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Abstract

A multitude of explainability methods has been described to try to help users better
understand how modern AI systems make decisions. However, most performance
metrics developed to evaluate these methods have remained largely theoretical –
without much consideration for the human end-user. In particular, it is not yet
clear (1) how useful current explainability methods are in real-world scenarios;
and (2) whether current performance metrics accurately reflect the usefulness of
explanation methods for the end user. To fill this gap, we conducted psychophysics
experiments at scale (n = 1, 150) to evaluate the usefulness of representative
attribution methods in three real-world scenarios. Our results demonstrate that
the degree to which individual attribution methods help human participants better
understand an AI system varies widely across these scenarios. This suggests the
need to move beyond quantitative improvements of current attribution methods,
towards the development of complementary approaches that provide qualitatively
different sources of information to human end-users.

1 Introduction
There is now broad consensus that modern AI systems might not be safe to be deployed in the real
world [1] despite their exhibiting very high levels of accuracy on held-out data because these systems
have been shown to exploit dataset biases and other statistical shortcuts [2–5]. A growing body of
research thus focuses on the development of explainability methods to help better interpret these
systems’ predictions [6–14] to make them more trustworthy. The application of these explainability
methods will find broad societal uses, like easing the debugging of self-driving vehicles [15] and
helping to fulfill the “right to explanation” that European laws guarantee to its citizens [16].

The most commonly used methods in eXplainable AI (XAI) are attribution methods, but despite a
plethora of different approaches [6–10, 12, 17–19], assessing the quality and reliability of these meth-
ods remains an open problem. So far the community has mostly focused on evaluating these methods
using surrogate measures defined axiomatically [15, 20–23]. The two most popular approaches are:
(1) using ground truth annotations [9, 10, 12, 24–27] and (2) measuring faithfulness using objective
metrics [9, 12, 24, 25, 28, 29].

The first approach takes humans into consideration only in so far as it evaluates the alignment of
an explanation with a human annotation. This metric assumes that the classifier relies on human-
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like features*, which is an assumption that turns out to be erroneous [2–4], and unsurprisingly the
results obtained on those benchmarks do not correlate with the ability of attribution methods to help
humans in decision making tasks [30]. On the other hand, the second approach focuses purely on
the relationship between the explanations and the model, i.e., they assess whether the explanations
actually reflect the evidence for the prediction. They have emerged as the primary means of evaluating
attribution methods, but because they take the human out-of-the-loop of the evaluation, it is not clear
how well they can predict the practical usefulness of attribution methods and their possible failures.

As previously highlighted in [30], relying solely on current theoretical benchmarks to evaluate
attribution methods can be a risky endeavor as they are totally detached from humans. Indeed, the
seminal work of [31] has emphasized keeping in mind the end goal of XAI: to develop useful
methods, i.e., methods that help the user better understand their model. Thus, they recommend
systematically having recourse to human experiences. Moreover, a large body of research from the
psychology literature has endorsed the argument that the functional role of explanations is to support
learning and generalization [32–38] – i.e., can an explanation help identify generalizable rules that
readily transfer to unseen instances? Therefore, evaluating attribution methods on their ability to help
users understand general rules to predict a classifier decisions is perfectly aligned with this vision.

To that end, [31] suggest evaluating explainability methods directly through the end goals of XAI.
We subscribe to this idea and, in this work, consider three main real-world scenarios that illustrate
potential applications of explainability methods: (1) identifying a potential bias in a system’s decision
along with its source using the classic Husky vs. Wolf dataset [6] (previous work has documented
the risk associated with a biased model [39–41]); (2) identifying novel strategies discovered by a
system [42, 43] for tasks that would be nearly impossible for humans [44–47], here we consider a
highly complex categorization problem for non-expert humans [48, 49]; and (3) understanding failure
cases [4, 39] on a subset of ImageNet [50].

The main contributions of this paper are as follows:

• We propose a novel human-centered explainability performance measure together with associated
psychophysics methods to experimentally evaluate the practical usefulness of modern explainability
methods in real-world scenarios.

• Large-scale psychophysics experiments (n = 1, 150) revealed that SmoothGrad [8] is the most
useful attribution method amongst all tested and that none of the faithfulness performance metrics
appear to predict if and when attribution methods will be of practical use to a human end-user.

