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Abstract

In this paper, we propose a new covering technique localized for the trajectories
of SGD. This localization provides an algorithm-specific complexity measured by
the covering number, which can have dimension-independent cardinality in con-
trast to standard uniform covering arguments that result in exponential dimension
dependency. Based on this localized construction, we show that if the objective
function is a finite perturbation of a piecewise strongly convex and smooth function
with P pieces, i.e. non-convex and non-smooth in general, the generalization error
can be upper bounded by O(

√
(log n log(nP ))/n), where n is the number of

data samples. In particular, this rate is independent of dimension and does not
require early stopping and decaying step size. Finally, we employ these results in
various contexts and derive generalization bounds for multi-index linear models,
multi-class support vector machines, and K-means clustering for both hard and
soft label setups, improving the known state-of-the-art rates.

1 Introduction
We consider the following stochastic optimization problem

min
θ∈Θ

{
F (θ) := EZ [f(θ;Z)]

}
, (1.1)

where θ represents the optimization parameter, Θ ⊂ Rd is a convex parameter domain, f( · ; z) is a
possibly non-convex loss incurred by a single data point z ∈ Z , and Z is a random variable on Z
following the data distribution. Since the distribution of Z is unknown in general, the following proxy
based on independent and identically distributed (i.i.d.) samples z1, . . . , zn of Z is optimized instead

min
θ∈Θ

{
F̂ (θ) :=

1

n

n∑
i=1

f(θ; zi)
}
. (1.2)

Given a learning algorithm A( · ) mapping samples z1, . . . , zn to an approximate solution of (1.2),
bounding the generalization error1 F̂ (A(z1, . . . , zn))−F (A(z1, . . . , zn)) is a fundamental problem

1This quantity is also referred to as the generalization gap or the estimation error in the literature.
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in learning theory. Classical algorithm-independent results rely on uniform convergence over the
entire domain Θ ⊂ Rd; thus, they apply to any learning algorithm. However, these bounds often
increase with the dimension d [SSSSS09, SSBD14, Fel16], becoming vacuous in the modern over-
parameterized regime [ZBH+21]. To derive dimension-independent bounds, researchers have been
investigating algorithm-dependent generalization properties, especially for commonly used training
methods such as stochastic gradient descent (SGD) [HRS15, SHN+18, YKM21].

Notably, algorithmic stability is a technique for deriving generalization bounds based on the properties
of a specific learning algorithm, which leverages that if a parameter learned by an algorithm is
robust under a perturbation of samples z1, . . . , zn, then the generalization error at that parameter
must be small [BE02]. Based on this principle, several works proposed dimension-independent
generalization bounds for SGD and its variants under various setups [HRS15, Lon17, FV19, LLQ20,
BFGT20, LY20, FO21, LLY21, KWS22]. Bounds derived using algorithmic stability is optimal for
strongly convex and smooth functions [SSSSS09] and convex and non-smooth functions [BFGT20,
AKL21]. Nevertheless, without global (strong) convexity, early stopping, and/or decaying step
size, generalization bounds based on algorithmic stability often diverge with the number of SGD
iterations [HRS15, LLQ20], failing to explain the empirical observations.

To obtain (ambient) dimension-independent bounds that do not diverge with the number of iterations,
recent works proposed to utilize the low-dimensional fractal structures generated by the SGD iterates
whose complexity can be measured by a notion called the Hausdorff dimension [Fal14]. In this
context, [ŞSDE20] showed that, under a continuous-time surrogate for SGD, the generalization error
can be bounded by Õ(

√
dH/n), where dH denotes the Hausdorff dimension of the optimization

trajectory. This result was later extended to discrete-time iterated function systems by [CDE+21].
Here, the Hausdorff dimension can be smaller than the ambient dimension [CDE+21], ultimately
providing improved generalization bounds. However, both of these results are inherently asymptotic,
and rely on opaque assumptions that are hard to verify in practice.

In this paper, we propose a new framework for deriving generalization bounds for the projected
SGD with a constant step size and without requiring early stopping. Inspired by the works [ŞSDE20,
CDE+21], our framework is based on a complexity measure of the trajectory of SGD, which can be
quantified under standard verifiable conditions. Our contributions are as follows.

• Localized ε-covers for SGD. Our first principle contribution is a covering technique localized for
the trajectories of SGD. This localization provides an algorithm-specific complexity measured by
the covering number, which can have dimension-independent cardinality in contrast to standard
covering arguments that result in exponential dimension dependency.

• Generalization bounds for SGD. Based on this localized covering, we establish dimension-
independent generalization bounds for SGD, for a rich class of non-convex loss functions f whose
gradients can be approximated by that of a piecewise strongly convex and smooth function h, i.e.
∥∇f(θ; z)−∇h(θ; z)∥ ≤ ξ for some ξ. In particular, with high probability, we prove the bound∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ = O

(√
log n log(nP )

n
+ ξ

)
, (1.3)

where θ(t) denotes the parameter generated by t SGD iterations for a sufficiently large t, and P
denotes the number of strongly convex pieces needed to approximate f . We further show that
the gradient of any (piecewise) smooth function f can be approximated with that of a piecewise
strongly convex and smooth function, demonstrating the wide applicability of the bound (1.3).
Finally in the special case P = 1 and ξ = 0, our result reduces to a non-asymptotic bound where
the complexity is captured by the Hausdorff dimension of the invariant measure of SGD.

• Improved bounds in specific models. We employ the above result to derive generalization bounds
in several statistical models trained by SGD, including multi-index linear models, multi-class
support vector machines, and K-means clustering with both hard and soft label setups, improving
the previously known state-of-the-art generalization error bounds in this context.

Notation and problem setup. For k ∈ N, we denote [k] := {1, . . . , k} We use ∥ · ∥ to denote
the ℓ2-norm. For ε > 0 and θ ∈ Rd, we use Bdε (θ) to denote the d-dimensional closed ℓ2-ball of
radius ε, centered at θ. Given a set S ⊆ Rd and ε > 0, we say Cε ⊆ Rd is an “ε-cover” of S if
S ⊆

⋃
θ∈Cε
Bdε (θ).
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Given a step size η > 0, an initial parameter θ(0) ∈ Θ, and a randomly sampled index it ∈ [n], the
t-th iteration of the projected SGD performs the following update on the parameters

θ(t) = git(θ
(t−1)) := ΠΘ

(
θ(t−1) − η∇f(θ(t−1); zit)

)
for t = 1, 2, ..., (1.4)

where ΠΘ(θ) := argminθ′∈Θ ∥θ′ − θ∥ denotes the Euclidean projection. The domain Θ is convex;
thus, the projection operation is unique. We note that the projection is not needed under the presence
of an ℓ2-regularizer and Lipschitz continuity; see Section 4 for more details. Throughout the paper,
we use θ(t) := git ◦ · · · ◦ gi1(θ(0)) for possibly random indices i1, . . . , it.

Lastly, we recall a few standard notions. f : Θ→ R is called “α-strongly convex” and “β-smooth”
respectively if for all θ, θ′ ∈ Θ, the following conditions are satisfied

f(θ)− f(θ′)−∇f(θ′)⊤(θ − θ′) ≥ α

2
∥θ − θ′∥2, and ∥∇f(θ)−∇f(θ′)∥ ≤ β∥θ − θ′∥.

The function f is called “convex” if it is 0-strongly convex.

2 Main results

We demonstrate our covering construction in Section 2.1 in the classical strongly convex and smooth
case in which the localization argument can be simplified by the contractivity of SGD. We present
our main generalization result on non-convex losses in Section 2.2, and its implications in Section 3.

