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Abstract

Many experiments compare count outcomes among treatment groups. Examples
include the number of successful signups in conversion rate experiments or the
number of errors produced by software versions in canary tests. Observations
typically arrive in a sequence and practitioners wish to continuously monitor
their experiments, sequentially testing hypotheses while maintaining Type I er-
ror probabilities under optional stopping and continuation. These goals are fre-
quently complicated in practice by non-stationary time dynamics. We provide
practical solutions through sequential tests of multinomial hypotheses, hypotheses
about many inhomogeneous Bernoulli processes and hypotheses about many time-
inhomogeneous Poisson counting processes. For estimation, we further provide
confidence sequences for multinomial probability vectors, all contrasts among
probabilities of inhomogeneous Bernoulli processes and all contrasts among inten-
sities of time-inhomogeneous Poisson counting processes. Together, these provide
an “anytime-valid” inference framework for a wide variety of experiments dealing
with count outcomes, which we illustrate with several industry applications.

1 Introduction

Many experiments compare count outcomes among treatment groups (arms). For example, in online
conversion experiments we seek the treatment group that achieves the greatest number of conversions
(signups, purchases etc...). In software experiments, we seek the software version that produces
the fewest number of errors [Lindon et al., 2022a, Kuo and Yang, 1996]. These experiments are
frequently complicated in practice by time-variability over the course of the experiment caused by
uncontrollable external factors. The Bernoulli success probability of conversion is often time-varying
due to uncontrollable product changes and market conditions. The instantaneous rate of software
errors is time-varying due to time-varying usage patterns of the software application among users.
Fortunately, the time-variability is often common to all arms of the experiment. Therefore, the count
outcomes among arms should be in some sense comparable under the null hypothesis that all arms
behave equally.

In testing these hypotheses, it is desirable if a statistical test can both (i) detect large treatment effects
early, and (ii) detect small treatment effects eventually. If there is a large negative effect then it is
important to end the experiment as soon as possible to reduce risk to the experimental units and/or
company. However, it is also important to detect small negative effects, as these can accumulate over
time. Classical fixed-n tests cannot satisfy both of these objectives, as there is only one opportunity
to perform the test. Performing the test earlier achieves objective (i), but doesn’t achieve objective
(ii) as it may be underpowered. Performing the test later achieves objective (ii), but doesn’t achieve
objective (i) and treatments may affect experimental units negatively for lengthy amounts of time.
For this reason we provide sequential tests that allow experiments to be continuously monitored. We
have included a discussion of fixed-n testing vs sequential testing and corresponding literature review
in the appendix.
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Sequential testing in experiments with Bernoulli outcomes is complicated in practice because failure
outcomes are typically not directly observed. In many fixed-n approaches, Bernoulli fails are often
inferred from the absence of successes within an arbitrary window of time. This is not possible for
real-time sequential testing when the raw data are streams of Bernoulli successes with associated
timestamps. We are able to circumvent this issue by basing the sequential test solely on the counts of
successes accumulated for each arm so far. This has the advantage of also removing the time-varying
components in the success probabilities.

We begin by providing an anytime-valid inference approach for multinomial families based on a
mixture martingale, which is widely applicable to experiments dealing with count outcomes. We
build upon this test to provide sequential tests of time-inhomogeneous Bernoulli processes and
time-inhomogeneous Poisson counting processes. The former is widely applicable to industry A/B
experiments with Bernoulli outcomes, which we illustrate with a payments funnel experiment. The
latter is widely applicable to industry A/B experiments which observe point processes in time, which
we illustrate with an A/B test used to monitor the safe roll-out of a new software application version.
Our results are general for an arbitrary number of arms.

2 A Sequential Multinomial Test

2.1 Theory

Our development of sequential tests for different kinds of count data begins with a sequential test
for multinomial observations. The construction follows the following sequence of steps common in
the literature [Shafer et al., 2011, Waudby-Smith and Ramdas, 2020, Howard et al., 2021]. Step 1:
Define a relevant test statistic. Step 2: Show that the test statistic is a test martingale - a nonnegative
supermartingale under the null hypothesis. Step 3: Use martingale inequalities to bound the frequentist
Type I error probability uniformly over time below a desired level u. Step 4: Invert the sequential test
based on the test martingale to obtain a confidence sequence with a time-uniform coverage guarantee
of at least 1− u. Extensions to other kinds of count data, including Bernoulli, Binomial and Poisson
counting processes, are then obtained by recognizing relationships that exist to the multinomial
distribution.