• Perceptual scores derived from attribution maps, characterizing either the complexity of an expla-
nation or the challenge associated with identifying “what” features drive the system’s decision,
appear to predict failure cases of explainability methods better than faithfulness metrics.

2 Related work

Evaluations based on faithfulness measures Common approaches [9, 28] measure the faithfulness
of an explanation through the change in the classification score when the most important pixels are
progressively removed. The bigger the drop, the more faithful is the explanation method. To ensure
that the drop in score does not come from a change in the distribution of the perturbed images, the
ROAR [51] methods include an additional step whereby the image classifier is re-trained between
each removal step. Because these methods do not require ground-truth annotations (i.e. object masks
or bounding boxes), they are quite popular in computer vision [9, 12, 24, 25, 28, 29] and natural
language processing [12, 52, 53].

Nevertheless, faithfulness measures have recently been criticized as they all rely on a baseline
for removing important areas, a baseline that will obviously give better scores to methods relying
internally on the same baseline [54]. More importantly, they do not consider humans at any time in
the evaluation. As a result, it is unclear if the most faithful attribution method is practically useful to
humans.

Evaluations based on humans A second class of approaches consists in evaluating the ability
of humans to leverage explanations for different purposes [6, 10, 30, 55–62]. [6] were the first to
evaluate the usefulness of explanations. Their work focused on the use case of bias detection: they

*One advantage of our approach is that it is independent of the classifier, whether it relies on human-like
features or it is even correct.
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Figure 1: We study the practical usefulness of recent explainability methods in three real-world
scenarios, each corresponding to different use cases for XAI. The first dataset is Husky vs. Wolf where
the goal of the explanations is to help the user to identify a source of bias in a model (classification is
based on the background (snow, grass) as opposed to the animal). The second dataset corresponds to a
real-world leaf classification problem which is complex for non-experts. The goal of the explanations
is to help the end-user identify the strategy discovered by the vision system. Finally, the third dataset
is a subset of ImageNet, which consists of a collection of images where half have been misclassified
by the system. The goal of the explanations here is to help the end-user understand the failure sources
of a high performing model.

trained a classifier on a biased dataset of wolves and huskies and found that the model consistently
used the background to classify. They asked participants if they trusted the model before and after
seeing the explanation for the model’s predictions, and found that explanations helped detect bias
here. We use a similar dataset to reproduce those results, but our evaluation differs greatly from theirs
as we do not ask if participants trust the model but instead measure directly if they understand it.
Closest to our work are [59–61, 63, 64]. [59–61] design their evaluation around the notion of
simulatability [31, 65]. They introduce different experimental procedures to measure if humans can
learn from the explanations how to copy the model prediction on unseen data. Some provide the
explanations at test time [59, 60]. Similar to us but for tabular data, [61] proposes to hide explanations
at test time, this forces the participants to learn the rules driving the model’s decision at training
time where the explanations are shown. There are two limitations to their work: (1) they provide
ground-truth labels associated with input images during training, (2) the participants see the same
set of images without explanations, and then with explanations, always in that order. This creates
learning effects that can heavily bias their results. We differ from their work by: (1) removing
ground-truth labels from our framework as they serve no purpose and can bias participants, and
(2) we have different participants go through the different conditions. This removes any learning
effect, and more importantly, new explainability methods can be evaluated independently and still be
compared to the previously evaluated methods. A recent study [63] evaluated how AI systems may
be able to assist human decisions by asking participants to identify the correct prediction out of four
prediction-explanations pairs shown simultaneously. This measure reflects how well explanations
help users tell apart correct from incorrect predictions. While the approach was useful to evaluate
explanations in this specific scenario, it is not clear how this framework could be used to evaluate
explainability methods more generally. Furthermore, when comparing different types of methods,
they adapt the complexity of certain explainability methods to ease the task for participants. We argue
that the complexity of explanations is an important property of explanations and that abstracting it
away from the evaluation lead to unfair comparisons between methods. In contrast, we propose a
more general evaluation framework that can be used for any kind of explainability method without
the need to adapt them for the evaluation procedure – hence allowing for an unbiased and scalable
comparison between methods. Finally, [64] proposes to evaluate if users are able to identify important
features biasing the predictions of a model using a synthetic dataset. By controlling the generation
process of the dataset, they have access to the ground-truth attributes biasing the classifier, and
can measure the accuracy of users at identifying these features. They evaluate if concept-based or
counterfactual explanations help users improve over a baseline accuracy when no explanations are
provided, and find no explanation tested to be useful. While both works highlights the importance of
human evaluation, they differ in: the metrics employed (identifying relevant features for the model
vs. meta-prediction), the type of dataset used (synthetic vs. real-world scenarios), and the type of
methods evaluated (counterfactual and concept-based methods vs. attribution methods).
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Figure 2: We describe a human-centered framework to evaluate explainability methods borrowing
the concept of Meta-predictor. The framework requires a black box model f (the predictor), an
explanation method Φ and a human subject ψ which will try to predict the predictor, hence, the name
Meta-predictor. The first step is the learning phase where the Meta-predictor is training using K
samples x, together with the associated model predictions f(x) and explanations Φ(f ,x). The goal
of this learning phase is for the Meta-predictor to uncover the rules driving the decisions of the model
from the triplets (x,Φ(f ,x),f(x)). Then, the second step is the evaluation phase where we test the
Meta-predictor’s ability to correctly predict the model’s outputs on new samples x̃ by comparing its
predictions ψ(x̃) to those of f(x̃). The Utility score of the explanation method is then computed as
the relative accuracy improvement of Meta-predictor trained with vs. without explanations.

