
A Appendix

A.1 Limitations of Fixed-n Testing

To quote Armitage [1993], “the classical theory of experimental design deals predominantly with
experiments of predetermined size, presumably because the pioneers of the subject, particularly R.
A. Fisher, worked in agricultural research, where the outcome of a field trial is not available until
long after the experiment has been designed and started.”. The author points out that many popular
statistical tests are of the fixed-n or fixed-horizon kind, which operate just once on a complete dataset
in a Neyman-Pearson type testing framework [Neyman et al., 1933]. The early development of these
tests was driven by the wide variety of applications in which all observations arrive at the same time
or when the experimenter is simply handed a complete dataset [Robbins, 1952]. Following this mode
of one-time statistical analysis, these tests have been specifically optimized to maximize power at
analysis time subject to a Type I error configuration. The classical solution to minimizing experiment
cost is then to find a statistical test that provides the same Type I/II error guarantees at a smaller
sample size, such as seeking the uniformly most powerful unbiased test within a particular class
[Casella and Berger, 2002]. In many modern applications, however, data typically arrive in streams
rather than in sets; observations often arrive in a sequence instead of simultaneously. Therefore,
it makes sense that statistical tests optimized for a one-time analysis of a complete collection of
observations may not be optimal in experiments where observations arrive sequentially.

There are practical difficulties in using fixed-n tests in experiments where observations arrive
sequentially. Consider these problems first from the perspective of hypothesis testing. The biggest
drawback of using a fixed-n test in a sequential application is that it can only be performed once.
Fixed-n tests are fine in applications where all observations arrive simultaneously or when the
experimenter is handed a complete dataset, as there is only one possible opportunity to perform
the test. However, if observations arrive in a sequence, the experimenter is presented with many
opportunities to perform the test. Perform the test too early, and the Type II error probability will be
high, resulting in many small effects being undetected. Perform the test too late, and the experiment
may be more costly than is strictly necessary. Sample size calculations also fail to remedy these
issues for the following reasons. Closed-form sample size expressions may not exist beyond trivial
textbook models, the required inputs are frequently unknown, and most problematically, sample
size calculations require the specification of a minimum detectable effect (MDE). The problem with
specifying an MDE is that the experimenter, unwilling to sacrifice power even for small effect sizes,
typically specifies these to be conservatively low, resulting in quadratic growth of the required sample
size and a more costly experiment than strictly necessary (in particular, relative to a sequential design).
For instance, consider one-sided “no-harm” testing applications where the goal is to detect (possibly
small) adverse effects. Specifying a small MDE causes the required sample size to be large, resulting
in large adverse effects remaining undetected for lengthy amounts of time and prolonged harm to the
experimental units.

The latter example highlights a further practical difficulty with using fixed-n tests in sequential
applications from the estimation perspective. The experimenter is often curious about the current
performance of each arm, stemming from the concern that an arm might have a substantial adverse
effect on those assigned to it. To address this concern, the experimenter might wish to estimate
the effect by computing a confidence interval. Unfortunately, the 1 − u confidence statement
obtained by inverting an u-level fixed-n test only holds at a fixed-n: it is only a one-time guarantee.
The experimenter cannot hope to “monitor” the effect of each arm by computing multiple fixed-n
confidence intervals spaced out over different times, as their intersection does not have any coverage
guarantee.

Instead of stopping the experiment at a predetermined sample size, it is more natural and useful
for the stopping rule to be data-dependent in sequential applications. That is, to perform optional
stopping. Stopping a test based on whether the data observed so far contains strong evidence for or
against a hypothesis removes the need to perform a troublesome sample size calculation and allows
the experiment to be terminated adaptively. If conclusions seem unclear at a chosen analysis time,
such as confidence statements being insufficiently tight, then allowing the test to run for longer is
also useful. That is, to perform optional continuation. Unfortunately, the Type I error and confidence
guarantees from fixed-n tests are not preserved under optional stopping or continuation.
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Many experimenters do not specify a fixed sample size in advance simply because they have not made
up their minds about the requirements of the experiment or the available resources [Anscombe, 1954].
This can lead to an invalid practice of “peeking” where a fixed-n test is used to define a stopping rule,
and estimands are monitored continuously by repeated fixed-n confidence statements, a procedure
that does not possess the statistical guarantees that an experimenter might naively expect [Johari et al.,
2017]. Repeated applications of fixed-n tests on accumulating sets of data result in ever-increasing
Type I error probabilities [Armitage et al., 1969]. A stopping rule configured to stop sampling when
a hypothesis is rejected by a fixed-n test is guaranteed to reject the null, allowing experimenters
to sample to a foregone conclusion [Anscombe, 1954, Kadane et al., 1996]. Consequently, the
intersection of fixed-n confidence sets is guaranteed to converge to the empty set.

