency function parameterized by ρ,
where we will discuss how large Ĥ > 0 can be later, and we let Û = {∆ρ : Π→ [0, Ĥ] | ρ ∈ Rn }.
The following theorem says that the class Û of inconsistency functions has a smaller pseudo-dimension
than the class U of general utility functions.

Theorem 6. For the class Û of inconsistency functions, it holds that Pdim(Û) = O(n lg n).

By using (2), Proposition 1, and Theorem 6, we can obtain the following high-probability bound on
the expected suboptimality, whose complexity term has a better dependence on n than that of (1):

E
x∼D

[Costρ(x)−Opt(x)] ≤ E
x∼D

[∆ρ(x)] ≤
1

N

N∑
i=1

∆ρ(xi) + Õ

Ĥ

√
n+ lg 1

δ

N

.

This bound is uniform for all ρ ∈ Rn, as with other bounds discussed so far. Thus, the bound holds
even if we choose ρ to minimize the empirical inconsistency. Note that the empirical inconsistency is
convex in ρ since ∆ρ(xi) consists of a maximum of a linear function of ρ and zero, hence easier to
minimize than the raw empirical suboptimality in practice (and suitable for a recent online-convex-
optimization framework [25]).

Before proving Theorem 6, we present a typical example to show that the inconsistency is not too
large relative to the suboptimality.
Example 2. Suppose that every edge weight we is bounded to [0,W ], which ensures that the
suboptimality uρ is at most H = W (n − 1) for any ρ ∈ Rn. For simplicity, we consider the
following natural way to compute ρ values: compute an estimate ŵe ∈ [0,W ] of we for each e ∈ E
and let ρv be the cost of a shortest v–t path with respect to {ŵe}e∈E . Then, ρ enjoys the consistency
with respect to {ŵe}e∈E , i.e., ρv ≤ ρc + ŵ(v,c) for every (v, c) ∈ E. Therefore, it holds that

∆ρ(x) ≤
∑

(v,c)∈S∗(x),v ̸=s

max
{
ρv − ρc − w(v,c), 0

}
≤

∑
(v,c)∈S∗(x),v ̸=s

∣∣ŵ(v,c) − w(v,c)

∣∣.
Hence ∆ρ is at most Ĥ = W (n− 2), implying that ∆ρ does not largely exceed the suboptimality. If
empirically accurate estimates ŵe for e ∈ S∗(x) are available, the inconsistency becomes small.

We prove Theorem 6 by using the general analysis framework by Balcan et al. [8]. To begin with, we
introduce Assouad’s dual class, which provides a formal definition of the class of functions of ρ.
Definition 2 (Assouad [3]). Given a class,H ⊆ RY , of functions h : Y → R, the dual class ofH is
defined asH∗ =

{
h∗
y : H → R

∣∣ y ∈ Y } such that h∗
y(h) = h(y) for each y ∈ Y .

In our case, we have Y = Π and H = Û , and each ∆∗
x ∈ Û∗ is associated with an instance x ∈ Π.

The following definition will be used to capture the piecewise structure of the dual class Û∗.
Definition 3 (Balcan et al. [8, Definition 3.2]). A class,H ⊆ RY , of functions is (F ,B,K)-piecewise
decomposable for a class B ⊆ {0, 1}Y of boundary functions and a classF ⊆ RY of piece functions if
the following condition holds: for every h ∈ H, there exist K boundary functions b(1), . . . , b(K) ∈ B
and a piece function fb for each binary vector b ∈ {0, 1}K such that for all y ∈ Y , it holds that
h(y) = fby

(y) where by = (b(1)(y), . . . , b(K)(y)) ∈ {0, 1}K .

The following result of [8] provides an upper bound on the pseudo-dimension of a class of functions
via the piecewise structure of the dual class.
Proposition 2 (Balcan et al. [8, Theorem 3.3]). Let U ⊆ RΠ be a class of functions. If U∗ ⊆ RU

is (F ,B,K)-piecewise decomposable with a class B ⊆ {0, 1}U of boundary functions and a class
F ⊆ RU of piece functions, the pseudo-dimension of U is bounded as follows:

Pdim(U) = O((Pdim(F∗) + VCdim(B∗)) lg(Pdim(F∗) + VCdim(B∗)) + VCdim(B∗) lgK).