Our test martingale is obtained through a mixture martingale construction, integrating the multinomial
likelihood with respect to a Dirichlet mixture distribution [Kaufmann and Koolen, 2021]. The
likelihood mixture is also the statistic used in mixture sequential probability ratio tests (mSPRT)
[Wald, 1945]. Bayesians will immediately recognize this statistic as a Bayes factor [Jeffreys, 1935,
Kass and Raftery, 1995], interpreting the Dirichlet mixture distribution as a prior distribution, which
could be used for computing posterior probabilities. However, not wishing to confuse the reader,
we emphasize that we are not developing a Bayesian procedure. We aim to develop a procedure for
“anytime-valid” inference, providing u-level sequential tests and 1− u confidence sequences. We
will borrow some language from Bayesian analysis, but the frequentist Type I error and coverage
guarantees do not depend on the particular choice of Dirichlet distribution. To avoid confusion, we
encourage the reader to view the Bayes factor simply as a test statistic.

The test statistic can also be viewed as an e-process [Grünwald et al., 2021, Pérez-Ortiz et al., 2022,
Hendriksen et al., 2021]. A review of these constructions and their relationships is discussed in
Ramdas et al. [2022]. The purpose of this paper is not to study the theoretical properties of these
constructions [Wald and Wolfowitz, 1948], but rather to develop anytime-valid tests for several
challenging applications in modern online experimentation dealing with count outcomes.

For step 1, consider a sequence x1,x2,x3, . . . of independent Multinomial(1,θ) random variables
with θ ∈ △d, the d− 1 simplex. We use bold typeset to denote vectors. Under the null hypothesis,
M0, it is assumed that

x1,x2, . . . |M0
i.i.d.∼ Multinomial(1,θ0). (1)

To construct a model over alternatives, M1, we consider the marginal distribution obtained from the
following joint model

x1,x2, . . .|θ,M1
i.i.d.∼ Multinomial(1,θ), (2)

θ|M1 ∼ Dirichlet(α0).
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The following expressions reduce to simple forms when a uniform distribution over the simplex is
used, achieved by setting α0,i = 1 for i = 1, . . . , d, which may be a good default value. The Type I
error and coverage guarantees are unaffected by this choice, but the expected stopping time of the
sequential test is influenced. The optimal choice of this parameter depends upon the value of θ under
the alternative, which is unknown. Stopping times under large departures from the null are reduced by
using the uniform distribution. Whereas stopping times under very small departures from the null are
reduced by concentrating the Dirichlet distribution about θ0, which can be achieved with the choice
α0,i = kθ0,i for a concentration parameter k ∈ R+. In general, the average stopping time is reduced
by matching the Dirichlet distribution to the distribution of effects upon which these sequential tests
will be performed.

Let Sn
i =

∑n
j=1 xj,i and Sn = (Sn

1 , . . . , S
n
d ) ∈ Rd. In addition, let |v| =

∑
i vi denote the element-

wise sum of a vector v, vw =
∏

i v
wi
i to denote element-wise exponentiation of two vectors v and w,

and Beta to denote the multivariate Beta function Beta(v) := (
∏

i Γ(vi))/Γ(
∑

i vi). The resulting
Bayes factor comparing models M1 to M0 is given by

BF10(x1:n) =
Beta(α0 + Sn)

Beta(α0)

1

θSn
0

. (3)

which appears as early as Good [1967] (derivation in Appendix A.4). In a Bayesian analysis, the
Bayes factor multiplied by the prior odds gives the posterior odds of M1 over M0. In this work,
we take the prior odds to be unity so that the terms Bayes factor and posterior odds can be used
interchangeably.