3 Proposed evaluation framework
Before providing a rigorous definition of interpretability, let us motivate our approach with an
example: a linear classifier is often considered to be readily interpretable because its inner working is
sufficiently intuitive that it can be comprehended by a human user. A user can in turn build a mental
model of the classifier – predicting the classifier’s output for arbitrary inputs. In essence, we suggest
that the model is interpretable because the output can be predicted – i.e, we say we understand the
rules used by a model, if we can use those inferred rules to correctly predict its output. This concept
of predicting the classifier’s output is central to our approach and we conceptualize the human user as
a Meta-predictor of the machine learning model. This notion of Meta-predictor is also closely related
to the notion of simulatability [24, 31, 61, 65, 66]. We will now define the term more formally.

We consider a standard supervised learning setting where f is a black-box predictor that maps an
input x ∈ X (e.g., an image) to an output f(x) ∈ Y (e.g., a class label). One of the main goals
of eXplainable AI is to yield useful rules to understand the inner-working of a model f such that
it is possible to infer its behavior on unseen data points. To correctly infer those rules, the usual
approach consists in studying explanations (from Attribution Map, Concept Activation Vectors,
Feature Visualization, etc..) for several predictions. Formally, Φ is any explanation functional which,
given a predictor f and a point x, provides an information Φ(f ,x) about the prediction of the
predictor. In our experiments, Φ is an attribution method but we would like to remind that the
framework is naturally adaptable to other explainability methods such as concept-based methods or
feature visualization.

The understandability-completeness trade-off Different attribution methods will typically pro-
duce different heatmaps – potentially highlighting different image regions and/or presenting the same
information in a different format. The quality of an explanation can thus be affected by two factors:
faithfulness of the explanation (i.e., how many pixels or input dimensions deemed important effec-
tively drive the classifier’s prediction) and the understandability of the explanation for an end-user
(i.e., how much of the pattern highlighted by the explanation is grasped by the user).

At one extreme, an explanation can be entirely faithful and provide all the information necessary to
predict how a classifier will assign a class label to an arbitrary image (i.e., by giving all the parameters
of the classifiers). However, such information will obviously be too complex to be understood by a
user and hence it is not understandable. Conversely, an explanation that overly simplifies the model
might offer an approximation of the rule used by the model that will be more easily grasped by the
user –a more understandable explanation– but this approximation might ultimately mislead the user
if it is not faithful. That is to say, just because a human agrees with the evidence pointed out by an
explanation does not necessarily mean that it reflects how the model works.
Overall, this means that there is a trade-off between the amount of information provided by an
explanation and its comprehensibility to humans. The most useful explanations should lie somewhere
in the middle of this trade-off.
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The usefulness metric We describe a new human-centered measure that incorporates this trade-off
into a single usefulness measure by empirically evaluating the ability of human participants to learn
to “predict the predictor”, i.e., to be an accurate Meta-predictor. Indeed, if an explanation allows
users to infer precise rules for the functioning of the predictor on past data, the correct application of
these same rules should allow the user to correctly anticipate the model’s decisions on future data.
Scrutable but inaccurate explanations will result in an inaccurate Meta-predictor – just like accurate
inscrutable ones. This Meta-predictor framework avoids current pitfalls such as confirmation bias
- just because a user likes the explanation does not mean they will be a better Meta-predictor - or
prediction leakage on the explanation - in simulatability experiments, as the explanation is available
during the test phase, any explanation that leaks the prediction would have a perfect score, without
giving us any additional information about the model. We will now formally describe the metric build
using this framework.