2.1 A localized covering construction: Strongly convex and smooth case

To motivate our approach, let us first briefly discuss the limitations of prior methods that are based
on uniform convergence of empirical processes. Given a set of parameters Θ ⊆ BdR(0), let Cε be an
ε-cover of Θ, i.e. Θ ⊆

⋃
ϕ∈Cε

Bdε (ϕ). Uniform convergence over Θ can be established with high
probability by simply applying the union bound over Cε, which yields a generalization error bound
depending on the cardinality of the cover

√
log |Cε|. However, Cε is typically independent of the

algorithm being used, and standard ε-covers for Θ yield |Cε| = (R/ε)Ω(d); thus, bounds based on
covering numbers often grow with

√
d, which can be loose if d is large. To overcome this issue, we

use the contractive properties of SGD in the strongly convex and smooth case and localize the ε-cover.
Namely, instead of covering the entire feasible set Θ, we construct a cover that contains only the
points that can be reached by SGD trajectories, resulting in a covering number that is independent of
the ambient dimension d. We introduce the following sets produced by SGD trajectories.
Definition 1. We define the following two subsets of Θ.

• The set of points that can be reached by T SGD iterations initialized at θ(0) ∈ Θ,
ΨT (θ

(0)) := {giT ◦ · · · ◦ gi1(θ(0)) : i1, . . . , iT ∈ [n]}.
• The set of points that can be reached by any t ≥ T SGD iterations initialized at θ(0) ∈ Θ,

Ψ≥T (θ
(0)) :=

⋃
t≥T

Ψt(θ
(0)).

For γ ∈ (0, 1), a function g : Θ→ Θ is called “γ-contractive” if for all θ, θ′ ∈ Θ, it satisfies
∥g(θ)− g(θ′)∥ ≤ γ∥θ − θ′∥. In the constant step-size case, SGD iterates converge to a distribution
instead of a single point [DDB20], but their contractivity can still provide the following localization:
all possible SGD iterates after sufficiently many iterations can be ε-covered by nO(log(1/ε)) points.
Lemma 2.1. Suppose that g1, g2, . . . are γ-contractive for some γ ∈ (0, 1). Then, for any initializa-

tion θ(0) ∈ Θ ⊆ BdR(0) and for any ε > 0, for T := Tε = max
{⌈

log(R/ε)
log(1/γ)

⌉
, 0
}

, we have

Ψ≥T (θ
(0)) ⊆

⋃
ϕ∈ΨT (0)

Bdε (ϕ).

Proof. For t ≥ T , let θ(t) ∈ Ψ≥T (θ
(0)) such that θ(t) := git ◦· · ·◦gi1(θ(0)) for some i1, . . . , it ∈ [n].

Let ϕ := git ◦ · · · ◦ git−T+1
(0) and notice that ϕ ∈ ΨT (0) by construction. Then for T := Tε and

θ(t−T ) := git−T
◦ · · · ◦ gi1 , we have

∥θ(t) − ϕ∥≤ γT ∥θ(t−T ) − 0∥ ≤ γTR ≤ ε,

since each gi is γ-contractive and ∥θ(t−T )∥ ≤ R by (1.4). This implies θ(t) ∈
⋃

ϕ∈ΨT (0) Bdε (ϕ).
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Figure 1: Left: illustration of T = Tε coupled projected SGD updates from two distinct points. Right:
illustration of our localized cover ΨT covering Ψ≥T with T = 2 and n = 2 and |ΨT | = nT = 4.

For strongly convex and smooth f( · ; z), an SGD update gi with a sufficiently small step size is
contractive [DDB20]; that is, applying gi to any two points decreases the distance between them
(see Appendix A.1 for a formal derivation). Therefore, for any ε > 0, there exists T := Tε such that
applying T synchronously coupled SGD updates that use the same sample at each iteration can make
the distance between the initial points smaller than ε; see Figure 1 (left). This observation implies
that the set ΨT (0) of all parameters that can be generated by T SGD updates when initialized at the
origin ε-covers the set Ψ≥T (θ

(0)) of all parameters that can be generated by any t ≥ T SGD updates
for an arbitrary initialization θ(0); see Figure 1 (right). In contrast to algorithm-independent covers of
Θ that scale with |Cε| = (R/ε)Ω(d) = eΩ̃(d), we obtain |ΦT (0)| ≤ nT = eÕ(1) which is independent
of the dimension d and only polynomial in the number of samples n.

We make the following additional assumptions on the loss function f .
Assumption 1 (Weak Lipschitz continuity). For L > 0, there exists h : Θ → R such that for all
θ, θ′ ∈ Θ and z ∈ Z , |f(θ; z)− h(θ)− (f(θ′; z)− h(θ′))| ≤ L∥θ − θ′∥.

Notice that h = 0 reduces to the classical Lipshitz continuity, but the above condition is more general.
Assumption 2 (Bounded deviation). ForB>0, for all θ∈Θ,

∣∣ supz∈Z f(θ; z)−infz∈Z f(θ; z)
∣∣≤B.

We note that Assumptions 1 & 2 (or their variants) both appear in several algorithmic stability-based
results; see e.g. [HRS15, Thm 3.10]. We also highlight that these conditions are invariant to adding
regularizers (e.g. consider f(θ; z)← f(θ; z) + λ

2 ∥θ∥
2) which will be useful in Section 3.

Theorem 2.1. Suppose that Assumptions 1 & 2 hold and there exist α, β > 0 such that f( · ; z)
is α-strongly convex and β-smooth on Θ ⊆ BdR(0) for all z ∈ Z . For any η ∈ (0, 2/β), let

γ :=
√
1− 2αη + αβη2, T := max

{⌈
log(2LRn)
log(1/γ)

⌉
, 0
}

. Then, with probability at least 1 − δ, for

any θ(0) ∈ Θ, t ≥ T , and i1, . . . , it ∈ [n], SGD iterate θ(t) satisfies∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ BT + 1

n
+B

√
T log n+ log(2/δ)

2n
. (2.1)

Remark. A few remarks are in order. For stochastic convex optimization, the best achievable bound
via uniform convergence over Θ is worse than the algorithmic stability-based bounds for SGD by a
factor of

√
d [SSSSS09, Fel16, FV19]; however, by localizing the uniform convergence argument,

we are able to obtain a dimension-independent bound. We note that this high-probability result
is still not directly comparable to most stablity-based bounds which are given in expectation. An
exception is [FV19, Thm 4.5] which obtains near-optimal bounds for SGD in the convex case by
tuning the number of iterations to be taken, obtaining a rate of O(log(n/δ)2 log(n)/

√
n). In contrast,

our bound reads O(
√
log(n)2 log(1/δ)/n) which is better by a logarithmic factor and holds for any

sufficiently large number of SGD iterations. We emphasize that the bound (2.1) holds for the union
of all trajectories of SGD generated by t ≥ T iterations, whereas the stability-based results often
consider a single parameter generated by SGD. A similar setup is considered in Corollary 2.1 where
we establish improved bounds on the generalization error removing the logarithmic factor. Lastly, we
note that our localized covering can also be used for deriving bounds in expectation; see Appendix D.

The proof of Theorem 2.1 follows from three steps. i) Lemma 2.1 implies that any θ(t) for t ≥ T can
be approximated by some parameter θ(T ) generated by T SGD updates initialized at 0. ii) F̂ (θ(T ))
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concentrates around F (θ(T )) since θ(T ) is almost independent of the samples, i.e. it depends on
at most T = O(log(n)) of n samples. iii) The empirical process |F̂ (θ(T )) − F (θ(T ))| uniformly
converges over the set ΨT (0) which has a dimension-free cardinality. See Appendix B.2 for details.

While the bound in Theorem 2.1 holds uniformly over all possible initializations, it can be tightened
by considering a single realization of θ(0) in the following corollary.

Corollary 2.1. Assume the setup in Theorem 2.1. Then, for any θ(0) ∈ Θ, t ≥ T , and i1, . . . , it ∈ [n],
with probability at least 1− δ, we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ BT + 1

n
+B

√
log(2/δ)

2n
.

For sufficiently large n, the bound in Corollary 2.1 coincides with the tight concentration bound at
a fixed θ ∈ Θ; however, it has the limitation that at least t ≥ T SGD updates are required. This is
remedied in the next result which does not require strong convexity and smoothness.

Corollary 2.2. Suppose that Assumption 2 holds. Then, for any θ(0) ∈ Θ, t ≥ 0, and i1, . . . , it ∈ [n],
with probability at least 1− δ, we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ Bt

n
+B

√
log(2/δ)

2n
.

