
A Human experiments

A.1 Experimental design

Figure 1 summarizes the experimental design used for our experiments. The participants that went
through our experiments are users from the online platform Amazon Mechanical Turk (AMT).
Through this platform, users stay anonymous, hence, we do not collect any sensitive personal
information about them. We prioritized users with a Master qualification (which is a qualification
attributed by AMT to users who have proven to be of excellent quality) or normal users with high
qualifications (number of HIT completed = 10000 and HIT accepted > 98%).

Before going through the experiment, participants are asked to read and agree to a consent form,
which specifies: the objective and procedure of the experiment, as well as the time expected to
completion (∼ 5 - 8 min) with the reward associated ($1.4), and finally, the risk, benefits, and
confidentiality of taking part in this study. There are no anticipated risks and no direct benefits for the
participants taking part in this study.

Figure 1: Experimental design. First, every participant goes through a practice session (fig 2) to
make sure they understand how to use attribution methods to infer the rules used by a model, and
a quiz (fig 3) to make sure they actually read and understand the instructions. Then, participants
are split into the different conditions – every participant will only go through one condition. The
3 possible conditions are: an Explanation condition where an explanation is provided to human
participants during their training phase, a Baseline condition where no explanation was provided to
the human participants, and a Control condition where a non-informative explanation was provided.
The main experiment was divided into 3 training sessions each followed by a brief test. In each
individual training trial, an image was presented with the associated prediction of the model, either
alone for the baseline condition or together with an explanation for the experimental and control
condition. After a brief training phase (5 samples), participants’ ability to predict the classifier’s
output was evaluated on 7 new samples (only the image, no explanation) during a test phase. To filter
out uncooperative participants we also add a catch trial (fig 4) in each test session.

Controlling for prior class knowledge To control for users’ own semantic knowledge, we balanced
the samples shown to participants so that the classifiers were correct/incorrect 50% of the time. This
way, the baseline (participants who try to simply predict the true class label of an image as opposed to
learning to predict the model’s outputs) is at 50%. Any higher score reflects a certain understanding
of the rules used by the model.

A.2 Pruning out uncooperative participants

3-stage screening proccess. To prune out uncooperative participants, we subjected them to a 3-stage
screening process. First, participants completed a short practice session to make sure they understood
the task and how to use the attribution methods to infer the rules used by the model (fig 2). Second,
as done in [1], we asked participants to answer a few questions regarding the instructions provided to
make sure they actually read and understood them (fig 3). Third, during the main experiment, we
took advantage of the reservoir to introduce a catch trial (fig 4). The reservoir is the place where we
store the training example of the current session, which can be accessed during the testing phase.
We added a trial in the testing phase of each session where the input image corresponded to one of
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Figure 2: Practice session. Through a practice session, which is a simplified version of the main
experiment, we evaluate if users understand how to read and use explanations. Participants that failed
to predict correctly any of the 5 cat test images on the first try were excluded from further analysis.

the training samples used in the current session: since the answer is still on the screen (or a scroll
away) we expect participants to be correct on these catch trials. Participants that failed any of the 3
screening processes were excluded from further analysis.
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Figure 3: Quiz. Through a quiz, we make sure that users read and understood the instructions.
Participants that did not answer correctly every question on the first try were excluded from further
analysis.

A.3 More results

Reaction time. We explored whether the usefulness of a method is reflected in the reaction time
of participants -i.e., the more useful the explanation the faster the participants are able to grasp the
strategy of the model-. Table 1 shows the reaction time of participants across methods, across datasets.
We do not find any trend linking reaction time with usefulness.