In sequential applications, it often makes sense to compute Equation (3) recursively. Let On(θ0)
denote the posterior odds at n, then

On(θ0) =
Beta(αn−1 + xn)

Beta(αn−1)

1

θxn
0

On−1(θ0), (4)

where αn = αn−1 + xn and O0(θ0) = p(M1)/p(M0) = 1. When α0,i are integer valued,
Equation (4) can be expressed in terms of the posterior mean E[θi|x1:n−1] for each θi as

On(θ0) =

d∏
i=1

(
E[θi|x1:n−1]

θ0,i

)xn,i

On−1(θ0). (5)

Details are provided in Appendix A.5. Equation (5) yields an intuitive betting interpretation [Shafer,
2021]. It represents our bet against the null hypothesis θ0 using a θ learned from the data. In this
case, our estimate of θ based on the data is the posterior mean. If a uniform prior is used, our initial
bet on each outcome x1,i is simply 1/d, and our bet on each outcome xn,i is (1 + Sn−1

i )/(n+ d).
The dependence of On(θ0) on the observed data x1:n is implicit in this notation, yet the null value
θ0 being tested is made explicit to aid the discussion of confidence sequences in Theorem 2.4.

Step 2 in our construction is to demonstrate that On(θ0) is a nonnegative supermartingale under the
null hypothesis M0.
Theorem 2.1. Let x1,x2, . . . be a sequence of independent Multinomial(1,θ) random variables
with the filtration Fn−1 = σ(x1,x2, . . . ,xn−1) and consider the sequence of posterior odds On(θ0)
defined in Equation (4) with O0(θ0) = 1. Then

EM0
[On(θ0)|Ft−1] = On−1(θ0). (6)

The proof is found in Appendix A.6. Theorem 2.1 states that On(θ0) is a nonnegative martingale
under the null hypothesis with respect to the canonical filtration.

Step 3 is to use the posterior odds to construct a test martingale.
Theorem 2.2. Let x1,x2, . . . be a sequence of independent Multinomial(1,θ) random variables
and consider the sequence of posterior odds On(θ0) defined in Equation (4) with O0(θ0) = 1. Then

Pθ=θ0
(∃n ∈ N : On(θ0) ≥ 1/u) ≤ u (7)

for all u ∈ [0, 1].
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The proof is provided in Appendix A.7. The time-uniform bound presented in Theorem 2.2 controls
the deviations of a stochastic process for all t simultaneously and is essential for proving the
correctness of sequential tests and verifying the optional stopping and optional continuation properties.
It provides a valid stopping rule: reject the null at time τ = inf{n ∈ N : On(θ0) ≥ 1/u}. Simply
stated, a practitioner who rejects the null hypothesis as soon as the posterior odds become larger than
1/u faces a frequentist Type I error with probability of at most u. Shafer et al. [2011], Johari et al.
[2021] bring this idea back to more familiar territory by constructing a sequential p-value by tracking
the running supremum of the posterior odds and taking its inverse, or equivalently

p0 = 1 and
pn = min(pn−1, 1/On(θ0)).

It follows from this definition and equation (7) that

Pθ=θ0
(∃n ∈ N : pn ≤ u) ≤ u, (8)

which is an easily digestible generalization of a fixed-n p-value to sequential settings. Instead of
holding only at some pre-specified n ∈ N, this guarantee holds for all n ∈ N. This construction
is shown in Figure 1. A simulation empirically demonstrating the control of false positives under
continuous monitoring relative to a χ2 test is shown in Appendix A.9.

Before completing Step 4, it is useful to show that this sequential test is not trivial. For this test to
have utility it must possess the ability to control not only Type I errors, as in theorem 2.2, but also
Type II errors. This is provided by the following theorem.

Theorem 2.3. Let x1,x2, . . . be a sequence of independent Multinomial(1,θ) random variables
and consider the sequence of posterior odds On(θ0) defined in Equation (4) with O0(θ0) = 1. If
θ ̸= θ0, then

1

n
logOn(θ0) → DKL(θ||θ0) a.s., (9)

where DKL(θ||θ0) is the Kullback-Leibler divergence of the true multinomial distribution with true
parameter θ from the multinomial distribution under the null hypothesis with null parameter θ0.

The proof is given in Appendix A.8. Theorem 2.3 states that if the null hypothesis is not true, with
θ ̸= θ0, then the Bayes factor will diverge to infinity and exceed the 1/u threshold in Theorem 2.2
(a.s.), or equivalently that the sequential p-value converges to zero and falls below the u threshold
(a.s.). In other words, this test is guaranteed to reject the null almost surely if the null is incorrect,
which is considered to be asymptotically power 1 by Robbins [1970]. This result follows simply from
the posterior consistency of Bayes factors. We now state step 4 of the construction.