A.2 Solutions via Sequential Testing

Sequential designs remain the preferred form of scientific inquiry by many, so these experimenters
would benefit greatly from the development of new statistical tests that support the desired operations
of continuous monitoring with optional stopping and continuation. The solution presented here
generalizes the frequentist guarantees already familiar to many by extending results to hold for all n
instead of a fixed-n. We compute a sequential p-value such that the probability of this being less than
u for any n ∈ N is less than u. Similarly, we compute confidence sequences: a countable collection
of sets such that the probability the estimand is covered by all sets, and hence their intersection, is
greater than 1− u. We provide a review of the sequential testing literature in Appendix A.3.

There are numerous advantages to this approach. Confidence sets and p-values remain valid at all
times, which enables experimenters to “check in” and continuously monitor the progress of their
experiments. The ability to perform optional stopping allows developers to build a layer of automated
stopping logic on top of experiments, reducing risk by quickly eliminating poorly-performing arms
and terminating as soon as hypotheses have been rejected. This removes the need for human
supervision and helps scale the number of experiments performed by automating their orchestration.
This approach also appeals to both Bayesians and Frequentists: despite presenting the frequentist
properties, it is fundamentally built upon a Bayes factor. Confidence sequences are constructed for
the vector of parameters for all arms, providing simultaneous confidence sequences for all contrasts
among arms in contrast to pairwise comparison tests, which require multiple testing corrections.
Lastly, our approach is applicable to situations in which there is time-variability common to all arms,
as we construct a test statistic that removes the time-varying components.

A.3 Review of Sequential Testing

The earliest work is often attributed to Ville [1939] with the introduction of a test martingale. This
object is a nonnegative supermartingale under the null hypothesis, and one can use martingale
inequalities to construct sequential designs that control Type I error. Wald [1945] introduced the
mixture sequential probability ratio test (mSPRT) for testing composite vs simple null hypotheses.
The mSPRT can be viewed as a Bayes factor by interpreting the weight function used to integrate the
likelihood ratio as a Bayesian prior over the alternative. Testing in a Bayesian framework via Bayes
factors is attributed to Jeffreys [Jeffreys, 1935, Kass and Raftery, 1995]. Proofs of the validity of
Bayes factors with nuisance parameters under varied interpretations of optional stopping are provided
by Hendriksen et al. [2021]. The use of Bayes factors for sequential testing exists, therefore, both in
a purely Bayesian framework from computing posterior probabilities over hypotheses and in Wald’s
mSPRT framework for obtaining frequentist error probabilities. Similarities and differences between
both approaches are discussed at length in Berger et al. [1994, 1997, 1999]. Bayes factors have been
used in the design of sequential clinical trials by Cornfield [1966]. Test martingales can be interpreted
as Bayes factors and the inverse of the running supremum can be used to construct sequentially valid
p-values [Shafer et al., 2011].

Johari et al. [2021] use Wald’s mSPRT to construct anytime-valid inference for the difference in two
Gaussian means with known variance by using the inverse of the running supremum of the mSPRT
test martingale to construct a sequential p-value, and use the duality between p-values and confidence
sets to construct confidence sequences for the difference. The “anytime-valid” namesake explicitly
refers to the fact that this test is safe under optional stopping, in the sense that we may reject the
null at the u-level as soon as the sequential p-value falls below u without violating the Type I error
guarantees. Similarly, confidence intervals have a 1− u coverage guarantee at any time, allowing