Method Husky vs. Wolf Leaves ImageNet

Saliency [2] 207.7 212.9 202.3
Integ.-Grad. [3] 213.1 216.5 218.5
SmoothGrad [4] 215.8 268.8 243.9
GradCAM [5] 168.9 154.6 268.9
Occlusion [6] 221.2 229.2 274.4
Grad.-Input [7] 210.4 238.1 208.0

Table 1: Average total time per method per dataset (in second). For each dataset, we bold the
most useful method, and we underline the least useful method.
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Figure 4: Catch trial. We use a reservoir (to store all the examples of the current training session)
that participants can refer to during the testing phase to minimize memory load. At the top of the
screen is the reservoir, at the bottom of the screen is a trial from the testing phase. We take advantage
of the reservoir to introduce a catch trial. We added a trial in the testing phase of each session where
the input image corresponded to one of the training samples used in the current session: since the
answer is still on the screen (or a scroll away) we expect participants to be correct on these catch
trials. Participants that failed any of the 3 catch trials (one per session) were excluded from further
analysis.

4



B Why do the best methods for the use cases Bias detection and Identifying
an expert strategy (leaves) differ?

The most interesting case is Saliency, which is the worst method on the bias dataset but the best
on the “leaves” dataset. On the bias dataset, the model seems to focus on the background (i.e., a
coarse feature), and on the “leaves” dataset the model seems to focus either on the margin or on
the vein of the leaf (i.e., very fine features). We hypothesize that different methods suit different
granularity of features (coarse vs fine). [4] make the hypothesis that “the saliency maps are faithful
descriptions of what the network is doing” but because “the derivative of the score function with
respect to the input [is] not [...] continuously differentiable”, the saliency map can appear noisy.
Because of this local discontinuity of the gradient, a large patch of important pixels is often portrayed
in the saliency map as a collection of smaller patches of important pixels (i.e., a coarse feature vs
multiple individual fine features) which can make it hard to identify if the strategy is the coarse
feature or a more complex interaction of the smaller features. In the bias dataset, because the model
relies on the background, the Saliency maps appear very noisy and the explanation ends-up not being
useful. We note that SmoothGrad, which proposes to fix that discontinuity, is useful. On the other
hand, on the leaves dataset, the model uses very fine features, therefore the Saliency maps suffer less
from the discontinuity, it does not appear noisy, Saliency is useful. We also note that in this case,
SmoothGrad is not better than Saliency, which can arguably be attributed to the fact that we do not
need to fix the discontinuity of the gradient. Conversely, because the granularity of both Grad-CAM
(the feature map is much smaller than image size) and Occlusion (the patch size is much bigger than
a pixel) is too high, the heatmaps they offer on the “leaves” dataset are too coarse to specifically
highlight the fine features and it seems to take more time for the subjects to pick-up on them. But on
the biased dataset, Grad-CAM and Occlusion are the best performing methods.

C Why do attribution methods fail?

C.1 Faithfulness

While the Deletion[8] measure is the most commonly used faithfulness metric, for completeness
we also consider 2 others faithfulness metric available in the Xplique library[9]: Insertion[8] and
µFidelity[10]. Fig 5 shows the correlation between either measure and our Utility. We find them to
be no better predictor of the practical usefulness of attribution methods than the Deletion measure.

Figure 5: Utility vs Insertion correlation & Utility vs µFidelity correlation The results suggest that
every faithfulness metrics tested are poor predictors of the practical usefulness of attribution methods.
Concerning the ImageNet dataset (triangle marker), the Utility scores are insignificant since none of
the methods improves the baseline.

C.2 Perceptual Similarity

Tab 2 shows the Perceptual Similarity scores obtained for each method, on every dataset. We observe
that on ImageNet, where attribution methods do not help, the perceptual similarity scores are clearly
higher than on the two other datasets, where attribution methods help.
Fig 6 shows examples of patches for each dataset using Grad-CAM.
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Method Husky vs. Wolf Leaves ImageNet

Saliency [2] 0.304 0.334 0.378
Integ.-Grad. [3] 0.292 0.411 0.388
SmoothGrad [4] 0.285 0.286 0.384
GradCAM [5] 0.241 0.312 0.38
Occlusion [6] 0.282 0.277 0.41
Grad.-Input [7] 0.309 0.44 0.378

Table 2: Perceptual Similarity scores. The perceptual similarity of highlighted regions by a given
attribution method for both classes is measured, for each method, for each dataset. The perceptual
similarity scores that are higher than 0.378 (the minimum score on ImageNet) are bolded. Higher is
more similar.