Theorem 2.4. Let x1,x2, . . . be a sequence of independent Multinomial(1,θ) random variables
and consider the sequence of posterior odds for testing the null hypothesis θ = θ0, On(θ0), defined
in Equation (4) with O0(θ0) = 1. Let Cn(u) = {θ ∈ △d : On(θ) < 1/u} denote the set of
parameter vectors that would not be rejected by the test at the u level, then

Pθ (θ ∈ Cn(u) for all n ∈ N) ≥ 1− u (10)

for all u ∈ [0, 1].

A simple corollary of theorem 2.4 is that Pθ (θ ∈
⋂∞

n=1 Cn(u)) ≥ 1 − u. This result provides
a confidence statement for sequentially estimating the true parameter vector θ as the experiment
progresses. The confidence set Cn(u) for θ is a convex subset of △d, with convexity following from
the concavity of the multinomial log-likelihood. Confidence intervals on the individual elements of θ
can be obtained by projecting Cn(u) onto the coordinate axes in the following manner.

Corollary 2.5. For Cn(u) as in Theorem 2.4, let

j+n,i(u) = sup{θi : θ ∈ Cn(u)},
j−n,i(u) = inf{θi : θ ∈ Cn(u)},

then

Pθ

(
∀i : θi ∈

∞⋂
n=1

[j−n,i(u), j
+
n,i(u)]

)
≥ 1− u. (11)
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j+n,i(u) can be computed by solving the following convex optimization program

max θi

s.t. c+ log u ≤
∑
i

Sn
i log θi∑

i

θi = 1

(12)

where c = logBeta(α0 + Sn)− log Beta(α0). The constraints in the optimization program simply
define Cn(u). Similarly, j−n,i(u) is obtained by minimizing θi over this set.

Lastly, the confidence set in Theorem 2.4 is equal to the Bayesian support set [Wagenmakers et al.,
2022].
Corollary 2.6. The Bayesian support set, defined as {θ ∈ △d : p(θ|x1:n,M1) ≥ up(θ|M1)} has
time-uniform frequentist coverage of at least 1− u.

The proof is a simple application of the Savage-Dickey density ratio On(θ) =
p(θ|M1)/p(θ|x1:n,M1) [Dickey, 1971].

2.2 Application: Sample Ratio Mismatch Tests

Comparing the counts of experimental units assigned to each arm of a multi-arm experiment can
often detect bias and errors in the experiment. Most online controlled experiments follow simply
randomized designs, whereby a new unit is randomly assigned to one of d arms according to a vector
of pre-specified probabilities θ. The assignment outcome for a new unit is independent of other
units (individualistic), unit-level covariates, potential outcomes (unconfounded) and can therefore be
summarized as an independent Multinomial(1,θ) random variable. Under these assumptions, the
assignment mechanism can be considered ignorable when performing inference on causal estimands
such as the average treatment effect [Imbens and Rubin, 2015].

Although simple in theory, the systems that perform assignments quickly grow in complexity as the
number of concurrent experiments increases [Tang et al., 2010]. This increased complexity increases
the risk of introducing bugs that cause departures from the intended assignment mechanism, breaking
the assumption of ignorability and rendering causal estimates invalid. Zhao et al. [2016] provide an
account of an incorrect hashing algorithm introducing bias into the assignment mechanism.

After assignment and measurement, data passes through processing and cleansing pipelines before
analysis. If incorrect cleansing logic is applied, there is a risk that specific observations may be
selectively removed, introducing a “missing not at random” missing data mechanism, rendering
causal estimates invalid [Rubin, 1976]. Fabijan et al. [2019] describes an experiment in which units
from the treatment arm were unintentionally removed, with the probability of their removal depending
on their observed outcomes.

An arm with a surprisingly low or high number of units is usually symptomatic of an implementation
error in the experiment and is colloquially referred to as a sample ratio mismatch (SRM) [Fabijan
et al., 2019]. These errors can be caught by comparing the counts of experimental units in each arm
against the intended assignment probabilities. It is now considered good practice to validate the
experiment setup by performing a χ2 test, comparing the observed counts against the expected counts
under the intended assignment mechanism [Chen et al., 2018]. However, the χ2 test is an example
of a fixed-n test, providing statistical guarantees when performed once. Due to this limitation, it
is typically performed after data collection and before analysis. To reveal a bug that renders an
expensive experiment invalid only after the experiment is finished would be less than ideal. Ideally,
SRMs are detected as early as possible so that the implementation error can be corrected before more
units enter the experiment. This necessitates sequential testing. We provide a sequential multinomial
test for testing a point null based on the counts of each outcome.