Now, we are ready to prove Theorem 6.
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Proof of Theorem 6. Since there is a one-to-one correspondence between ∆ρ ∈ Û and ρ ∈ Rn, we

below identify ∆ρ with ρ for simplicity. Let B =
{
I(⟨z,ρ⟩+ z0)

∣∣ (z0, z) ∈ Rn+1
}
⊆ {0, 1}Û and

F =
{
⟨z,ρ⟩+ z0

∣∣ (z0, z) ∈ Rn+1
}
⊆ RÛ be classes of boundary and piece functions, respectively.

We show that Û∗ is (F ,B,O(n2))-piecewise decomposable.

Fix any ∆∗
x ∈ Û∗; this also uniquely specifies an instance x ∈ Π and an optimal solution S∗(x) ⊆ E

(due to the tie-breaking). We consider K = |E| = O(n2) boundary functions of form b(v,c)(ρ) =
I
(
ρv − ρc − w(v,c) > 0

)
for all edges (v, c) ∈ E. We below confirm that these boundary functions

partition Rn ∋ ρ into some regions so that in each region, ∆∗
x(ρ) can be written as a linear

function of ρ, which belongs to F . For each binary vector bρ =
(
b(v,c)(ρ)

)
(v,c)∈E

∈ {0, 1}K , we

define a subset Sρ(x) of S∗(x) as Sρ(x) =
{
(v, c) ∈ S∗(x)

∣∣ b(v,c)(ρ) = 1, v ̸= s
}

; that is, each
(v, c) ∈ Sρ(x) satisfies v ̸= s and ρv − ρc − w(v,c) > 0. From the definition of ∆ρ(x), we have
∆∗

x(ρ) = ∆ρ(x) =
∑

(v,c)∈Sρ(x)
(ρv − ρc − w(v,c)). This is a linear function of ρ, and thus we can

choose a piece function fbρ ∈ F such that ∆∗
x = fbρ . This relation holds for every bρ ∈ {0, 1}K , and

thus we have ∆∗
x(ρ) = fbρ(ρ) for all ρ ∈ Rn. Hence Û∗ is (F ,B,O(n2))-piecewise decomposable.

Since F∗ and B∗ can be seen as classes of linear and halfspace functions of (z0, z) ∈ Rn+1,
respectively, we have Pdim(F∗) = VCdim(B∗) = n + 1 (see also [6, Lemma 3.10], a preprint
version of [8]). Therefore, from Proposition 2, we obtain Pdim(Û) = O(n lg n).

6 Conclusion and discussion

We have studied the sample complexity of learning heuristic functions for GBFS and A* on graphs
with a fixed vertex set of size n. For GBFS and A*, we have proved that the pseudo-dimensions
are upper bounded by O(n lg n) and O(n2 lg n), respectively. As for A*, we have shown that the
bound can be improved to O(n2 lg d) if every vertex has a degree of at most d and to O(n lg n) if
edge weights are bounded integers. We have also presented the Ω(n) lower bounds for GBFS and A*,
implying that our bounds for GBFS and A* under the integer-weight condition are tight up to a lg n
factor. Finally, we have discussed bounds on the suboptimality of A* and obtained a guarantee with a
better complexity term by evaluating the pseudo-dimension of the class of inconsistency functions.

An open problem is to close the gap between the upper and lower bounds regarding A* for general
cases. This, however, does not seem straightforward. We here discuss the reasons for the difficulty. As
regards the upper bound, the bottleneck is the bound of (n− 2)! on |Gv|, but this cannot be improved
in general, as shown in Example 1. Considering this, the direct use of Sauer’s lemma would not yield
better upper bounds. Thus, we need to use some special structures of the hyperplanes (e.g., each has
only two variables), which would require more complicated analysis. As for the lower bound, the
construction of the Ω(n) instances in Theorem 5 relies on the fact that ρ has an n degree of freedom.
In addition, Theorem 4 implies that we need to consider instances with non-integer edge weights (or
exponentially large integer weights in n) to obtain a lower bound of Ω̃(n2). Considering the above,
we would need more involved techniques for constructing a set of Ω̃(n2) shatterable instances.

Another interesting future direction is to improve upper bounds on the pseudo-dimension by restricting
heuristic functions to some classes. Appendix D will present an illustrative example where we can
achieve polylog(n) upper bounds on the pseudo-dimension by assuming that heuristic functions with
much fewer tunable parameters than n can be designed in an instance-specific manner.