The bound in Corollary 2.2 requires early stopping since it diverges as t → ∞. However, since
Corollary 2.2 only requires Assumption 2, it can be easily combined with other results, e.g. Corol-
lary 2.1, to provide a generalization bound that holds for any number of SGD iterations. The proofs
of Corollaries 2.1 and 2.2 are presented in Appendices B.3 and B.4, respectively.

Relation to fractal dimension. There is an interesting connection to be made between Theorem 2.1
and the Hausdorff dimension of the support µ of the stationary distribution of (projected) SGD. For
example, suppose that η ∈ (0, 1), Θ = BdR(0), f(θ; z) = 1

2∥θ − θ
∗
z∥2 for some θ∗z ∈ BdR(0), and

∥θ∗zi − θ
∗
zj∥ ≥ 2γR for all i ̸= j. Here, the last assumption can be satisfied with high probability

if d, η are large enough and θ∗z ∼ N(0, σ2I), i.e. zero-mean Gaussian with covariance σ2I; see e.g.
[PLYS21, Appendix C]. Under these assumptions, the bound in Theorem 2.1 can be reformulated as

∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ BT + 1

n
+B

√⌈
dH + log 2LR

log(1/γ)

⌉
log n+ log(2/δ)

2n
, (2.2)

where dH denotes the Hausdorff dimension of µ. The precise definition of dH and the derivation
of (2.2) are presented in Appendix B.5. In (2.2), dH replaces the ambient dimension d that appear
in algorithm-independent bounds [SSBD14]. We note that such a connection between the fractal
dimension and generalization bounds has been also studied in [ŞSDE20, CDE+21]; however, their
bounds are asymptotic and require non-trivial assumptions that are not easy to verify in practice.

Generalization due to contractivity. Contractivity of SGD has also been used to derive general-
ization bounds in the concurrent work [KWS22]. Although the localized covering construction in
Lemma 2.1 relies on the same principle, our results differ from those in [KWS22] on two key aspects.
First and foremost, as we shall see in Section 2.2, the localized covering argument used in Lemma 2.1
can also be applied to the non-convex case in which the uniform stability-based argument used in
[KWS22] provably breaks down (Appendix F); thus, extending the results of [KWS22] to cover non-
convex objectives is highly non-trivial. Further, the generalization bounds in [KWS22] are provided
in expectation, i.e. |E[F̂ (θ(t))− F (θ(t))]| ≤ O(1/n), whereas we provide high-probability bounds,
i.e. |F̂ (θ(t)) − F (θ(t))| ≤ Õ(1/

√
n). When translated to bounds in expectation, our results read

|E[F̂ (θ(t))− F (θ(t))]| ≤ Õ(1/n) and E[|F̂ (θ(t))− F (θ(t))|] ≤ Õ(1/
√
n); see Appendices D & E.

2.2 Non-convex case: Perturbations of piecewise strongly convex and smooth functions

Algorithmic stability technique yields (near) optimal rates for strongly convex objectives; however,
when applied to non-convex functions, the resulting bounds often diverge with the number of SGD
iterations [HRS15, LLQ20]. The localized covering construction introduced in the previous section
remedies this issue, providing more stable generalization bounds. Specifically, we establish a
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dimension-independent generalization bound for functions that are finite perturbations of piecewise
strongly convex and smooth functions. We further prove an approximation result and show that any
smooth non-convex function can be approximated with a piecewise strongly convex function. Since
piecewise strongly convex and smooth functions may not be differentiable on the entire Θ, we will
use the auxiliary gradient in Definition 2 as a surrogate for the SGD update (1.4).
Definition 2. f is “piecewise α-strongly convex and β-smooth with P pieces on Θ” if there exists a
partition {P1, . . . ,PP } of Θ and α-strongly convex and β-smooth functions h1, . . . , hP on Θ such
that f = hp on Pp for all p ∈ [P ]. We also define ∇f(θ) := ∇hp(θ) if θ ∈ Pp.

Piecewise strongly convex and smooth objectives are widely used in machine learning applications.
For example, the objective of learning a single layer of a ReLU network with ℓ2-regularization is
piecewise strongly convex and smooth. Furthermore, the objective of learning an entire ReLU network
is also piecewise strongly convex and smooth on small loss regions [Mil19]. Such observations
easily extend to more general settings, e.g. an objective function defined as the summation of a
piecewise linear loss (e.g. hinge loss) and ℓ2-regularization. However, if we further allow for finite
perturbations, any piecewise smooth non-convex function can be covered within this framework.
Proposition 2.1. For any piecewise β′-smooth f with Q pieces on Θ ⊂ BdR(0), and for any
ξ > 0 and 0 < α ≤ β, there exists a piecewise α-strongly convex and β-smooth h with at most
Q(3(β + β′)R/ξ)d pieces such that ∥∇f(θ)−∇h(θ)∥ ≤ ξ for all θ ∈ Θ.

For this general class of non-convex functions, we derive the following generalization bound.
Theorem 2.2. Suppose that Assumptions 1 & 2 hold and Θ ⊆ BdR(0). Suppose further that there
exists h : Θ×Z → R such that for any z ∈ Z , h( · ; z) is piecewise α-strongly convex and β-smooth
with P pieces on Θ satisfying

∥∇f(θ; z)−∇h(θ; z)∥ ≤ ξ, (2.3)

for all θ ∈ Θ. For any η ∈ (0, 2/β), let γ :=
√
1− 2αη + αβη2. Then given T ∈ N, with

probability at least 1− δ, for any θ(0) ∈ Θ, t ≥ T , and i1, . . . , it ∈ [n], we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤BT
n

+B

√
T log(nP ) + log(2/δ)

2n
+ 2L

(
γTR+

1− γT

1− γ
ηξ

)
Remark. The bound above is stated in full generality and holds for any SGD iterate t ≥ T and
any choice of T ≥ 1. However, to obtain a meaningful generalization bound, one may choose, for
example T = O(log(nR)/ log(γ−1)). In the case that γ,B, L = Θ(1), the bound simplifies to∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤O(√ log(nR) log(nP ) + log(1/δ)

n
+ ξ

)
. (2.4)

Here, the first term in the bound is logarithmic in the number of pieces P and the last term scales
linearly with the approximation error ξ. Thus, the generalization bound depends on the trade-off
between the complexity of h through P , and how well ∇h approximates ∇f through ξ. In this
regime, in contrast to algorithmic stability-based bounds, the above result does not grow with the
number of SGD iterations, i.e. early stopping is not required for generalization in Theorem 2.2. We
finally note that Theorem 2.2 holds for any f with an auxiliary gradient ∇f satisfying (2.3).

In light of Proposition 2.1, any piecewise smooth function can be approximated by a piecewise
strongly convex and smooth function; in the worse case, the number of pieces P is at most eΩ̃(d).
Therefore in this pessimistic case, Theorem 2.2 recovers the classical algorithm-independent covering
bound Õ(B

√
d/n) by choosing ξ = O(1/(L

√
n)) and T = Θ(log(LRn)). However, any value

of P that is sub-exponential in dimension yields improved generalization bounds. In particular in
the next section, we consider certain (non-convex) statistical models and carefully design h so that
Theorem 2.2 improves the existing generalization error bounds. In contrast, uniform stability-based
bounds for piecewise strongly convex and smooth functions are in general Ω(1) after sufficiently
many SGD iterations; see Appendix F. That is, the contractivity-based bounds in [KWS22] cannot be
directly extended to piecewise contractivity (2.3).