Figure 1 shows the application of the sequential multinomial test to a representative experiment
exhibiting an SRM. In this example the intended assignment probabilities are θ0 = (0.1, 0.4, 0.5).
These propensity scores are assumed to be known by the analyst and will subsequently be used to
perform inference about average treatment effects. Due to a bug, either in randomization or data
processing, some units are preferentially assigned to certain arms based on their covariates, or data is
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(a) Joint Confidence Set at n = 144 (b) Simultaneous Marginal Confidence
Sequences

(c) Sequential p-value and Bayes Factor

Figure 1: (a) The confidence set C144(0.05) at n = 144 as defined in Theorem 2.4. The true
θ = (0.1, 0.3, 0.6) is marked with a black cross, and the null hypothesis θ0 = (0.1, 0.4, 0.5) is
denoted with a red cross. (b) Simultaneous 0.95 confidence sequences that cover the individual
elements of θ = (0.1, 0.3, 0.6) obtained from Corollary 2.5 and computed via the optimization
program in Equation (12). (c) (Left axis) Sequential p-value (blue) defined in Equation (8). Critical
value u = 0.05 (dashed-black). θ = (0.1, 0.3, 0.6), θ0 = (0.1, 0.4, 0.5). pn < 0.05 for all n ≥ 144.
(Right axis) The posterior odds defined in Equation (3) (red), with the running supremum (green).

being lost not at random, resulting in observations arriving with probabilities θ = (0.1, 0.3, 0.6). The
sequential p-value is less than 0.05 for all n ≥ 144. This is the smallest n for which θ0 ̸∈ Cn(0.05).

3 Inhomogeneous Bernoulli Processes

Wald [1947] described an experiment to test the null hypothesis that two guns are equally precise.
Two guns are fired at a target simultaneously for many attempts, and their success is recorded. Each
attempt is modelled as a Bernoulli trial and, under the null hypothesis, the probability of each gun
hitting the target on the same attempt is equal. However, the success probability varies across attempts
due to gusty wind conditions. As the guns are shot simultaneously, the wind condition affects each
gun equally. If the null is rejected, choosing the gun that obtained the greatest number of successes
seems reasonable.

3.1 Theory

Suppose a new experimental unit is randomly assigned to one of d experiment treatment groups (arms)
at time t, according to assignment probabilities ρ ∈ △d, and a Bernoulli outcome is observed. The
Bernoulli probability for arm i at time t is parameterized by pi(t) = eµ(t)eδi so that the time-varying
effect is multiplicative and common to all arms. The improvement of arm j over arm i at any time
is then pj(t)/pi(t) = exp(δj − δi), and the difference on the log-scale is simply δj − δi. Suppose
Bernoulli failures are ignored and arms are compared only through their counts of Bernoulli successes.
The (conditional) probability that the next Bernoulli success comes from arm i is

θi =
ρie

δi∑d
j=1 ρje

δj
, (13)

which is independent of the time-varying effect. The arm from which the next Bernoulli success
arrives is, therefore, a Multinomial(1,θ) random variable, and the counts of Bernoulli successes for
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each arm are independent of the time-varying nuisance parameter µ(t). Framing the problem this
way allows the sequential multinomial test to perform inference on δ. Simple hypotheses about δ can
therefore be translated into testing simple hypotheses about θ. Equality among success probabilities
can be tested by simply testing the null multinomial hypothesis θ0 = ρ. The individual components
δi are not identifiable, as adding a constant to each element results in the same θ, yet contrasts of the
form

∑
i aiδi for

∑
i ai = 0 are identifiable.

Let σρ : Rd → △d denote a generalization of the softmax function to include ρ, with σρ(δ)i equal
to the right hand side of Equation (13).

Theorem 3.1. Let Kn(u) = σ−1
ρ (Cn(u)), then

P[δ ∈ Kn(u) for all n ∈ N] ≥ 1− u (14)

The proof is a direct consequence of Theorem 2.4. The following corollary yields simultaneous
confidence sequences for all contrasts.

Corollary 3.2. Let Kn(u) = σ−1
ρ (Cn(u)) and Ad = {a ∈ Rd :

∑
i ai = 0} denote the set of all

d-dimensional contrasts. For all a ∈ Ad define

l+n,a(u) = sup{
∑
i

aiδi : δ ∈ Kn(u)} and

l−n,a(u) = inf{
∑
i

aiδi : δ ∈ Kn(u)}.