We finally discuss limitations of our work. As mentioned in Section 2, we require every instance to
be defined on (subsets of) a fixed vertex set. Also, our work does not cover the case where heuristic
function values can change depending on instance-dependent features. Studying how to overcome
these limitations would also constitute interesting future work.
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Appendix
A Comparisons with previous results on tree search

We compare our upper bounds with those of existing results on general tree search [9, 10].

Balcan et al. [9] studied the pseudo-dimension for tree-search algorithms in the following situation;
a tree-search algorithm with d configurable parameters builds a search tree of size at most κ by
iteratively choosing an action from a set of at most T possible actions. In this setting, they obtained
an O(dκ log T + d log d) upper bound. Balcan et al. [10] removed the dependence on κ assuming
scores governing the tree search to be defined by path-wise functions. Their bound is O(d∆2 log k +
d∆ log T ), where ∆ and k are the maximum depth and the number of children, respectively, of search
trees. Since κ can be exponential in the depth ∆, this is a considerable improvement in this context.

In our setting, since there are n configurable parameters, ρ ∈ Rn, we have d = n. If we apply the
bound of [9] to GBFS/A* regarded as a tree-search algorithm that iteratively builds search states, κ
and T values can be as large as Ω(n). This is because GBFS/A* can perform Ω(n) iterations, where
each iteration increases the tree size, and the number of possible actions is equal to the size of OPEN,
which is Ω(n) in general. Moreover, for A* with reopening, the number of iterations can be Ω(2n) as
mentioned in Section 3.2, implying κ = Ω(2n). Thus, only in the case of A* without reopening, the
previous bound matches our O(n2 lg n) bound (Theorem 2). As for GBFS and A* with reopening,
our Theorems 1 and 2 provide O(n lg n) and O(n2 lg n) bounds, respectively, which improve the
O(n2 lg n) and O(n2n lg n) bounds, respectively, implied by the previous result.

As for the result of [10], seeing GBFS/A* as a tree-search algorithm again, the maximum tree depth
is as large as the number of vertices in general, i.e., ∆ = Ω(n). Also, the number of children can be
as large as the size of OPEN, hence k = Ω(n). Thus, the result of [10] leads to an O(n3 lg n) bound,
which is larger than any of our upper bounds.

B How to deal with varying t

As mentioned in Section 2.2, given a fixed t ∈ V , each entry ρv in ρ indicates an estimated cost of
the shortest v–t path. Therefore, if t changes over instances, we need to define ρ for each t, which
we here denote by ρt ∈ Rn. If t changes, the structure of path-finding instances also greatly changes.
Thus, it is natural to evaluate the performance of GBFS/A* separately for each t. Specifically, we
take D to be a conditional distribution, from which path-finding instances with fixed t are drawn, and
we analyze the sample complexity for each possible t ∈ V . In practice, {ρt}t∈V may be obtained
by, e.g., learning a function that embeds vertices into a metric space and measuring distances on the
space, as mentioned in Section 2.2. In this case, an embedding function with tunable parameters
governs all the {ρt}t∈V values. Considering such situations, we need to bound the sample complexity
of learning heuristic functions for all possible t ∈ V . This can be done at a slight cost of increasing
the bound in Proposition 1 by taking a union bound over all possible t ∈ V . (Note that the upper
bounds on the pseudo-dimension in Theorems 1, 2 and 6 hold separately for each t ∈ V by regarding
ρ as ρt.) Since there are at most n possible choices of t, this replaces δ in Proposition 1 with δ/n,
yielding only a lg n additive factor. This effect is small relative to that of the pseudo-dimension term.

C Worst-case analysis of A* regardless of reopening

We show that the existing bound on the suboptimality of A* by Valenzano et al. [34] holds regardless
of whether we allow A* to reopen vertices or not, and we also remove a minor assumption of ρt = 0.
Note that the result of [34], which focuses on the case without reopening, does not immediately imply
the same bound for A* with reopening since reopening sometimes degrades the solution quality [31].

We fix an instance and define the inconsistency of an edge (v, v′) ∈ E as

Inc(v, v′) = max
{
ρv − ρv′ − w(v,v′), 0

}
. (A1)

Fix an optimal s–t path and let Popt = v0, v1, . . . , vk be a sequence of vertices on the optimal path,
where v0 = s, vk = t, and the optimal s–t path visits the vertices in this order. Suppose that vk = t
is first selected at the (T + 1)st iteration, at which the algorithm terminates.
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Theorem 7. Let Cost be the cost of an s–t path returned by A* (Algorithm 2) with/without reopening,
and let Opt be the cost of Popt = v0, v1, . . . , vk. It holds that

Cost ≤ Opt +

k−1∑
j=1

Inc(vj , vj+1).