We assume a dataset† D = {(xi,f(xi),Φ(f ,xi)}Ki=1 used to train human participants to learn to
predict a classifier’s output f from K samples made of an input image xi, the associated predictions
f(xi) and explanations Φ(f ,xi). We denote ψ(K) a human Meta-predictor after being trained on
the dataset D (see Fig. 2) using explanations. In addition, let ψ(0) be the human Meta-predictor after
participants were trained on the same dataset but without explanations to offer baseline accuracy
scores. We can now define the usefulness of an explainability method Φ after training participants
on K samples through the accuracy score of the Meta-predictor normalized by the baseline Meta-
predictor accuracy:

Utility-K =
P(ψ(K)(x) = f(x))

P(ψ(0)(x) = f(x))
(1)

with P(·) the probability over a test set. Thus, Utility-K score measures the improvement in accuracy
that the explanation has brought. It is important to emphasize that this Utility measure only depends
on the classifier prediction and not on the ground-truth label as recommended by [67]. After fixing
the number of training samples K, we compare the normalized accuracy of different Meta-predictors.
The Meta-predictor with the highest score is then the one whose explanations were the most useful as
measures compared to a no-explanation baseline.

Utility metric In practice, we propose to vary the number of observations K ∈ {K0, ...,Kn} and
to report an aggregated Utility score by computing the area under the curve (AUC) of the Utility-K.
The higher the AUC the better the corresponding explanation method is. Formally, given a curve
represented by a set of n points C = {(K0,Utility-K0), ..., (Kn,Utility-Kn)} where Ki−1 < Ki

we define the metric as Utility = AUC(C).

4 Experimental design

We first describe how participants were enrolled in the study, then our general experimental design
(See SI for more informations).

Participants Behavioral data were gathered from n = 1, 150 participants using Amazon Mechan-
ical Turk (AMT) (www.mturk.com). All participants provided informed consent electronically
and were compensated $1.4 for their time (∼ 5− 8 min). The protocol was approved by the Univer-
sity IRB and was carried out in accordance with the provisions of the World Medical Association
Declaration of Helsinki. For each of the three tested datasets, we ensured that there was a sufficient
number of participants after filtering out uncooperative participants (n = 240 participants, 30 per
condition, 8 conditions) to guarantee sufficient statistical power (See SI for details). Overall, the cost
of evaluating one method using our benchmark is relatively modest ($50 per test scenario).

General study design It included 3 conditions: an experimental condition where an explanation is
provided to human participants during their training phase (see Fig. 2), a baseline condition where
no explanation was provided to the human participants, and a control condition where a bottom-up
saliency map [68] was provided as a non-informative explanation. This last control is critical, and
indeed lacking from previous work [6, 61], because it provides a control for the possibility that

†We note that, in this paper, we only considered binary dataset –Class 1 vs Class 2– because having the
participants classify more than 2 classes would increase their cognitive load and bring unnecessary difficulty to
the task. Nonetheless, any dataset could have been used as classification problems with more than 2 classes can
always be trivially reformulated as Target class vs. Other / binary classification problems, instead of Class 1 vs
Class 2, without lack of generality.
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Method Husky vs. Wolf Leaves ImageNet

Session n◦ 1 2 3 Utility 1 2 3 Utility 1 2 3 Utility

Baseline 55.7 66.2 62.9 70.1 76.8 78.6 58.8 62.2 58.8
Control 53.3 61.0 61.4 0.95 72.0 78.0 80.2 1.02 60.7 59.2 48.5 0.94