Then

Pθ

(
∀a ∈ Ad :

∑
i

aiδi ∈
∞⋂

n=1

[l−n,a(u), l
+
n,a(u)]

)
≥ 1− u.

The upper bound l+n,a(u) is the solution to the convex optimization

max
∑
i

aiδi

s.t. c ≤
∑
i

Sn
i

δi + log ρi − log
∑
j

ρje
δj

 ,

(15)

where c = logBeta(α0 + Sn) − log Beta(α0) + log u. Convexity follows from the log-sum-
exponential function. The lower bound l−n,a(u) is the solution to the corresponding minimization
problem. This is visualized in Figure 2.

A hypothesis can be rejected at the u level as soon as the set that it defines fails to intersect with the
confidence set Kn(u). Note that Kn(u1) ⊂ Kn(u2) for u1 > u2. To obtain a sequential p-value, we
seek the largest u such that the null is not rejected. That is, we seek the smallest set Kn(u) such
that there is a non-empty intersection with the subset of Rd defined by the hypothesis. This too can
be achieved by a convex optimization program. One can simply maximize u over the feasible set
defined by the intersection of the Kn(u) and the set defined by the hypothesis. Suppose one wishes
to test the hypothesis δ0 ≥ δ1 and δ0 ≥ δ2. The sequential p-value at time n is the inverse of the
solution to the following convex program

min q

s.t. c ≤ log(q) +
∑
i

Sn
i

δi + log ρi − log
∑
j

ρje
δj


δ0 ≥δ1
δ0 ≥δ2

(16)

where c = logBeta(α0 + Sn)− log Beta(α0). A simulation study presenting sequential p-values
and confidence sequences on δ is given in Appendix A.11
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(a) (b)

Figure 2: (a) Assuming p1 and p0 are stationary and estimated using multinomial confidence se-
quences from from Corollary 2.5. (b) Assuming p1(t) and p0(t) are dynamic but with p1(t)/p0(t) =
exp(δ1−δ0) and estimating this quotient using the confidence sequences from equation Corollary 3.2.
(Left axis) Confidence sequences are visualized with shaded regions and MLE estimates are visualized
with solid lines. (Right axis) sequential p-value.

3.2 Application: Conversion Rate Optimization

Many modern experiments are designed to increase conversion rate and drive additional revenue. The
term conversion is used to describe a Bernoulli trial such as user signup or purchase. The typical
setup is that there are d different experiences (such as different versions of a signup page), and
each experience i is assumed to have some conversion probability pi. When a new user visits the
experience, they either convert or they do not, and a successful or unsuccessful conversion event
is logged. One might think that it would be easy to estimate pi sequentially using the multinomial
confidence sequences of section 2 and the counts of successful and unsuccessful conversions of arm i.
However, one soon runs into problems, as illustrated below.

The following case study comes from a signup funnel experiment at Netflix. It was hypothesized
that adding additional methods of payments might increase the overall number of conversions.
Alternatively, it could also be plausible that additional payment methods may simply cannibalize
conversions from other payment methods, not increasing the overall number of conversions at all.
An A/B test was created to test these hypotheses. The control group received the standard set of
payment methods, while the treatment group were offered the standard set plus additional payment
methods. To begin, let’s first incorrectly assume that the success probabilities are constant. Figure
2 shows the application of the multinomial confidence sequences from Corollary 2.5 to separately
estimate the conversion probabilities for arms 0 and 1. Note that the running intersection of anytime-
valid confidence intervals becomes the empty set, and the MLE exits the confidence sequence.
An empty intersection would be a rare event (with probability less than α) if the assumption of
constant probabilities in Section 2 were true. Instead, it indicates that the conversion probabilities
are not constant but time-varying, invalidating a commonly made assumption in conversion rate
experimentation.