The theorem was proved by Valenzano et al. [34] for Algorithm 2 without reopening. Their proof
uses the fact that once a vertex is added to CLOSED, it never gets out of CLOSED. If we allow A* to
reopen vertices, the fact is not always true. Therefore, we need to prove the theorem without using
the property of CLOSED. To this end, we define lists of selected vertices, which play a similar role to
CLOSED in our proof. Formally, for τ = 0, 1, . . . , T + 1, we define SELECTEDτ as a list of vertices
that have been selected in Step 3 in the first τ iterations. Note that even with reopening, once a vertex
is added to SELECTEDτ , it never gets out of the list.

As in [34], we derive the bound in Theorem 7 by decomposing Popt into two subpaths, which are
defined based on the following shallowest vertex.
Lemma 3. We say a vertex vi ∈ Popt = v0, v1, . . . , vk is the shallowest vertex at τ ∈ {0, 1, . . . , T}
if it satisfies the following conditions after the τ th iteration:

vi ∈ OPEN \ SELECTEDτ and {vj ∈ Popt | j < i} ⊆ SELECTEDτ .
For every τ = 0, 1, . . . , T , a shallowest vertex always exists.

Proof. We prove the claim by induction. If τ = 0, v0 is the shallowest since we have SELECTED0 = ∅
and OPEN = {v0}. If τ = 1, v1 is the shallowest vertex since we have SELECTED1 = {v0} and
v1 ∈ OPEN\SELECTED1. Assume that the claim is true for τ ′ < τ and let vi′ ∈ OPEN\SELECTEDτ−1

be the shallowest vertex at τ − 1. We consider two cases: vi′ or v ̸= vi′ is selected at the τ th iteration.
If v ̸= vi′ is selected, we have SELECTEDτ = SELECTEDτ−1 ∪ {v} and vi′ ∈ OPEN \ SELECTEDτ ;
thus vi′ remains the shallowest at τ . If vi′ is selected, take the longest subpath of Popt that starts
from vi′ and is contained in SELECTEDτ . We denote such a subpath by vi′ , . . . , vi′′ , where i′′ < k
holds since vk is never selected in the first T iterations. From the definition of the subpath, we have
vi′′+1 /∈ SELECTEDτ . Moreover, vi′′+1 must have been opened since its parent vi′′ has been selected.
Thus, vi′′+1 ∈ OPEN \ SELECTEDτ holds. Furthermore, we have {v0, . . . , vi′−1} ⊆ SELECTEDτ due
to the induction hypothesis and {vi′ , . . . , vi′′} ⊆ SELECTEDτ from the definition of the subpath.
Thus, vi′′+1 is the shallowest vertex at τ . To conclude, the shallowest vertex at τ exists in any case.
The proof is completed by induction.

C.1 Decomposing the suboptimality term with the shallowest vertex

For every v ∈ V , we let g∗v and ρ∗v denote the costs of optimal s–v and v–t paths, respectively. We use
g∗v,v′ to denote the cost of an optimal v–v′ path for any pair of v, v′ ∈ V ; it holds that g∗v = g∗s,v . For

each v ∈ V , let g(τ)v be the gv value after the τ th iteration, where g
(0)
s = 0 and g

(0)
v =∞ for v ̸= s.

If gv is updated in the (τ + 1)st iteration, we have g
(τ+1)
v < g

(τ)
v ; otherwise we have g

(τ+1)
v = g

(τ)
v .

Thus, g(τ)v is non-increasing in τ . We define δg
(τ)
v = g

(τ)
v − g∗v as the g-cost error of v after the τ th

iteration, which is also non-increasing in τ .

The following lemma states that the suboptimality can be decomposed into two parts: a g-cost error
of the shallowest vertex vi and the inadmissibility of ρvi (subtracted by ρt).
Lemma 4. If vi is the shallowest vertex at T , it holds that

Cost ≤ Opt + δg(T )
vi + ρvi − ρ∗vi − ρt.

Proof. After the T th iteration, the score of vi is

g(T )
vi + ρvi = g∗vi + δg(T )

vi + ρvi

= g∗vi + ρ∗vi + δg(T )
vi + ρvi − ρ∗vi

= Opt + δg(T )
vi + ρvi − ρ∗vi .