17



the progress of a statistical test to be continuously monitored and making it robust to the human
temptation to peek at results [Johari et al., 2017]. In contrast to our proposal for count data, however,
this method requires Gaussian approximations based on central limit theorem arguments and requires
a plugin estimators for unknown parameters. Although this method works well in practice, these
approximations may not be justified at lower sample sizes, and so the sequential properties of this
method may not be strictly guaranteed outside of Gaussian families. Confidence sequences appear as
early as Darling and Robbins [1967]. Robbins [1970] showed that it is always possible to disprove a
null hypothesis by sequentially collecting data until the null is rejected at the u-level by a fixed-n
frequentist test, regardless of the chosen value of u. This result follows as a consequence of the law of
iterated logarithm. The anytime-valid approach through the use of sequential p-values and confidence
sequences has been greatly extended by Howard et al. [2021], providing univariate nonparametric and
nonasymptotic confidence sequences for broad classes of random variables. Confidence sequences for
doubly robust causal estimands are presented in Waudby-Smith et al. [2021]. Confidence sequences
for sampling without replacement are provided in Waudby-Smith and Ramdas [2020]. Anytime-valid
F -tests and confidence sequences for subsets of linear regression coefficients are provided by Lindon
et al. [2022b]. Design based confidence sequences for anytime-valid causal inference are provided by
Ham et al. [2022].

Between fixed and anytime-valid/sequential testing are group sequential testing (GST) methods
[Jennison and Turnbull, 1999]. In GST a finite and fixed number of analyses are planned as part
of the design and are performed upon reaching the pre-specified sequence of sample sizes. There
is the opportunity to reject the null hypothesis or continue to the next round at each analysis. GST
only partially solves the optional stopping requirement and fails to solve the optional continuation
requirement. Optional stopping is only partially solved because analyses can occur at pre-determined
sample sizes, when practically the requirement is to perform analyses at pre-determined times.
Suppose an experimenter wishes to perform analyses every day for a month. Due to varying traffic,
there is no guarantee that the pre-determined sample sizes align with every day of the month. Optional
continuation is not permitted as one loses the ability to collect more data beyond the final analysis.
Silva and Kulldorff [2015] show that for every group sequential test, there exists a fully sequential
test that is uniformly better in its ability to stop sooner.

A.4 Derivation of Equation (3) (Bayes Factor)

The Bayes factor is defined as

BF01(x1:n) =
p(x1:n|M1)

p(x1:n|M0)
=

∫
p(x1:n|θ,M1)p(θ|M1)dθ

p(x1:n|M0)
. (18)

Under the assumptions for M0 and M1 expressed in Equation (1) and Equation (2), we can show
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The result follows from cancelling terms in numerator and denominator:

BF01(x1:n) =
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=
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(20)

A.5 Derivation of Equation (4) (Sequential Posterior Odds Updating)

The posterior odds in favor of M1 to M0 after observing x1:n is defined as

p(M1|x1:n)

p(M0|x1:n)
=

∫
p(x1:n|θ,M1)p(θ,M1)dθ

p(x1:n|M0)
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,

=
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,

=

∏n
i=1 p(xi|x1:i−1|M1)∏n
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,
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,

where the last expression stresses the recursive definition of the posterior odds factor in terms of
products of posterior predictive densities. The posterior distribution of θ|x1:n,M1 ∼ Dirichlet(αn)
where αn = αn−1+xn with α0 the initial prior parameter choice. The posterior predictive densities
are easily computed as
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It follows that
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(22)

where

αn = αn−1 + xn. (23)

To see the alternative “betting” form of the posterior odds when α0,i are integer valued, note that
xn,i is equal to 1 for a single index i ∈ {1, . . . , d} and is equal to 0 for the remaining indices. The
previous expression can then be written
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where the first term can be recognized as the mean of a Dirichlet distribution with parameter αn−1.
Tidying up terms yields

p(M1|x1:n)

p(M0|x1:n)
=

d∏
i=1

(
αn−1,i

θ0,i
∑

j αn−1,j

)xn,i

p(M1|x1:n−1)

p(M0|x1:n−1)
, (28)

(29)

A.6 Proof of Theorem 2.1 (Martingale Property of Posterior Odds)

Proof.

EM0 [On+1(θ0)|Fn] =

∫
p(xn+1|x1:n,M1)

p(xn+1|x1:n,M0)
On(θ0)p(xn+1|x1:n,M0)dxn+1

= On(θ0)

∫
p(xn+1|x1:n,M1)dxn+1

= On(θ0),

where Fn = σ(x1,x2, . . . ,xn).

A.7 Proof of Theorem 2.2 (Construction of Test-Martingale)

First, the following lemma is required

Lemma A.1. (Ville’s Maximal Inequality) If Zn is a nonnegative supermartingale with respect to
the filtration Fn, then

P[∃n ∈ N0 : Zn ≥ u] ≤ Z0

u
(30)

Proof. See Ville [1939], Howard et al. [2020]

Theorem 2.1 shows that On(θ0) is a nonnegative martingale (and therefore also a supermartingale)
under the null hypothesis with initial value O0(θ0) = 1. The result then follows immediately from
Lemma A.1.