Saliency [17] 53.9 69.6 73.3 1.06 83.2 88.7 82.4 1.13 61.7 60.2 58.2 1.00
Integ.-Grad. [7] 67.4 72.8 73.2 1.15 82.5 82.5 85.3 1.11 59.4 58.3 58.3 0.98
SmoothGrad [8] 68.7 75.3 78.0 1.20 83.0 85.7 86.3 1.13 50.3 55.0 61.4 0.93
GradCAM [10] 77.6 85.7 84.1 1.34 81.9 83.5 82.4 1.10 54.4 52.5 54.1 0.90
Occlusion [18] 71.0 75.7 78.1 1.22 78.8 86.1 82.9 1.10 51.0 60.2 55.1 0.92

Grad.-Input [69] 65.8 63.3 67.9 1.06 76.5 82.9 79.5 1.05 50.0 57.6 62.6 0.95

Table 1: Utility-K and Utility scores. Utility-Kscores across the 3 sessions for each attribution
method, for each of the 3 datasets considered, followed by the Utility scores. Higher is better. The
Utility scores of attribution methods that are statistically significant are bolded.

providing explanations along with training images simply increases participants’ engagement in the
task. As we will show in Sec. 5, such non-informative explanations actually led to a decrease in
participants’ ability to predict the classifier’s decisions – suggesting that giving a wrong explanation
is worse than giving no explanations at all.
Each participant was only tested on a single condition to avoid possible experimental confounds. The
main experiment was divided into 3 training sessions (with 5 training samples in each) each followed
by a brief test. In each individual trial, an image was presented with the associated prediction of the
model, either alone for the baseline condition or together with an explanation for the experimental
and control condition. After a brief training phase (5 samples), participants’ ability to predict the
classifier’s output was evaluated on 7 new samples during a test phase. During the test phase, no
explanation was provided to limit confounding effects: one possible effect is if the explanation leaks
information about the class label.‡ We also propose to use a reservoir that subjects can refer to during
the testing phase to minimize memory load as a confounding factor which was reported in [61] (see
SI for an illustration).

Datasets and models We performed three distinct experiments in total – using a variety of neural
network architectures and 6 representative attributions methods. Each of these experiments aimed at
testing the usefulness of the explanation in a different context.
Our first scenario focuses on the detection of biases in AI systems using the popular Wolf vs.
Husky dataset from [6] where an evaluation measure was already proposed around the usefulness of
explanations for humans to detect biases. This makes it a good control experiment to measure the
effectiveness of the framework proposed in Sec. 3. For this first experiment, we used the same model
as in the original paper: InceptionV1 [70], and a similar dataset of Husky and Wolf images to bias
the model. In this situation where prior knowledge of subjects can affect their Meta-predictor score,
we balance data correctness (50% of correct/incorrect examples shown). Therefore, a subject relying
only on their prior knowledge will end up as a bad Meta-predictor of the model. For this experiment,
the results come from n = 242 subjects who all passed our screening process.

In our second scenario, we focus on a representative challenging image categorization task which
would be hard to solve by a non-expert untrained human participant and the goal is for the end-user
to understand the strategy that was discovered by the AI system. Here, we chose the leaf dataset
described in [48]. We selected 2 classes from this dataset (Betulaceae and Celastracea) that could
not be classified by shape to reduce the chances that participants will discover the solution on their
own – forcing them instead to rely on non-trivial features highlighted by the explanations (veins,
leaf margin, etc). This scenario is far from being artificial as it reflects a genuine problem for the
paleobotanist [49]. Can explainability methods help non-specialists discover the strategies discovered
by an AI system? As participants are lay people from Amazon Mechanical Turk we do not expect
them to be experts in botany, therefore we did not explicitly try to control for prior knowledge. In this
experiment, n = 240 subjects passed all our screening and other filtering processes.

‡Imagine an attribution method that would solely encode the classifiers’ prediction. Participants would be
able to guess the classifier’s prediction perfectly from the explanation but the explanation per se would not help
participants understand how the classifier works.
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Figure 3: Utility-K for both Husky vs. Wolf (left) and the Leaves (right) dataset. The Utility-K of
the explanation, or the accuracy of the human Meta-predictor after training, is measured after each
training session (3 in total) for the scenario (1) of bias detection (on the left) and the scenario (2)
concerning the identification of new strategies. Concerning the first scenario, all methods have a
positive effect on the score obtained - they improve the subjects’ ability to predict the model - and are
thus useful to better understand the model. Grad-CAM, Occlusion and SmoothGrad are particularly
useful for bias detection. On the Leaves dataset [48], explanations are also useful, but specifically
Saliency, SmoothGrad and Integrated Gradients.