Since vk = t is selected at the (T + 1)st iteration instead of vi, it holds that g(T )
t + ρt ≤ g

(T )
vi + ρvi .

Since we have Cost ≤ g
(T )
t , we obtain the statement by rearranging the terms.
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C.2 Bounding ρvi − ρ∗vi
− ρt

We prove a general lemma for later use, which implies an upper bound on ρvi − ρ∗vi
− ρt.

Lemma 5. Let P = v0, v1, . . . , vk be any optimal v0–vk path. It holds that

ρv0 − ρvk − g∗v0,vk ≤
k−1∑
i=0

Inc(vi, vi+1).

Proof. From the definition (A1), Inc(vi, vi+1) ≥ ρvi − ρvi+1
−w(vi,vi+1) holds. Therefore, we have

k−1∑
i=0

(
ρvi − ρvi+1

− w(vi,vi+1)

)
≤

k−1∑
i=0

Inc(vi, vi+1).

Using a telescoping sum argument, we obtain

ρv0
− ρvk −

k−1∑
i=0

w(vi,vi+1) ≤
k−1∑
i=0

Inc(vi, vi+1).

Since P is optimal, we have
∑k−1

i=0 w(vi,vi+1) = g∗v0,vk , thus completing the proof.

Consider applying Lemma 5 to the subpath P = vi, . . . , vk of Popt, which is an optimal vi–vk path.
Since g∗vi,vk

= ρ∗vi and ρvk = ρt, it holds that

ρvi − ρ∗vi − ρt ≤
k−1∑
j=i

Inc(vj , vj+1). (A2)

Thus, we can obtain an upper bound on ρvi − ρ∗vi − ρt.

C.3 Bounding δg
(T )
vi

Our goal is to prove the following lemma.
Lemma 6. Let Popt = v0, . . . , vk be the optimal s–t path in the statement of Theorem 7. Then, the
shallowest vertex vi ∈ Popt at T satisfies

δg(T )
vi ≤

i−1∑
j=1

Inc(vj , vj+1).

To prove Lemma 6, we need the following two lemmas.
Lemma 7. For Popt in Lemma 6 and i ≥ 1, if vi−1 ∈ Popt is first selected at the τ ′th iteration and
satisfies δg(τ

′)
vi−1 ≤

∑i−2
j=1 Inc(vj , vj+1), then vi ∈ Popt satisfies δg(τ)vi ≤

∑i−1
j=1 Inc(vj , vj+1) for all

τ = τ ′, . . . , T .

Proof. In the τ ′th iteration, we update gvi if it is larger than gnew = g
(τ ′)
vi−1 + w(vi−1,vi), hence

g
(τ ′)
vi ≤ g

(τ ′)
vi−1 + w(vi−1,vi). Since (vi−1, vi) is an edge on Popt, g∗vi = g∗vi−1

+ w(vi−1,vi) holds.

Therefore, it holds that δg(τ
′)

vi ≤ δg
(τ ′)
vi−1 . Since δg

(τ)
vi is non-increasing in τ , we have δg

(τ)
vi ≤ δg

(τ ′)
vi .

If i = 1, since v0 = s, we obtain

δg(τ)v1 ≤ δg(τ
′)

v1 ≤ δg(τ
′)

v0 = g(τ
′)

v0 − g∗v0 = 0− 0 = 0.

If i > 1, we have

δg(τ)vi
≤ δg(τ

′)
vi ≤ δg(τ

′)
vi−1
≤

i−2∑
j=1

Inc(vj , vj+1) ≤
i−1∑
j=1

Inc(vj , vj+1),

where we used the assumption on δg
(τ ′)
vi−1 and Inc(vi−1, vi) ≥ 0.
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Lemma 8. For Popt in Lemma 6 and any τ = 0, 1, . . . , T , every vi ∈ Popt ∩ SELECTEDτ satisfies
δg

(τ)
vi ≤

∑i−1
j=1 Inc(vj , vj+1).

Proof. The proof is by induction on τ . If τ = 0, the claim is vacuously true since SELECTEDτ = ∅.
If τ = 1, only v0 is in SELECTED1. Since g(1)v0 = g∗v0 = 0, we have δg(1)v0 = 0. Thus, the claim is true.