The proof of Theorem 2.2 relies on a modified version of the covering construction presented in
Section 2.1. First, we define the auxiliary parameter update gi,p(θ) := θ−∇hp(θ; zi) where hp( · ; zi)
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denotes the strongly convex and smooth function satisfying ∇f( · ; zi) ≈ ∇hp( · ; zi) on the p-th
piece. We show that Ψ′

T (0) := {giT ,pT
◦ · · · ◦ gi1,p1(0) : i1, . . . , iT ∈ [n], p1 . . . , pT ∈ [P ]} ε-

covers Ψ≥T (θ
(0)) for any θ(0) ∈ Θ as in Lemma 2.1. Since |Ψ′

T | ≤ (nP )T , applying a concentration
inequality and the union bound over the localized cover yields Theorem 2.2. Formal proofs of
Proposition 2.1 and Theorem 2.2 are provided in Appendices B.6 and B.7, respectively.

3 Applications

In this section, we use our localized covering to prove generalization bounds for multi-index linear
models, multi-class support vector machines, and K-means clustering for both hard and soft label
setups, trained by SGD, improving the state-of-the-art results known for these models.

3.1 Multi-index linear models

Given a sample z = (y, x) ∈ Y × BdRx
(0), consider the ℓ2-regularized loss in a multi-index model

with K indices parameterized by θ = (θj)
K
j=1 ∈ Rd×K

f(θ; z) := ℓ(θ⊤1 x, . . . , θ
⊤
Kx; y) +

K∑
j=1

λ

2
∥θj∥2. (3.1)

Characterizing the generalization properties of multi-index models is an important problem with many
applications including regression, classification, dimension reduction, and learning a single-layer
of a neural network. In the following theorem, we derive a generalization bound for multi-index
models by approximating each f( · ; z) with a piecewise strongly convex and smooth function, and
then applying Theorem 2.2. The proof is given in Appendix C.1.

Theorem 3.1. Let θ = (θj)
K
j=1 and Θ =

∏K
j=1 Θj for some convex Θj ⊆ BdR(0). Suppose that

f satisfies (3.1), Assumptions 1 & 2 hold, and ℓ( · , . . . , · ; y) is piecewise β-smooth with Q pieces

on Θ for all y ∈ Y . For any η ∈ (0, 2/λ), let γ := |1 − ηλ|, T := max
{⌈

log(3LRn)
log(1/γ)

⌉
, 0
}

, and

P := poly(β, η,K,L,R,Rx, T, n). Then, with probability at least 1− δ, for any θ(0) ∈ Θ, t ≥ T ,
and i1, . . . , it ∈ [n], we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ BT + 1

n
+B

√
T log(nPKQ) + log(2/δ)

2n
.

Generalization behavior of multi-index models has received considerable attention; a subset of
notable results include [Gue02, Zha04, JKZ+12, CMR13, LDZK19]. Under the same conditions of
Theorem 3.1, existing state-of-the-art bounds scale at least linearly in

√
d or K, while our result is

dimension-free and scales with
√
K. Specifically, the result in [LDZK19] translated to our setting

reads (ℓ is L-Lipschitz, and f(θ; z) ∈ [0, B] which are stronger conditions than Assumptions 1 & 2)∣∣∣F̂ (θ)− F (θ)∣∣∣ ≤ Õ(KLRRx +B√
n

)
, (3.2)

for all θ ∈ Θ, which is obtained via [LDZK19, Cor 3 & 9] with Λ ← R and p ← ∞. While the
bound in (3.2) is linear in KLRRx, our bound is linear in

√
K and logarithmic in L,R,Rx. The

significance of this improvement can be better seen, for example, when learning the first layer of
neural networks, for which L can be very large. Moreover, if x ∼ N(0, I), then ∥x∥ = Ω̃(

√
d) with

high probability; that is, (3.2) is linear in Rx = Ω(
√
d) but ours only scales with

√
log d, which

can make a significant difference especially in the overparameterized regime. We should note that
compared to our bound, (3.2) does not require the smoothness of ℓ.

For a specific application of Theorem 3.1, consider the multi-class support vector machines, i.e. for
Y = [K] and ρ : [−RRx, RRx]→ [0, B] is L-Lipschitz and β-smooth, the objective is given as

f(θ; z) = max
y′ ̸=y

ρ
(
θ⊤y x− θ⊤y′x

)
+
λ

2

K∑
j=1

∥θj∥2.
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Theorem 3.1 provides a generalization bound of Õ(
√
K/n) that improves the existing bounds

which scale at least linearly with K and/or
√
d [Zha04, DSBDSS15, LDBK15, LDZK19]; see e.g.

[LDZK19, Sec 2.1] for similar related results.

3.2 K-means clustering

We can also provide generalization error bounds for the problem of K-means clustering in both hard
and soft label setups. As before, we consider SGD as an optimizer which has been the focus of many
works in this context [BB94, Scu10, TM17]. We assume throughout this section that the samples are
supported on a bounded domain, and the SGD iterations are applied without projection.

Generalization properties of K-means clustering has been studied for decades [Ant05, Lev13,
TTJC15, TM16]. While most existing bounds are at least linear in K, [LL21] recently provided
an improved bound in the hard label setup, which is of order (K log3 n/n)1/2 for bounded inputs.
However, state-of-the-art bounds in the soft label setup were still linear in K. Below, we establish a
bound of order

√
K log n/n in the soft label setup, which is the first bound that is sublinear in K.

We further improve the bounds of [LL21] in the hard label setup, but by a logarithmic factor.

Soft K-means clustering. While the hard K-means clustering assigns exactly one cluster to each
point using one-hot encoding, the soft K-means clustering allows soft labels within the probability
simplex. Specifically, given ζ > 0 and the samples z1, . . . , zn, the soft K-means clustering algorithm
alternates between updating the soft labels (wj(zi; θ))

K
j=1 of zi for all i ∈ [n], and estimating the

cluster centers θ = (θj)
K
j=1 ∈ (BdR(0))K using the classical update rule [Mac03]

wj(zi; θ)←
exp(−ζ∥θj − zi∥2)∑K
k=1 exp(−ζ∥θk − zi∥2)

, θj ←
∑n

i=1 wj(zi; θ)zi∑n
i=1 wj(zi; θ)

. (3.3)

Here, this procedure is equivalent to a special case of expectation-maximization algorithm, which
converges to a local minimum of the following objective (see Appendix C.2 for details)

F̂ (θ) =
1

n

n∑
i=1

{
f(θ; zi) := −

1

ζ
log
( K∑

j=1

exp
(
− ζ∥θj − zi∥2

))}
. (3.4)

Instead of running the standard alternating procedure (3.3), we directly minimize (3.4) using SGD
and derive generalization bounds for the soft K-means clustering by approximating the objective
(3.4) with piecewise strongly convex and smooth functions. The proof is presented in Appendix C.3.

Theorem 3.2. For B := 4(R + 1)2 and for any η ∈ (0,Ke−ζB), let γ :=
√
1− 4ηe−ζB

K + 4η2

K2 ,

L := 4R√
K
eζB , T := max

{⌈
log(3LRn)
log(1/γ)

⌉
, 0
}

, and P := poly(η, ζ, B,K,R, T, n, eζB). Then, with

probability at least 1− δ, for any θ(0) ∈ Θ, t ≥ T , and i1, . . . , it ∈ [n], we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ BT + 1

n
+B

√
T log(nPK) + log(2/δ)

2n
.

The above generalization bound scales with
√
K, which improves the previously known bound

Õ(K/
√
n) for clustering with soft labels [LL21]. Theorem 3.2 also implies Õ(

√
K/n) bound under

R, ζ = Θ(1) and η = Θ(K), which coincides with the best known rate in the hard label setup. Here,
the choice of η = Θ(K) may look odd; however, it is indeed practical since the derivative of the
objective function f scales with 1/K, i.e. ∥∂f(θ; z)/∂θj∥ ≤ 4ReζB/K.

Hard K-means clustering. Under the same setup as before, we minimize the objective function

F̂ (θ) =
1

n

n∑
i=1

{
f(θ; zi) := min

j∈[K]
∥θj − zi∥2

}
. (3.5)

Note that (3.5) coincides with the softK-means objective (3.4) as ζ →∞ if ∥θj−zi∥ ≠ ∥θk−zi∥ for
all i, j, k. Since f(θ; z) = minj∈[K] ∥θj−z∥2 may not be differentiable, we use an auxiliary gradient
at a non-differentiable θ, i.e. for a randomly or deterministically chosen S ⊆ argminj∈[K] ∥θj−z∥2,

∂

∂θj
f(θ; z) :=

{
0 if j ̸∈ S
2(θj − z) if j ∈ S .
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For example, one may choose a single cluster index (|S|=1) and compute the corresponding gradient.
The following result characterizes the generalization of hard K-means clustering trained by SGD
using this auxiliary gradient. Its proof is deferred to Appendix C.4.