A.8 Proof of Theorem 2.3 (Asymptotic Properties of Bayes Factors)

From Equation (4),
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∑
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=
∑
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log Γ(|α0|)−
∑
i

log Γ(α0,i)

−
∑
i

Sn
i log θ0,i.

(31)
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Using Stirlings approximation log Γ(z) = z log z − z + o(log z)
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(32)

Sn
i

n and α0,i+Sn
i

(|α0|+n) converge to θi almost surely by the strong law of large numbers. It follows that

1

n
logOn(θ0)

a.s.→
∑
i

θi log

(
θi
θ0,i

)
, (33)

by Slutsky’s theorem and the continuous mapping theorem, which can be recognized as the Kullback-
Leibler divergence of a Multinomial(1,θ) distribution from a Multinomial(1,θ0) distribution.

A.9 Type I Error Probability Simulation

Figure 4: Estimated probability of falsely rejecting the null by sample size n under stopping rules
(red) when the χ2 p-value falls below 0.05 (blue) when the sequential p-value from Equation (8) falls
below 0.05. Estimates based on 10000 simulations. Null rejected incorrectly 654 and 37 times by χ2

and sequential multinomial tests respectively.

A.10 Proof of Theorem 4.1

The following two lemmas are required prove Theorem 4.1. Consider a poisson point process the
intensity function λ(t). The probability density over the event time ti conditional on the previous
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event having arrived at time ti−1 is given by

p(ti|ti−1) = λ(ti)e
−

∫ ti
ti−1

λ(s)ds
1(ti−1,∞](ti). (34)

This is used to prove the following lemma
Lemma A.2. Let ti−1 denote the time of the previously observed event. Suppose the current time is
T > ti−1. The probability density over the next event time ti conditional on no observation having
occured in (ti−1, T ] is given by

p(ti|ti > T ) = λ(ti)e
−

∫ ti
T λ(s)ds1(T,∞](ti). (35)

Proof. The probability of no event taking place (ti−1, T ] is given by the Poisson(Λ(ti−1, T ]) distri-
bution

P[N(ti−1, T ] = 0] = e
−

∫ T
ti−1

λ(s)ds
. (36)

The conditional density for ti given ti > T is obtained by conditioning on N(ti−1, T ] = 0 as follows

p(ti|ti > T ) =
λ(ti)e

−
∫ ti
ti−1

λ(s)ds
1(T,∞](ti)

e
−

∫ T
ti−1

λ(s)ds

= λ(ti)e
−

∫ ti
T λ(s)ds1(T,∞](ti).

(37)

The following lemma asks, given two inhomogeneous Poisson point processes 0 and 1, what is the
probability that the next event comes from 0?
Lemma A.3. Consider two inhomogeneous Poisson point processes with intensities λ0(t) = eδ0λ(t)
and λ1 = eδ1λ(t). Let the current time be denoted T . The probability that the next event is from
process 1 is given by

eδ1

eδ0 + eδ1
. (38)

Proof. Let τ0 and τ1 denote the next event times from process 0 and 1 respectively. From Lemma A.2

p(τ1|τ1 > T ) = λ1(τ1)e
−Λ1(T,τ1]1(T,∞](τ1)

p(τ0|τ0 > T ) = λ0(τ0)e
−Λ0(T,τ0]1(T,∞](τ0),

where Λi(T, τi] =
∫ τi
T

λi(s)ds The probability that the next event is from process 1 is given by

P[τ1 < τ0|τ0, τ1 > T ] =

∫ ∞

T

λ0(τ0)e
−Λ0(T,τ0]

∫ τ0

T

λ1(τ1)e
−Λ1(T,τ1]dτ1dτ0

=

∫ ∞

T

λ0(τ0)e
−Λ0(T,τ0]

(
1− e−Λ1(T,τ0]

)
dτ0

= 1−
∫ ∞

T

λ0(τ0)e
−

∫ τ0
T λ0(s)+λ1(s)dτ0

= 1− eδ0

(eδ0 + eδ1)

∫ ∞

T

(eδ0 + eδ1)λ(τ0)e
−(eδ0+eδ1 )

∫ τ0
T λ(s)dτ0

= 1− eδ0

(eδ0 + eδ1)

=
eδ1

(eδ0 + eδ1)
.