Assume that the claim is true after the first τ ≥ 1 iterations; in other words, for any τ ′ ≤ τ , every
vi′ ∈ Popt ∩ SELECTEDτ ′ satisfies δg(τ

′)
vi′ ≤

∑i′−1
j=1 Inc(vj , vj+1). Since δg(τ)vi′ is non-increasing in τ ,

from the induction hypothesis, vertices in Popt ∩ SELECTEDτ remain to satisfy the inequality after the
(τ + 1)st iteration. Therefore, we focus on the vertex selected at the (τ + 1)st iteration, which is the
only new vertex in SELECTEDτ+1. If the selected vertex is not in Popt, the statement is true after the
(τ + 1)st iteration. We below discuss the case where the selected vertex is in Popt. We let vi ∈ Popt

be the selected vertex, where i ≥ 1, and discuss two cases: vi’s parent, vi−1, is in SELECTEDτ or not.

Case 1: vi−1 ∈ SELECTEDτ . Suppose that vi−1 has been first selected at the τ ′th iteration (τ ′ ≤ τ ).
The induction hypothesis implies δg(τ

′)
vi−1 ≤

∑i−2
j=1 Inc(vj , vj+1). Thus, from Lemma 7, we obtain

δg
(τ+1)
vi ≤

∑i−1
j=1 Inc(vj , vj+1).

Case 2: vi−1 /∈ SELECTEDτ . In this case, we have i > 1 since v0 is selected at the first iteration.
Let vi′ be the shallowest vertex at τ . Since vj ∈ SELECTEDτ must hold for all j < i′, we have i′ < i.
Since vi is selected instead of vi′ , it holds that g(τ)vi + ρvi ≤ g

(τ)
vi′ + ρvi′ . Therefore, we have

δg(τ)vi ≤ g(τ)vi′
− g∗vi + ρvi′ − ρvi = δg(τ)vi′

+ g∗vi′ − g∗vi + ρvi′ − ρvi = δg(τ)vi′
+ ρvi′ − ρvi − g∗vi′ ,vi .

We below consider bounding the right-hand side. First, we discuss a bound on δg
(τ)
vi′ . Suppose that

vi′−1 ∈ SELECTEDτ is first selected at the τ ′th iteration, where τ ′ ≤ τ . From the induction hypothesis,
we have δg(τ

′)
vi′−1

≤
∑i′−2

j=1 Inc(vj , vj+1). Therefore, Lemma 7 implies δg(τ)vi′ ≤
∑i′−1

j=1 Inc(vj , vj+1).
Next, from Lemma 5, we have ρvi′ − ρvi − g∗vi′ ,vi ≤

∑i−1
j=i′ Inc(vj , vj+1). Consequently, we obtain

δg(τ+1)
vi ≤ δg(τ)vi ≤

i′−1∑
j=1

Inc(vj , vj+1) +

i−1∑
j=i′

Inc(vj , vj+1) =

i−1∑
j=1

Inc(vj , vj+1).

To conclude, every vi ∈ Popt ∩ SELECTEDτ+1 satisfies δg(τ+1)
vi ≤

∑i−1
j=1 Inc(vj , vj+1). Therefore,

the statement is true by induction.

Now, we are ready to prove Lemma 6.

Proof of Lemma 6. Since vi is the shallowest at T , vi−1 has been first selected at some τ th iteration,
where τ ≤ T , i.e., vi−1 ∈ Popt∩SELECTEDτ . Thus, Lemma 8 implies δg(τ)vi−1 ≤

∑i−2
j=1 Inc(vj , vj+1).

Therefore, from Lemma 7, we obtain δg
(T )
vi ≤

∑i−1
j=1 Inc(vj , vj+1).

C.4 Proof of Theorem 7

By summing up the above lemmas and equations, we prove Theorem 7.

Proof of Theorem 7. By using Lemmas 4 and 6 and eq. (A2), we obtain

Cost ≤ Opt + δg(T )
vi + ρvi − ρ∗vi

− ρt

≤ Opt +

i−1∑
j=1

Inc(vj , vj+1) +

k−1∑
j=i

Inc(vj , vj+1)

= Opt +

k−1∑
j=1

Inc(vj , vj+1).
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D An example of improving upper bounds with instance-specific heuristics

GBFS/A* is often applied to path-finding instances that have extremely many vertices, for which
our bounds on the pseudo-dimension depending on n or n2 imply somewhat pessimistic sample
complexity bounds. To exhibit more practical results for such cases, we study an example situation
where we can exponentially improve the upper bounds by using instance-specific heuristic functions.