Theorem 3.3. For any η ∈ (0, 1), let B := 4R2, γ := |1− 2η|, T := max
{⌈

log(16
√
KR2n)

log(1/γ)

⌉
, 0
}

.

Then, given θ(0) ∈ Θ, the following bound holds with probability at least 1− δ, for any t ≥ 0 and
i1, . . . , it ∈ [n], we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤ BKT + 1

n
+B

√
KT log(2n) + log(2/δ)

2n
.

We note that under η,R=Θ(1) and K=O(n), Theorem 3.3 provides O((K log2 n/n)1/2) general-
ization bound which improves the bound given by [LL21], but this time by a logarithmic factor.

4 Discussions

Beyond (piecewise) strong convexity and smoothness. The localized covering construction we
utilized is essentially based on the (piecewise) contractivity of SGD updates for (piecewise) strongly
convex and smooth functions. However, local strong convexity is by no means necessary and this
analysis can be extended to a broader class of objective functions.

Consider, for example, an objective function f that is uniformly convex [DN21] and has Hölder
continuous gradient [Nes15]. Then, for any ε > 0, there exists a step size η > 0 and T = Tε such
that applying T synchronously coupled SGD updates on any two points makes the distance between
them smaller than ε. Consequently, an analog of Lemma 2.1 can be established under this setup as
well, for a properly chosen η, ε, T . We highlight that this class of functions is already covered in our
framework via Proposition 2.1; however, an analysis based on the actual curvature (as opposed to a
piecewise approximation) of the objective may provide tighter generalization bounds.

Extension to SGD without projection. Projection operation is only needed to ensure that the SGD
iterates stay bounded. Indeed, the projection is not needed in the presence of explicit regularization, or
under a dissipativity-type condition on the objective [RRT17, EMS18, YBVE21, EH21]. For example,
if f( · ; z) is Lipschitz continuous, it is a straightforward exercise to show that SGD iterations are
bounded in the presence of ℓ2-regularization and bounded initialization.

Extension to mini-batch setup and different sampling schemes. The results we presented can
be easily extended to the mini-batch setting. To see this, note that the localization is based on the
(piecewise) contractivity of a single iteration of the algorithm, and we have that if all g1, . . . , gn
are contractive, then an average of their subset is also contractive. Moreover, our generalization
bounds hold for any sampling scheme, e.g. sampling without replacement, random shuffling, data-
dependent sampling, since the covering construction is based on an ε-cover of the union of all possible
trajectories of SGD, which is independent of the underlying sampling scheme.

Extension to contractive stochastic optimization methods. In this paper, our main focus was
the SGD algorithm and its generalization properties. However, it is straightforward to adapt our
framework to a general stochastic optimization setup. For example, the next result follows from the
identical steps leading to Theorem 2.2; hence, its proof is omitted.
Definition 3. An “iterative stochastic algorithm” using g : Θ × Z → Θ performs the update
θ(t) = git(θ

(t−1)) := g(θ(t−1); zit) at iteration t, for a random sample it ∈ [n].
Definition 4. g : Θ→ Θ is “piecewise γ-contractive with P pieces on Θ” if there exists a partition
P1, . . . , PP of Θ and γ-contractive h1, . . . , hP on Θ such that g = hp on Pp for all p ∈ [P ].
Theorem 4.1. Suppose that Assumptions 1 & 2 hold, Θ ⊂ BdR(0), and an iterative stochastic
algorithm g is given. Suppose further that there exists h : Θ × Z → Θ such that for any z ∈ Z ,
h( · ; z) is piecewise γ-contractive with P pieces on Θ satisfying

∥g(θ; z)− h(θ; z)∥ ≤ ξ
for all θ ∈ Θ. Choose T ∈ N. Then with probability at least 1 − δ, for any θ(0) ∈ Θ, t ≥ T , and
i1, . . . , it ∈ [n], we have∣∣∣F̂ (θ(t))− F (θ(t))∣∣∣ ≤BT

n
+B

√
T log(nP ) + log(2/δ)

2n
+ 2L

(
γTR+

1− γT

1− γ
ξ

)
.
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We note that a concurrent work by [KWS22] requires global contractivity and their bounds are in
expectation, whereas Theorem 4.1 is a high-probability statement which only requires piecewise
contractivity as stated in Definition 4.

Limitation of our results. We outline a few limitations of our current analysis. In this paper, we only
considered the generalization error (also referred to as the generalization gap), and our main result
in the non-convex regime cannot be easily translated to a bound on the excess risk. This additional
step would require a bound on the optimization error; nevertheless, establishing such bounds in the
non-convex regime is highly non-trivial. It is worth highlighting that without assuming convexity,
algorithmic stability-based bounds also suffer from this limitation [HRS15, FV19, BKZ20].

Because of the shared contractivity parameter γ across different iterations and pieces, our method
cannot be easily extended to varying step size. This is indeed a limitation of our analysis as varying
step size schedules are oftentimes used in practice. We leave this extension as a future work.
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A Technical results

All results presented in this section are standard. However, we provide their proofs for convenience.

Lemma A.1. Let S be a Hibert space associated with the norm ∥ · ∥ induced by the inner product
⟨·, ·⟩. Let C ⊂ S be a convex set and ΠC(x) := argminz∈C ∥x − z∥ be a projection of x onto C.
Then,

∥ΠC(x)−ΠC(y)∥ ≤ ∥x− y∥ ∀x, y ∈ S.

Proof. Since C is convex, ΠC(x) is well-defined. From the definition of the projection and the
convexity of C, we have

∥ΠC(x)− x∥2 ≤
∥∥((1− t)ΠC(x) + tΠC(y)

)
− x
∥∥2

=
∥∥ΠC(x)− x+ t

(
ΠC(y)−ΠC(x)

)∥∥2 (A.1)

for all t ∈ [0, 1]. Since we have

∂

∂t
∥ΠC(x)− x+ t(ΠC(y)−ΠC(x))∥2 = 2⟨ΠC(x)− x,ΠC(y)−ΠC(x)⟩+ 2t∥ΠC(y)−ΠC(x))∥2

(A.2)

and ∂
∂t∥ΠC(x)− x+ t(ΠC(y)−ΠC(x))∥2 ≥ 0 at t = 0 by (A.1), we have

⟨ΠC(x)− x,ΠC(y)−ΠC(x)⟩ ≥ 0. (A.3)

Likewise, we have

⟨ΠC(y)− y,ΠC(x)−ΠC(y)⟩ ≥ 0. (A.4)

Now, consider the function

f(t) := ∥ΠC(x)−ΠC(y) + t(x−ΠC(x)− y +ΠC(y))∥2,

i.e. f(0) = ∥ΠC(x) − ΠC(y)∥2 and f(1) = ∥x − y∥2. Then f(0) ≤ f(1) since the following
inequality holds:

d

dt
f(t) = 2⟨ΠC(x)−ΠC(y), x−ΠC(x)− y +ΠC(y)⟩+ 2t∥x−ΠC(x)− y +ΠC(y)∥2

= 2⟨ΠC(x)− x,ΠC(y)−ΠC(x)⟩+ 2⟨ΠC(y)− y,ΠC(x)−ΠC(y)⟩
+ 2t∥x−ΠC(x)− y +ΠC(y)∥2

≥ 0 ∀t ∈ [0, 1]

where the inequality follows from (A.3) and (A.4). This completes the proof of Lemma A.1.

Lemma A.2 (Hoeffding’s inequaltiy [Hoe63]). LetX be a random variable on [a, b] andX1, . . . , Xn

be independent copies of X . Then, it holds that

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

Lemma A.3. Suppose that f : Rd → R is convex and differentiable. Then, the following conditions
are equivalent.