The proof of Theorem 4.1 can now be given using Lemma A.3 and the superposition property
[Kingman, 1992] of Poisson processes.
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Proof. Consider d inhomogeneous Poisson point processes with intensity functions λi(t) = ρie
δiλ(t)

for i ∈ {1, 2, . . . , d}. Choose any process of interest j, with corresponding intensity ρje
δjλ(t). Let

the union of all timestamps from the other i ̸= j processes be combined into a new “not j” process.
By the superposition property of the Poisson process, the combined timestamps form a new Poisson
process with intensity function λu(t) =

∑
i ̸=j ρie

δiλ(t). This reduces the problem to a comparison
of two inhomogeneous Poisson point processes. From Lemma A.3, the probability that the next event
corresponds to process j is then

ρje
δj

ρjeδj +
∑

i̸=j ρie
δi

=
ρje

δj∑
i ρie

δi
. (39)

A.11 Simulation: Time Inhomogeneous Bernoulli Processes

Consider the following example. An experimental unit i is randomly assigned to one of 3 arms with
probabilities ρ = (0.1, 0.3, 0.6). Let g(i) map the unit to the arm index to which it is assigned. A
Bernoulli success is observed for unit i with probability eµ(i)eδg(i) with δ = (log 0.2, log 0.3, log 0.4)
and µ(i) = 1

2 sin(
7πi
n )+ 1

2 . Confidence sequences for contrasts δ2−δ1 and δ2−δ0, obtained through
Equation (15), are shown in Figure 5. The sequential p-value for testing the hypothesis δ0 − δ1 ≥ 0
and δ0 − δ2 ≥ 0, obtained through Equation (16), are shown using the right axis of Figure 5. The
p-value is less than u = 0.05 for all n ≥ 573. This is the smallest n for which the joint confidence set
over these contrasts fails to intersect with the set defined by the hypothesis (the lower left quadrant)
as shown in Figure 6.

Figure 5: (Left axis) 0.95 Simultaneous confidence sequences for δ2 − δ1 = log(0.4)− log(0.3) ≈
0.29 and δ2 − δ0 = log(0.4) − log(0.2) ≈ 0.69 provided by Corollary 3.2 and obtained via the
solution to Equation (15). The confidence sequences for δ2 − δ0 and δ2 − δ1 are completely positive
for n ≥ 573 and n ≥ 1882 respectively, after which one can conclude with probability 1 − u that
arm 2 is optimal. (Right axis) Sequential p-value for testing the null hypothesis δ0 ≥ δ1 and δ0 ≥ δ2
obtained by solving Equation (16). The p-value is less than critical value u = 0.05 for all n ≥ 573.

A.12 Simulation: Time Inhomogeneous Poisson Processes

Consider the following example with only two arms, such as a canary test designed to test if a new
software version produces more errors. Units are assigned to arms with probability ρ = (0.8, 0.2).
λ1(t) can be expressed in terms of λ0(t) as λ1(t) = ρeδλ0(t) with ρ = ρ1

ρ0
and eδ = eδ1−δ0 . Let

δ = 1.5 and λ0(t) = 2000sigmoid(sin(10πt) + 8t− 4). Point process realizations are obtained by
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Figure 6: 0.95 joint confidence set for δ2 − δ0 and δ1 − δ0 at n = 573. (Black cross) True
parameter values (log 3/2, log 2). (Red dashed) l−573,b and l+573,b, (Green dashed) l−573,c and l+573,c as
in Corollary 3.2 with b = (−1, 0, 1) and c = (0,−1, 1).

thinning a homogeneous Poisson point process with rate 2000 [Lewis and Shedler, 1979]. Figure 7
shows the point process realizations, intensities, and counting processes for each arm. Figure 8 shows
the confidence sequence for δ and the sequential p-value for testing equality δ = 0 (θ = ρ).

Figure 7: Inhomogeneous Poisson point process intensities λ0(t) = 2000sigmoid(sin(10πt)+8t−4)

and λ1(t) =
1
4e

3
2λ0(t). Associated counting processes N0(t) and N1(t). Point process realizations

(rug-plots).
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Figure 8: (Left axis) 0.95 continuous-time Confidence sequence for δ = 1.5. (Right axis) Sequential
p-value for testing equality i.e. δ = 0 ⇒ θ = ρ.
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