Figure 6: Examples of extracted patches. The perceptual similarity score is performed on the
locations considered most important by the attribution methods. Examples of patches extracted for
the three datasets with the Grad-CAM method.
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D Attribution methods

D.1 Methods

In the following section, the formulation of the different methods used in the experiment is given.
We define f(x) the logit score (before softmax) for the class of interest. An explanation method
provides an attribution score for each input variables. Each value then corresponds to the importance
of this feature for the model results.

Saliency [2] is a visualization technique based on the gradient of a class score relative to the input,
indicating in an infinitesimal neighborhood, which pixels must be modified to most affect the score
of the class of interest.

ΦSA(x) = ||∇xf(x)||

Gradient ⊙ Input [7] is based on the gradient of a class score relative to the input, element-wise
with the input, it was introduced to improve the sharpness of the attribution maps. A theoretical
analysis conducted by [11] showed that Gradient ⊙ Input is equivalent to ϵ-LRP and DeepLIFT [12]
methods under certain conditions: using a baseline of zero, and with all biases to zero.

ΦGI(x) = x⊙ ||∇xf(x)||

Integrated Gradients [3] consists of summing the gradient values along the path from a baseline
state to the current value. The baseline is defined by the user and often chosen to be zero. This
integral can be approximated with a set of m points at regular intervals between the baseline and the
point of interest. In order to approximate from a finite number of steps, we use a Trapezoidal rule and
not a left-Riemann summation, which allows for more accurate results and improved performance
(see [13] for a comparison). The final result depends on both the choice of the baseline x0 and the
number of points to estimate the integral. In the context of these experiments, we use zero as the
baseline and m = 80.

ΦIG(x) = (x− x0)

∫ 1

0

∇xf(x0 + α(x− x0)))dα

SmoothGrad [4] is also a gradient-based explanation method, which, as the name suggests, averages
the gradient at several points corresponding to small perturbations (drawn i.i.d from a normal
distribution of standard deviation σ) around the point of interest. The smoothing effect induced by the
average helps reduce the visual noise and hence improve the explanations. In practice, Smoothgrad is
obtained by averaging after sampling m points. In the context of these experiments, we took m = 80
and σ = 0.2 as suggested in the original paper.

ΦSG(x) = Eε∼N (0,Iσ)(∇xf(x+ ε))

Grad-CAM [5] can be used on Convolutional Neural Network (CNN), it uses the gradient and the
feature maps Ak of the last convolution layer. More precisely, to obtain the localization map for a
class, we need to compute the weights αk

c associated to each of the feature map activation Ak, with k

the number of filters and Z the number of features in each feature map, with αc
k = 1

Z

∑
i

∑
j

∂f(x)

∂Ak
ij

and
ΦGC = max(0,

∑
k

αc
kA

k)

Notice that the size of the explanation depends on the size (width, height) of the last feature map, a
bilinear interpolation is performed in order to find the same dimensions as the input.

Occlusion [6] is a sensitivity method that sweeps a patch that occludes pixels over the images, and
uses the variations of the model prediction to deduce critical areas. In the context of these experiments,
we took a patch size and a patch stride of of 1 tenth of the image size.

ΦOC
i = f(x)− f(x[xi=0])
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D.2 Examples of explanations

Examples of explanations from the different attributions methods evaluated through our experiments
on the Husky vs. Wolf dataset (fig 7), the Leaves dataset (fig 8) and the ImageNet dataset (fig 9).

Figure 7: Examples of images from the Wolf vs. Husky experiment, alongside their respective:
Control explanation (which is a non-informative explanation) as well as the different Attribution
methods evaluated in our experiment.
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Figure 8: Examples of images from the Leaves experiment, alongside their respective: Control
explanation (which is a non-informative explanation) as well as the different Attribution methods
evaluated in our experiment.
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Figure 9: Examples of images from the ImageNet experiment, alongside their respective: Control
explanation (which is a non-informative explanation) as well as the different Attribution methods
evaluated in our experiment.
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