1. f is β-smooth, i.e. ∥∇f(θ)−∇f(θ′)∥ ≤ β∥θ − θ′∥ for all θ, θ′ ∈ Rd.

2. β
2 ∥θ∥

2 − f(θ) is convex for all θ ∈ Rd.

3. f(θ)− f(θ′)−∇f(θ′)⊤(θ − θ′) ≤ β
2 ∥θ − θ

′∥2 for all θ, θ′ ∈ Rd.

4. (∇f(θ)−∇f(θ′))⊤(θ − θ′) ≥ 1
β ∥∇f(θ)−∇f(θ

′)∥2 for all θ, θ′ ∈ Rd.
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Proof.
1⇒2. Let g(θ) := β

2 ∥θ∥
2 − f(θ). Then for any θ ̸= θ′,

(∇g(θ)−∇g(θ′))⊤(θ − θ′) =
(
β(θ − θ′)− (∇f(θ)−∇f(θ′))

)⊤
(θ − θ′)

= β∥θ − θ′∥2 − (∇f(θ)−∇f(θ′))⊤(θ − θ′)
≥ β∥θ − θ′∥2 − ∥∇f(θ)−∇f(θ′)∥ · ∥θ − θ′∥
≥ 0.

In addition, by the mean value theorem, there exists s ∈ (0, 1) such that for θs = sθ + (1− s)θ′,

g(θ′)− g(θ) = ∇g(θs)⊤(θ′ − θ).

Using this, we can derive the following inequality

0 ≤ (∇g(θs)−∇g(θ′))⊤(θs − θ′)
= s(∇g(θs)−∇g(θ′))⊤(θ − θ′)
= s(g(θ)− g(θ′)−∇g(θ′)⊤(θ − θ′)),

which implies that g is convex.

2⇔3. The following relation shows the equivalence of the second and the third statements:

g(θ) ≥ g(θ′) +∇g(θ′)⊤(θ − θ′) ⇔ f(θ)− f(θ′)−∇f(θ′)⊤(θ − θ′) ≤ β

2
∥θ − θ′∥2.

2,3⇒4. We first introduce the following claim.

Claim 1. Suppose that f : Rd → R is convex and differentiable and have a global minimum θ∗.
Then, 1

2β ∥∇f(θ)∥
2 ≤ f(θ)− f(θ∗).

Proof. The statement of Claim 1 is a consequence of the following relation

f(θ∗) = inf
θ′
f(θ′) ≤ inf

θ′
f(θ) +∇f(θ)⊤(θ′ − θ) + β

2
∥θ′ − θ∥2 = f(θ)− 1

2β
∥∇f(θ)∥2.

Let fθ(ϕ) := f(ϕ) − ∇f(θ)⊤ϕ. Since β
2 ∥ϕ∥

2 − fθ(ϕ) is convex and ϕ = θ minimizes fθ, from
Claim 1, we have

f(θ′)− f(θ)−∇f(θ)⊤(θ′ − θ) = fθ(θ
′)− fθ(θ) ≥

1

2β
∥∇f(θ)−∇f(θ′)∥2,

f(θ)− f(θ′)−∇f(θ′)⊤(θ − θ′) = fθ′(θ)− fθ′(θ′) ≥ 1

2β
∥∇f(θ)−∇f(θ′)∥2.

Adding two above inequalities derive the fourth statement.

4⇒1. The following inequality is sufficient for deriving the first statement

1

β
∥∇f(θ)−∇f(θ′)∥2 ≤ (∇f(θ)−∇f(θ′))⊤(θ − θ′) ≤ ∥∇f(θ)−∇f(θ′)∥ · ∥θ − θ′∥

⇒∥∇f(θ)−∇f(θ′)∥ ≤ β∥θ − θ′∥.

A.1 Contractivity of projected SGD for strongly convex and smooth objectives

Lemma A.4. Let f : Rd → R be α-strongly convex and β-smooth. Then for any η ∈ (0, 2/β) and
for any convex Θ ⊂ Rd, θ 7→ ΠΘ(θ − η∇f(θ)) is

√
1− 2αη + αβη2-contractive.
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Proof. Let g(θ) := θ − η∇f(θ). Then for any θ, θ′ ∈ Rd,

∥g(θ)− g(θ′)∥2 = ∥θ − θ′∥2 − 2η(∇f(θ)−∇f(θ′))⊤(θ − θ′) + η2∥∇f(θ)−∇f(θ′)∥2

≤ ∥θ − θ′∥2 − 2η

((
1− βη

2

)
· α∥θ − θ′∥2 + βη

2
· 1
β
∥∇f(θ)−∇f(θ′)∥2

)
+ η2∥∇f(θ)−∇f(θ′)∥2

= (1− 2αη + αβη2)∥θ − θ′∥2.

Here, the inequality is from the α-strong convexity and Lemma A.3, i.e.

(∇f(θ)−∇f(θ′))⊤(θ − θ′) ≥ α∥θ − θ′∥2

(∇f(θ)−∇f(θ′))⊤(θ − θ′) ≥ 1

β
∥∇f(θ)−∇f(θ′)∥2.

Using Lemma A.1 completes the proof of Lemma A.4.
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B Proofs of results in Section 2

B.1 Deriving generalization bounds using localized covers

In Lemma 2.1, we show that the union of all trajectories generated by t ≥ T = Tε SGD iterations, i.e.⋃
θ(0)∈Θ Ψ≥T (θ

(0)), can be ε-covered by a set of points generated by exactly T SGD iterations, i.e.
ΨT (0). Here, each giT ◦ · · · ◦ gi1(0) ∈ ΨT (0) can be viewed as a deterministic algorithm mapping
samples z1, . . . , zn to a parameter in Θ, where each giT ◦ · · · ◦ gi1(0) only depends on at most T
samples zi1 , . . . , ziT . Under this observation, in this section, we generalize our localized cover so
that its elements are general deterministic algorithms depending on a small number of samples,
i.e. not restricted to possible instances of SGD. Then, we derive generalization bounds using our
(generalized) localized cover. To this end, we define algorithms depending on samples.
Definition 5. ϕ : Zn → Θ is a “(deterministic) algorithm depending on at most T samples” if there
exists I ∈ {S ⊂ [n] : |S| = T} satisfying the following: for any z1, . . . , zn, z′1, . . . , z

′
n ∈ Z such

that zi = z′i for all i ∈ I, ϕ(z1, . . . , zn) = ϕ(z′1, . . . , z
′
n). Here, we refer to I as the “set of sample

indices determining ϕ.” The collection of all algorithms depending on at most T samples is denoted
by AT .

In Definition 5, we define ϕ to be an algorithm depending on at most T samples if the value of ϕ can
be fully determined by a subset of the samples {zi}i∈I for some I ∈ {S ⊂ [n] : |S| = T}. We note
that ΨT (θ

(0)) ⊂ AT for any T ≥ 0 and θ(0) ∈ Θ.

Now, we introduce the following theorem for deriving generalization bounds using a localized cover
where each element in the cover is an algorithm depending on at most T samples.
Theorem B.1. Suppose that Assumptions 1 & 2 hold and Θ ⊂ Rd. Let ε > 0, Φn ⊆ An, and
ΦT,ε ⊆ AT such that

ψ(x1:n) ∈
⋃

ϕ∈ΦT,ε

Bdε
(
ϕ(x1:n)

)
for all x1:n ∈ Zn and ψ ∈ Φn. (B.1)

Let µ be a distribution over Z and z1:n = (z1, . . . , zn) is such that zi’s are i.i.d. samples from µ.
Then, with probability at least 1− δ over the sampling distribution of z1:n, for any ψ ∈ Ψ,∣∣∣F̂ (ψ(z1:n))− F (ψ(z1:n))∣∣∣ ≤ BT

n
+B

√
log(2|ΦT,ε|/δ)

2n
+ 2Lε.