Finally, our last scenario focuses on identifying cases where an AI system fails§ using ImageNet [50],
also used in previous explainability work [12, 24, 30, 51, 59, 71]. We used this dataset because we
expect it to be representative of real-world scenarios where it is difficult to understand what the model
relies on for classification which makes it very difficult to understand these failure cases. Moreover,
previous work has pointed out that attribution methods are not useful on this dataset [59], we have
thus chosen to extend our analysis to this particular case. We use a ResNet50 [72] pretrained on this
dataset as predictor. Because prior knowledge is a major confounding factor on ImageNet, we select
a pair of classes that was heavily miss-classified by the model, to be able to show subjects 50% of
correct/incorrect predictions: the pair Kit Fox and Red Fox fits this requirement. In this experiment,
we analyzed data from n = 241 participants who passed our screening and filtering processes.

For all experiments, we compared 6 representative attribution methods: Saliency (SA) [17], Gradient
⊙ Input (GI) [19], Integrated Gradients (IG) [7], Occlusion (OC) [18], SmoothGrad (SG) [8] and
Grad-CAM (GC) [10]. Further information on these methods can be found in SI. Table 1 summarizes
all the results from our psychophysics experiments.

5 Results

Scenario (1): Bias detection Fig. 3 shows the Utility-K scores for each method after different
numbers of training samples were used to train participants for the biased dataset of Husky vs. Wolf.
The Utility score encodes the quality of the explanations provided by a method, the higher the score,
the better the method, with the baseline score being 1 (every score is divided by the baseline score
corresponding to human accuracy after training without explanations).
A first observation is that the explanations have a positive effect on the Utility-K score: the explanation
allows participants to better predict the model’s decision (as the Utility scores are above 1). These
results are consistent with those reported in [6]. This is confirmed with an Analysis of Variance
(ANOVA) for which we found a significant main effect, with a medium effect size (F (7, 234) =
9.19, p < .001, η2 = 0.089). Moreover, the only score below the baseline is that of the control
explanation, which do not make use of the model. We further explore our results by performing
pairwise comparisons using Tukey’s Honestly Significant Difference [73] to compare the different
explanations against the baseline. We found 3 explainability methods to be significantly better than
the baseline: Grad-CAM (p < 0.001), Occlusion (p = 0.01) and SmoothGrad (p = 0.034). Thus,
participants who received the Grad-CAM, Occlusion or SmoothGrad explanations performed much
better than those who did not receive them.

§We acknowledge the existence of some overlap between the scenario 1 and scenario 3 as bias detection is a
special case of a failure case. The reason we still use scenario 1 is because of the work previously done on it,
allowing us to validate our framework.
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Scenario (2): Identifying an expert strategy In Fig. 3, we show results on the Leaves dataset. An
ANOVA analysis across all conditions revealed a significant main effect, albeit small (F (7, 232) =
4.29, p < .001, η2 = 0.042). This implies that explanation also had a positive effect resulting in
better Meta-predictor in this use case. A Tukey’s Honestly Significant Difference test suggests that
the best explanations are Saliency , SmoothGrad and Integrated Gradients as they are the only ones to
be significantly better than our baseline (WE) (p = .004, p = .007 and p = .03 respectively). An
interesting result is that SmoothGrad seems to be consistently useful across both use cases where
explanations are indeed practically useful. A more surprising result is that Saliency which was one of
the worst explanations for bias detection, is now the best explanation on this use case (We discuss
possible reasons in SI).

Scenario (3): Understanding failure cases Table 1 shows that, on the ImageNet dataset, none
of the methods tested exceeded baseline accuracy. Indeed, the experiment carried out, even with
an improved experimental design, led us to the same conclusion as previous works [59]: none of
the tested attribution methods are useful (ANOVA: F (7, 233) = 1.26, p > .05). In the use case of
understanding failure cases on ImageNet, no attributions methods seem to be useful.

Why do attribution methods fail?