Many online conversion experiments share similarities with Wald’s gun-shooting example. The
success probability of a conversion is often time-varying due to external factors such as the day
of the week, recent product launches, or new promotions. These external factors likely affect all
arms of the experiment equally, so it is reasonable to expect the time variation to be common to all.
Moreover, it is often the case in these experiments that an unsuccessful signup (a 0 or “fail” Bernoulli
outcome) is not directly observed. When a successful signup occurs, an event is typically logged, but
if no signup occurs, then an unsuccessful signup must be inferred from the absence of a successful
signup (typically through an ad-hoc definition such as “an experimental unit failed to convert within
T units of time since allocation”). This definition of conversion can make the analysis sensitive to the
arbitrary choice of time window, and can present challenges to a sequential analysis if one must wait
T units of time before the first Bernoulli outcome is realized.

Instead, we propose using the assumptions of section 3, which only requires the counts of successful
signups. The assumption of constant conversion probabilities is relaxed to a constant multiplicative
difference between them, which is typically more realistic in practice. The confidence sequence on
the multiplicative constant is shown in 2 (b). A winning arm can be declared in approximately one
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week instead of nine, toward which all subsequent visitors can be directed, dramatically increasing
signups relative to the fixed-n experiment.

4 Inhomogeneous Poisson Counting Processes

4.1 Theory

A counting process is a stochastic process {N(t) : t ≥ 0} satisfying N(0) = 0, N(t) ∈ N0 and
N(s) ≤ N(t) for s ≤ t. The inhomogeneous Poisson counting process is defined by an intensity
function λ : R → R+ that is locally integrable,

∫
B
λ(t)dt ≤ ∞ for all bounded Borel measurable

sets B ∈ R, defining a measure Λ(B) =
∫
B
λ(t)dt [Kingman, 1992]. For any collection of disjoint

Borel measurable sets B1, B2, . . . the inhomogeneous Poisson counting process has the property that
N(Bi) are independent Poisson(Λ(Bi)) random variables. The inhomogeneous Poisson counting
process can be defined in terms of an inhomogeneous Poisson point process on the real line by simply
counting the number of points in a set. For our applications, these points correspond to times of
events. At any time t the probability density of the time-difference s to the next point is given by
g(s) = λ(t+ s) exp(−

∫ s

0
λ(t+ s)ds). The independent increments property implies a memoryless

property of the process: the counts in the next time interval or waiting time until the next point are
independent of the process history. This is a necessary property to establish the following theorem.
Theorem 4.1. Consider d inhomogeneous Poisson point processes indexed by i ∈ {1, . . . , d} where
process i has intensity functions λi(t) = ρie

δiλ(t). Let each point produced by process i be marked
with the corresponding process index i. At any time t, such as immediately after the previous point,
the probability that the next point has mark i is given by

θi =
ρie

δi∑d
j=1 ρje

δj
. (17)

This gives the probability that the next point in time is from process i. The proof is given in the
Appendix A.10. Theorem 4.1 states that the sequence of marks can be considered a sequence of
Multinomial(1,θ) random variables, allowing the sequential multinomial test to perform inference
on δ. For example, a sequential test of equality among d time-inhomogeneous Poisson point processes
(λi(t) = λj(t) for all pairs i and j) can be obtained from the sequential multinomial test of the
hypothesis θ0 = (1/d, . . . , 1/d). Once again, the total counts in each arm is a statistic that is
independent of the time-varying nuisance parameter λ(t). A simulation study presenting sequential
p-values and confidence sequences on δ is given in Appendix A.12

4.2 Application: Software Canary Testing

When continuously deploying new software to users, engineers often adopt the practice of canary
testing [Lindon et al., 2022a, Schermann et al., 2018]. A canary test is a controlled experiment in
which users are randomly assigned to the current software or a newer release candidate. The experi-
menter’s goal is to study the performance of the release candidate in a production environment before
releasing it globally, essentially acting as a quality control gate before full deployment. If the release
candidate performs significantly worse, it is blocked, and developers must resolve the offending
issues. This strategy helps to prevent bugs from reaching all users. However, performance regressions
are still experienced by the users in the experiment. Reducing the risk for these users motivates the
experiment’s stoppage as soon as a performance regression is detected. Optional stopping requires
performance to be measured in real-time and requires sequential testing methodology.

Performance regressions are measured in terms of the rates of events. These events could correspond
to errors, failures, or any occurrence of interest sent to a central logging service by each instance of
the software. The data naturally forms a marked 1-dimensional point process in time, recording the
timestamp and type of event. The instantaneous rate is expected to be time-varying due to varying
traffic and usage patterns.