Theorem B.1 implies that if (i) Φn can be covered by a set ΦT,ε of algorithms depending on at
most T samples and (ii) B, L, T , and |ΦT,ε| are independent of d, then a dimension-independent
generalization bound can be derived. We note that the assumption (B.1) is a generalization of the
observation in Lemma 2.1 since Ψ≥T ⊂ An and ΨT ⊂ AT .

Proof of Theorem B.1. From Assumption 1 and the assumption (B.1), for any ψ ∈ Φn, we have∣∣∣F̂ (ψ(z1:n))− F (ψ(z1:n))∣∣∣ ≤ sup
ϕ∈ΦT,ε

∣∣∣F̂ (ϕ(z1:n))− F (ϕ(z1:n))∣∣∣+ 2Lε. (B.2)

Namely, if we bound |F̂ (ϕ(z1:n))−F (ϕ(z1:n))| for all ϕ ∈ ΦT,ε, the bound in Theorem B.1 follows.
Since the statement of Theorem B.1 is trivial if T = n or |ΦT,ε| = ∞, we assume T < n and
|ΦT,ε| < ∞. Now, we derive the target bound: for ϕ ∈ ΦT,ε, θ := ϕ(z1:n) ∈ Θ, and the set of
indices Iϕ determining ϕ with |Iϕ| ≤ T ,∣∣∣F̂ (θ)− F (θ)∣∣∣ ≤ ∣∣∣∣∣ 1n ∑

i∈Iϕ

f(θ; zi)− F (θ)

∣∣∣∣∣+
∣∣∣∣∣ 1n ∑

i∈[n]\Iϕ

f(θ; zi)− F (θ)

∣∣∣∣∣
≤ B|Iϕ|

n
+

∣∣∣∣∣ 1n ∑
i∈[n]\Iϕ

f(θ; zi)− F (θ)

∣∣∣∣∣
≤ B|Iϕ|

n
+
n− |Iϕ|

n

√
B2 log(2|ΦT,ε|/δ)

2(n− |Iϕ|)
w.p. 1− δ/|ΦT,ε|

≤ BT

n
+B

√
log(2|ΦT,ε|/δ)

2n
w.p. 1− δ/|ΦT,ε|. (B.3)
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For the first inequality in (B.3), we use the triangle inequality to upper bound |F̂ (θ)− F (θ)| using
two terms: we only utilize the samples determining θ in the first term while remaining samples
independent of θ are considered in the second term. The second inequality directly follows from
Assumption 2. To bound the second term in RHS of the second inequality, one can apply the
Hoeffding’s inequality (see Lemma A.2), which leads us to the third inequality in (B.3). Here, the last
inequality naturally follows. By using (B.2), (B.3), and by applying the union bound for all ϕ ∈ ΦT,ε,
we obtain the bound in Theorem B.1.

B.2 Proof of Theorem 2.1

First, observe that g1, . . . , gn are γ-contractive by Lemma A.4. Let ε = 1/(2Ln); then by Lemma 2.1,
we have ⋃

θ(0)∈Θ

Ψ≥T (θ
(0)) ⊆

⋃
ϕ∈ΨT (0)

Bdε (ϕ). (B.4)

Now, we apply Theorem B.1 with

Φn ←
⋃

θ(0)∈Θ

Ψ≥T (θ
(0)), ΦT,ε ← ΨT (0), ε← ε, T ← T, δ ← δ.

where the assumption (B.1) in Theorem B.1 is satisfied by (B.4). This completes the proof of
Theorem 2.1.

B.3 Proof of Corollary 2.1

Let θ(t) := git ◦ · · · ◦ gi1(θ(0)) and ϕ := git ◦ · · · ◦ gt−T+1(0), i.e. ϕ is an algorithm depending on
at most T samples. Since each gi is γ-contractive by Lemma A.4, one can observe that

∥θ(t) − ϕ∥ ≤ γTR ≤ 1

2Ln
=: ε. (B.5)

Now, we apply Theorem B.1 with

Φn ← {θ(t)}, ΦT,ε ← {ϕ}, ε← ε, T ← T, δ ← δ.

where the assumption (B.1) is satisfied by (B.5) and |Φε| = 1. This provides the bound in Corol-
lary 2.1.

B.4 Proof of Corollary 2.2

The proof of Corollary 2.2 is simple. Since θ(0), t, and i1, . . . , it are fixed, θ(t) = git ◦ · · · ◦ gi1(θ(0))
is an algorithm depending on at most t samples. Then by using Theorem B.1 with

Φn,ΦT,ε ← {θ(t)}, ε← 0, T ← t, δ ← δ,

we obtain the bound in Corollary 2.2.

B.5 Derivation of (2.2)

We first formally define the Hausdorff dimension.
Definition 6. Given µ ⊂ Rd, dH defined below is the “Hausdorff dimension” of µ:

dH := inf{s ≥ 0 : hs(µ) = 0},

hs(µ) := lim
r→0

inf
{ k∑

i=1

rsi : k ∈ N ∪ {∞}, (ri)ki=1 ∈ (0, r)k

such that there exists (θi)ki=1 satisfying µ ⊂
⋃
i

Bri(θi)
}
.

From the assumption on f(θ; z), one can observe that for all i ∈ [n] and θ, θ′ ∈ BdR(0),
∥gi(θ)− gi(θ′)∥ ≤ γ∥θ − θ′∥
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where γ = 1 − η since α = β = 1. Then, the assumption ∥θ∗zi − θ
∗
zj∥ ≥ 2γR guarantees that

gi(int(BR)) ∩ gj(int(BR)) = ∅ where int(S) denotes the interior of a set S.

Finally, the following theorem shows that dH = logn
log(1/γ) . Substituting dH to the bound in Theorem

2.1 results in (2.2).
Theorem B.2 (Theorem 9.3 in [Fal14]). Suppose that gi(int(BR)) ∩ gj(int(BR)) = ∅ for all i ̸= j

and ∥gi(θ)− gi(θ′)∥ = γ∥θ − θ′∥ for all i. Then dH = logn
log(1/γ) .

B.6 Proof of Proposition 2.1

In this proof, we explicitly construct a piecewise β-strongly convex and β-smooth function, i.e.
quadratic, which is always piecewise α-strongly convex and β-smooth for any α ∈ [0, β]. Let
{Q1, . . . ,QQ} be the partition of BdR(0) such that f = ℓq on Qq for some smooth ℓq on BdR(0).
Given q ∈ [Q] and ε > 0, let Cq,ε = {ϕq,1, . . . , ϕq,Pq} ⊂ Θ be an ε-cover of Θ with the minimum
cardinality, i.e. Pq ≤ (3R/ε)d for ε ≤ R. Let {Pq,1, . . . ,Pq,Pq

} be a partition of Qq where each
Pq,p is defined as follows:

Pq,p :=

{
θ ∈ Qq \

⋃
r<p

Pq,r : ∥ϕq,p − θ∥ ≤ min
r>p
∥ϕq,r − θ∥

}
.

For each q ∈ [Q] and p ∈ [Pq], we also define h(θ) := hq,p(θ) on Pq,Pq
where

hq,p(θ) :=ϕq,p +∇ℓq(ϕq,p)⊤(θ − ϕq,p) +
β

2
∥θ − ϕq,p∥2

and∇j denotes the partial derivative with respect to the j-th entry. Then, one can observe that h is
piecewise α-strongly convex and β-smooth with Q(3R/ε)d pieces for any α ≤ β. Furthermore, for
any θ ∈ Pq,p, we have

∥∇f(θ)−∇h(θ)∥ = ∥∇ℓq(θ)−∇ℓq(ϕq,p)− β(θ − ϕq,p)∥ ≤ (β + β′)ε.

Choosing ε := ξ/(β + β′) completes the proof of Proposition 2.1.