After studying the usefulness of attribution methods across 3 real-world scenarios for eXplainable
AI, we found that attribution methods help, sometimes, but not always. We are interested in better
understanding why sometimes attribution methods fail to help. Because this question has yet to be
properly studied, there is no consensus if we can still make attribution methods work on those cases
with incremental quantitative improvements. In the follow-up sections we explore 3 hypothesis to
answer that question.

Figure 4: Utility vs Faithfulness correlation.
The results suggest that current faithfulness
metrics are poor predictors of the end-goal
usefulness of explanation methods. Concern-
ing the ImageNet dataset (triangle marker),
the Utility scores are insignificant since none
of the methods improves the baseline.

Faithfulness as a proxy for Utility? Faithfulness
is often described as one of the key desiderata for
a good explanation [23, 74, 75]. If an explanation
fails to be sufficiently faithful, the rules it highlights
won’t allow a user to understand the inner-working of
the model. Thus, a lack of faithfulness on ImageNet
could explain our results. To test this hypothesis, we
use the faithfulness metrics: Deletion[9, 28], com-
monly used to compare attribution methods [9, 12, 24,
25, 28, 29]. A low Deletion score indicates a good
faithfulness, thus for ease of reading we report the
faithfulness score as 1− Deletion such that a higher
faithfulness score is better.

Fig 4 shows the linear relationship between our Util-
ity metrics and the faithfulness scores computed for
every attribution method across all 3 datasets. We
observe two main trends: 1) There does not appear
to be any specific pattern regarding faithfulness
that could explain why attribution methods are
not useful for ImageNet, and 2) the least useful at-
tribution methods for both use cases for which methods help (Bias and Leaves) are some of the
leading methods in the field measured by the faithfulness metric. We also found a weak, if maybe
anti-correlated, relation between faithfulness and usefulness: just focusing on making attribution
methods more faithful does not translate to having methods with higher practical usefulness for end-
users. And, in fact, focusing too heavily on faithfulness seem to come at the expense of usefulness,
resulting in explanations that are counter-intuitively less useful. This second observation may seems
rather alarming for the field given that the faithfulness measure is one of the driving benchmarks.

Are explanations too complex? Using the trade-off between completeness and understandability
previously discussed in Section 3, we formulate another hypothesis: some explanations may be
faithful but too complex and therefore cannot be understood by humans. In that view, an explanation
with low complexity would tend to be more useful.

As a simple measure of the complexity of visual explanations, it would be ideal to be able
to compute the Kolmogorov complexity [76] of each explanation. It was shown in previ-
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ous work [77] to correlate well with human-derived ratings for the complexity of natural im-
ages [78, 79]. As suggested by [76, 80] we used a standard compression technique (JPEG)
to approximate the Kolmogorov complexity. Fig. 5 shows the Utility vs complexity score of
attribution methods for each dataset. For one of the datasets where attribution methods help,
the results suggest the presence of a strong correlation between usefulness and complexity:
the least complex method is the most useful to end-users. For the other datasets, the results
are either not conclusive (Leaves), or are not relevant as methods are not useful (ImageNet).

Figure 5: Utility vs Complexity correlation.
This suggest a weak but possibly existing link
between Complexity and Utility scores.

Overall, across datasets there is no significant dif-
ference in the complexity of explanations that can
explain why attribution methods do not help on Ima-
geNet. This could be because the Kolmogorov Com-
plexity does not perfectly reflect human visual com-
plexity, or because this is not the key element to
explain failure cases of attribution methods.

An intrinsic limitation of Attribution methods?
The role of attribution methods is to help identify
“where” to look in an image to understand the ba-
sis for a system’s prediction. However, attribution
methods do not tell us “what” in those image re-
gions is driving decisions. For categorization prob-
lems which involve perceptually similar classes (such
as when discriminating between different breeds of
dogs) and fine-grained categorization problems more
generally, simply looking at diagnostic image regions tells the user very little about the specific
shape property being relevant. For instance, knowing that the ear shape is being used for recog-
nition does not say what specific shape feature is being encoded (e.g., pointed vs. round or
narrow vs. broad base, etc). Our main hypothesis is that such a lack of explicit “what” infor-
mation is precisely what is driving the failure of attribution methods on our ImageNet use-case.