We assume the vertex set V to be fixed as in Assumption 1 and that each vertex v ∈ V corresponds
to a state represented by a vector qv ∈ ΣL, where Σ is a finite set of cardinality B. For example,
if Σ = {0, 1}, we have B = 2 and each v ∈ V corresponds to a state represented by a bit vector
of length L. Such situations arise, e.g., when applying GBFS/A* to planning instances represented
by the STRIPS model [19]. As for heuristic functions, we assume that each ρv value is computed
as ρv = q⊤

v θ + η, where (θ, η) ∈ RL+1 is a vector of tunable parameters. (Although η is not
essential in the following analysis, we can use it to make every ρv non-negative in practice.) Here, an
important observation is that the number of tunable parameters is L+ 1, while V has up to n = BL

vertices. Using this exponential decrease in the number of tunable parameters, we below obtain
poly(L lgB) ≃ polylog(n) upper bounds on the pseudo-dimension for GBFS and A* under the
integer-weight assumption. That is, while the number of vertices is exponential in L, the upper
bounds can scale polynomially with L.

GBFS. As discussed in the proof of Lemma 1, if two heuristic function values ρ,ρ′ ∈ Rn have the
same total order on V , it holds uρ(x) = uρ′(x) for all instances x ∈ Π. Also, note that the total order
is uniquely determined by comparing ρv and ρv′ for all pairs of v, v′ ∈ V . Therefore, if we partition
the space RL+1 of tunable parameters into some regions P1,P2, . . . ⊆ RL+1 by

(
n
2

)
hyperplanes of

form
ρv = ρv′ ⇐⇒ q⊤

v θ + η = q⊤
v′θ + η ⇐⇒ (qv − qv′)⊤θ = 0,

then all (θ, η) values belonging to the same region Pi result in the same uρ(x) value for all x ∈ Π.
Hence, when (θ, η) is allowed to take any value in RL+1, the number of distinct tuples of form
(uρ(x1), . . . , uρ(xN )) is bounded by the number of the regions P1,P2, . . . . As in the proof of

Theorem 2, the number of such regions is O
((

e
(
n
2

))L+1
)

due to Sauer’s lemma. On the other hand,

to shatter N instances x1, . . . , xN , we need to make 2N distinct tuples of form (uρ(x1), . . . , uρ(xN ))

by varying (θ, η) ∈ RL+1. Since n = O(BL), solving O
((

e
(
n
2

))L+1
)
≥ 2N for the largest N

yields an O(L lg n) ≃ O(L2 lgB) bound on Pdim(U).

A* under the integer-weight assumption. We can also obtain a polylog(n) upper bound for A*
under the condition of Theorem 4, i.e., all edge weights take non-negative integer values at most W .
The proof begins with the same discussion as that of Theorem 2. For a fixed instance xk ∈ Π, the
number of possible uρ(xk) values is at most the number of regions created by hyperplanes of form
gv(xk) + ρv = gv′(xk) + ρv′ for all pairs of v, v′ ∈ V . Since gv(xk) can take nW distinct values,
the number of those hyperplanes is

(
n2W
2

)
, as discussed in the proof of Theorem 4. Therefore, given

N instances x1, . . . , xN , the number of distinct tuples of form (uρ(x1), . . . , uρ(xN )) is bounded by
the number of regions created by N

(
n2W
2

)
hyperplanes. Next, as with the above GBFS case, we

bound the number of those regions using Sauer’s lemma. With the tunable parameters (θ, η) ∈ RL+1,
each hyperplane can be written as

gv(xk) + ρv = gv′(xk) + ρv′ ⇐⇒ (qv − qv′)⊤θ + gv(xk)− gv′(xk) = 0.

Sauer’s lemma implies that N
(
n2W
2

)
such hyperplanes partition RL+1 into O

((
eN

(
n2W
2

))L+1
)

regions. To shatter the N instances, the number of the regions must be at least 2N . Since n = O(BL),

solving O
((

eN
(
n2W
2

))L+1
)
≥ 2N for the largest N yields an O(L lg nW ) ≃ O(L2 lgB+L lgW )

upper bound on Pdim(U).
As regards A* for general cases, it is open whether a similar polylog(n) upper bound can be achieved.
The obstacle is the additional n factor, which remains even if the number of tunable parameters
decreases. Thus, this problem would be as difficult as closing the gap between the Ω(n) lower bound
and Õ(n2) upper bound.
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