The following example is taken from a canary test Netflix. This acts as a quality control gate in the
software delivery process when releasing new versions of the client application. A regression that
would have affected approximately 60% of all devices was detected with this methodology in less
than one second. Successful play starts (SPS) are carefully monitored in this experiment between

9



(a) (b)

Figure 3: (a) Ruglplot shows the timestamps of SPS events being received, while solid lines show the
counting processes for arms 0 and 1. (b) (Left axis) Shaded region shows the confidence sequence
for the quotient of inhomogeneous Poisson process intensity functions λ1(t)/λ0(t) obtained from
Corollary 3.2. Blue solid line shows the MLE of λ1(t)/λ0(t) = eδ1−δ0 . (Right axis) Black solid line
shows sequential p-value.

the existing software and the release candidate. An SPS event is sent by the streaming application to
the central logging system whenever a requested title successfully begins playback. If significantly
fewer SPS events are being received from the treatment group running the release candidate, then it
indicates there is an issue with the new software preventing some streams from starting. Figure 3
shows that the confidence sequence on λ1(t)/λ0(t) falls below 1.0 in less than a second, indicating
that the instantaneous rate of SPS events for arm 1 is less than the instantaneous rate of SPS events
for arm 0. In this case, the canary test was aborted and the offending bug was identified, preventing a
serious regression from being released to all users.

5 Conclusion

The contributions of this paper provide an “anytime-valid” approach to inference in several important
applications dealing with count data. The anytime-valid guarantees permit experiments to be contin-
uously monitored and enables optional stopping, which can greatly reduce both the time required
for experiments to complete and the potential harm to units in the experiment. We first introduced
a sequential test for Multinomial hypotheses using a mixture martingale construction, which has
already proven to be an effective solution for rapidly detecting sample ratio mismatches in online
controlled experiments. We then used this result to develop a sequential test of equality and contrasts
in inhomogeneous Bernoulli processes, which has practically demonstrated dramatic speedups in
decision-making in conversion experiments. Contrary to many widely used models, our approach
does not assume that the conversion probabilities are constant, which is often violated in the real
world. Moreover, only successful conversions, such as signups, are observed in practice. This is
different from Bernoulli outcome models in which it is assumed that both successes and failures are
observed. Our proposed sequential test enjoys the added convenience of only requiring successful
Bernoulli outcomes to be observed. Lastly, we used the sequential Multinomial test to develop a
sequential test for equality and contrasts in time-inhomogeneous Poisson counting processes. These
play an important role in the monitoring of systems, such as data pipelines and software usage.

The confidence sequences provided in this paper allow inference to be made at any time and data-
dependent stopping rules for ending an experiment. This in of itself can dramatically speed up the
time to reach conclusions with valid statistical guarantees. An obvious extension to this work is to
combine these confidence sequences with a strategy for adapting the assignment probabilities with
the goal of assigning fewer units to suboptimal arms. The confidence sequences presented here can
be used to construct an adaptive algorithm that identifies the best arm with tunably high probability
through the least upper confidence bound (LUCB) algorithm, as has been done successfully in
Howard and Ramdas [2022].
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contributions and scope? [Yes] Our work is motivated by three important sequential
applications in online experimentation. Testing proper randomization via sample ratio
mismatch testing. Testing hypotheses among time-varying probabilities in conversion
rate optimization and testing hypotheses among time-varying poisson process intensities
in software canary experiments. We have provided viable sequential testing solutions
to all of three of these applications via sequential multinomial tests, sequential tests
of inhomogeneous Bernoulli processes, and sequential tests of time-inhomogeneous
Poisson counting processes.

(b) Did you describe the limitations of your work? [Yes] We have explained in the
introductory section that we do not study the theoretical properties such as optimality
our proposed tests. Our tests are specific instances of a generic construction known
as the method of mixture martingales and mixture sequential probability ratio tests.
The optimality properties of these tests are well established and we have linked to the
relevant literature. Our work focuses on providing specific solutions to some important
applications using these constructions.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
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them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All proofs
include the assumptions, and we have even presented examples of what can go wrong
when these assumptions do not hold - see the application of multinomial confidence
sequences when the probabilities are time varying in section 3

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are in the
appendix

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
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simulations in the appendix, which all include clear instructions on how they were
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were chosen)? [N/A]
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(b) Did you mention the license of the assets? [N/A]
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using/curating? [Yes] We include two real-world case studies of how this methodology
is employed with practical value at a leading internet streaming company. A draft of
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