Figure 6: Perceptual Similarity scores vs.
Utility. The perceptual similarity of high-
lighted regions by a given attribution method
for both classes is measured, for each method,
for each dataset. We observe a strong cor-
relation between the perceptual similarity of
features highlighted for both classes and the
practical usefulness of methods.

To test this hypothesis, we estimated the percep-
tual similarity between classes measured within di-
agnostic regions (see SI for more details) using the
Learned Perceptual Image Patch Similarity (LPIPS)
metric [81] as it has been shown to approximate hu-
man perceptual similarity judgments well [81, 82].
We report the perceptual similarity score as 1 - LPIPS
score so that a high score means a high similarity.
Fig. 6 shows the correlation between the perceptual
similarity scores vs. our Utility scores on all methods
and datasets studied. Our results suggest a strong cor-
relation between perceptual similarity and practical
usefulness: the more perceptually similar discrim-
inative features of both classes are, the less useful
attribution methods become. More importantly, the
results across datasets show that on ImageNet, where
attribution methods do not help, every method has a
high similarity score. This result suggests that after a
certain threshold of perceptual similarity, attribu-
tion methods might no longer be useful, no matter
how faithful or low in complexity the explanation
is. Overall, the results suggest that the perceptual similarity of discriminative features could explain
why attribution methods fail on ImageNet.

6 Discussion

In summary, we conducted a large-scale human psychophysics experiment to test the utility of
explainability methods in real-world scenarios. Our work shows that in two of the three tested
scenarios (bias detection and identification of new strategies), explainability methods have indeed
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progressed and they provide meaningful assistance to human end-users. Nevertheless, we identified a
scenario (understanding failure case) for which none of the tested attribution methods were helpful.
This result is consistent with previous work [59] and highlights a fundamental challenge for XAI.

Further analysis of associated faithfulness performance metrics driving the development of explain-
ability methods revealed that they did not correlate with our empirical measure of utility – suggesting
that they might not be suited anymore to move the field forward. We also investigated the possibility
that the complexity of individual explanations may play a role in explaining human failures to learn to
leverage those explanations to understand the model and, while we found a weak correlation between
complexity and our empirical measure of utility, this correlation appears too low to explain the failure
of these methods.

Finally, because attribution methods appear to be just as faithful and low in complexity whether
they are useful or not, we explored the possibility that their failure lies, not in the quality of their
explanations, but in the intrinsic limitations of attribution methods. If fully grasping the strategy of a
model requires understanding, not just “where” to look (as revealed by attribution maps) but also
“what” to look at, something not currently revealed by these methods, attribution methods will not
help. Our assumption is that the need for finer “what” information should arise when diagnostic
image locations across classes look perceptually very similar and potentially semantically related for
certain classification problems (e.g., looking at the ears or the snout to discriminate between breeds
of cats and dogs) and one needs to identify what visual features are driving decisions. We computed a
perceptual score for classification problems by estimating the perceptual similarity between diagnostic
image regions (as predicted by attribution methods) and found that, indeed, when this score predicts
a certain level of perceptual similarity between classes, attribution methods fail to contribute useful
information to human users, regardless of the faithfulness or complexity of the explanations. This
suggests that explainability methods may need to communicate additional information to the end user
beyond attribution maps.

7 Limitation and broader impact

Limitations. Our definition of the usefulness of an explanation is quite general. However, there
are several limitations associated with our approach to estimate usefulness. First, our approach does
not take into account the level of machine learning expertise of the user (the most useful explanation
for a novice might not be the best one for an expert). Second, the need for human participants to
evaluate explanations brings challenges compared with the automated metrics currently used in the
field. However, by releasing all our data and software ¶, we hope to encourage the adoption of the
approach to evaluate future explainability methods and to assess the overall progress towards the
development of more human-interpretable AI systems.

Broader impacts. While the increasing use of AI in real-world scenarios has shown potential to do
good [46–48], it has also shown its potential for harm, especially when models rely on shortcuts (e.g.,
relying on spurious correlations in the training set that leads to unintended racial bias [39–41]). To
identify such shortcuts, the field of Explainable AI has developed a lot of explainability methods;
but it is not always clear which one performs best when trying to understand a model. We hope our
evaluation method can help in this regard, assisting the AI practitioner in better identifying bias and
shortcuts that may unfairly discriminate against groups of people.
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