B.7 Proof of Theorem 2.2

Given z ∈ Z , let Pz,1, . . . ,Pz,P be a partition of Θ and h1( · ; z), . . . , hP ( · ; z) be α-strongly convex
and β-smooth functions such that h( · ; z) = hp( · ; z) on Pz,p for all p ∈ [P ]. Let gi,p(θ) :=

θ − η∇hp(θ; zi), i.e. each gi,p is γ-contractive by Lemma A.4. Given ψ(0) ∈ Θ, t ≥ T , and
i1, . . . , it ∈ [n], let ψ(s) := gis ◦ · · · ◦ gi1(ψ(0)) for all s ∈ [t] and let ps ∈ [P ] be an index satisfying
ψ(s−1) ∈ Pzis ,ps

. Let ϕ := git,pt
◦ · · · ◦ git−T+1,pt−T+1

(0), i.e. ϕ is an algorithm depending on at
most T samples. Then for any θ ∈ Θ, we have

∥ψ(s)−gis,ps
(θ)∥ = ∥ψ(s−1) − η∇f(ψ(s−1); zis)− gis,ps

(θ)∥
= ∥ψ(s−1) − η∇h(ψ(s−1), zis) + η∇h(ψ(s−1), zis)− η∇f(ψ(s−1); zis)− gis,ps

(θ)∥
≤ ∥gis,ps(ψ

(s−1))− gis,ps(θ)∥+ η∥∇f(ψ(s−1); zis)−∇h(ψ(s−1); zis)∥
≤ γ∥ψ(s−1) − θ∥+ ηξ

This implies that

∥ψ(t) − ϕ∥ ≤ γT ∥ψ(0)∥+ ηξ

T−1∑
t=0

γt ≤ γTR+
1− γT

1− γ
ηξ =: ε. (B.6)

Now, we apply Theorem B.1 with

Φn ←
⋃

θ(0)∈Θ

Ψ≥T (θ
(0)), ΦT,ε ← {giT ,pT

◦ · · · ◦ gi1,p1
(0) : i1, . . . , iT ∈ [n], p1, . . . , pT ∈ [P ]},

ε← ε, T ← T, δ ← δ

where the assumption (B.1) in Theorem B.1 is satisfied by (B.6) and |ΦT,ε| ≤ (nP )T . This leads us
to the bound in Theorem 2.2.
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C Proofs of results in Section 3

C.1 Proof of Theorem 3.1

Given z = (y, x) ∈ Y × BdRx
(0) = Z , let {Qz,1, . . . ,Qz,Q} be a partition of Θ such that

ℓ( · , . . . , · ; y) is β-smooth on Qz,q for all q ∈ [Q]. For proving Theorem 3.1, we utilize Theo-
rem 2.2 by approximating each f( · ; z) using a piecewise strongly convex and smooth function
h( · ; z) with PKQ pieces. To this end, we first define P by

P :=

⌈
2RRx

κ

⌉
where κ :=

1

12βηKLRxTn
.

Using P defined as above, for each z = (y, x) ∈ Y×Bd
Rx

(0), we construct a partition {Pz,q,p1,...,pK
:

p1, . . . , pK ∈ [P ], q ∈ [Q]} of Θ as follows

Pz,q,p1,...,pK
:= {(θj)Kj=1 : (θ⊤1 x, . . . , θ

⊤
Kx) ∈ Qz,q, θ

⊤
j x ∈ Tpj

∀j ∈ [K]}
where

Tp :=

{
[µp, µp+1) if p ∈ [P − 1]

[µP , µP+1] if p = P
,

µp :=−RRx + (p− 1)κ ∀p ∈ [P + 1].

For the notational simplicity, let u := (z, q, p1, . . . , pK) ∈ Z × [Q] × [P ]K . Now, we define our
approximation as h( · ; z) = hu( · ) on Pu if Pu ̸= ∅. Here, hu( · ) is defined as follows: for some
fixed νu := (νu,1, . . . , νu,K) ∈ Pu,

hu(θ) := ℓ(ν⊤u,1x, . . . , ν
⊤
u,Kx; y) +

K∑
j=1

∇jℓ(ν
⊤
u,1x, . . . , ν

⊤
u,Kx; y)(θ

⊤
j x− ν⊤u,jx) +

K∑
j=1

λ

2
∥θj∥2.

where∇j denotes the partial derivative with respect to the j-th argument. Namely, hu is a first order
approximation of ℓ at θ with ℓ2-regularization; hence, hu is λ-strongly convex and λ-smooth. Then
given z ∈ Z and θ ∈ Θ, for q and p1, . . . , pK satisfying θ ∈ Pu for u = (z, q, p1, . . . , pK), one can
observe that

∥∇f(θ; z)−∇hu(θ)∥ ≤ K1/2 max
j∈[K]

∥∇jℓ(θ
⊤
1 x, . . . , θ

⊤
Kx; y)x−∇jℓ(ν

⊤
u,1x, . . . , ν

⊤
u,Kx; y)x∥

≤ βκKRx =
1

12ηLTn
.

Now, we apply Theorem 2.2 with

h← h, P ← PKQ, ξ ← 1

12ηLTn
, T ← T, α← λ, β ← λ, L← L, B ← B.

Then in the bound of Theorem 2.2, we have

2L

(
γTR+

1− γT

1− γ
ηξ

)
≤ 1

n

since γTR ≤ 1/(3Ln) and 1−γT

1−γ =
∑T−1

j=0 γ
j ≤ T . This completes the proof of Theorem 3.1.

C.2 Equivalence between soft K-means algorithm and expectation-maximization for (3.4)

We first observe that applying the affine transformation x 7→ −nKx+ log( (ξ/π)
d/2

K ) to (3.4) results
in the following objective:

n∑
i=1

log

 1

K
(ζ/π)d/2

K∑
j=1

exp
(
−ζ∥θj − zi∥2

) (C.1)

i.e. the expectation-maximization algorithm for (C.1) aims to find a local minimum of (3.4). Since
(C.1) is the log-likelihood for the mixture of Gaussians N(θ1,

1
2ζ I), . . . , N(θK ,

1
2ζ I) under the same

cluster density 1/K with observations z1, . . . , zn, the expectation-maximization algorithm for (C.1)
is identical to the alternative procedure (3.3) [Pri12].
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C.3 Proof of Theorem 3.2

First, observe that for θ ∈ (BdR(0))K , z ∈ BdR(0), we have

∂

∂θk
f(θ; z) =

2(θk − zi) exp(−ζ∥θk − zi∥2)∑K
j=1 exp(−ζ∥θj − zi∥2)

,

∂2

∂θk∂θk′
f(θ; z) =

4ζ(θk − zi)(θk′ − zi)⊤ exp(−ζ∥θk − zi∥2 − ζ∥θk′ − zi∥2)(∑K
j=1 exp(−ζ∥θj − zi∥2)

)2
+ 1k=k′ × (2I − 4ζ(θk − zi)(θk − zi)⊤) exp(−ζ∥θk − zi∥2)∑K

j=1 exp(−ζ∥θj − zi∥2)
where 1k=k′ is one if k = k′ and zero otherwise. Using this, we bound f and its first and second
derivatives as follows:

f(θ; z) ∈ [−B + logK, logK],

L :=
4R√
K

exp(ζB) = 4R

√
K

K2 exp(−ζB)2
≥ 4R

√√√√ ∑K
j=1 exp(−ζ∥θj − zi∥2)2(∑K
j=1 exp(−ζ∥θj − zi∥2)

)2
≥

√√√√ K∑
k=1

∥∥∥∥ ∂

∂θk
f(θ; z)

∥∥∥∥2 =

∥∥∥∥ ∂∂θf(θ; z)
∥∥∥∥ ,

α :=
2

K
exp (−ζB) ≤ 1

∥θj − z∥

∥∥∥∥ ∂

∂θj
f(θ; z)

∥∥∥∥ ∀θ s.t. θj ̸= z,

β :=
2

K
exp (ζB) ≥ 1

∥θj − z∥

∥∥∥∥ ∂

∂θj
f(θ; z)

∥∥∥∥ ∀θ s.t. θj ̸= z,

β′ :=4ζB exp(ζB) + 4ζB + 2 ≥
∥∥∇2f(θ; z)

∥∥
2
.

To utilize Theorem 2.2, we approximate each f( · ; z) using a piecewise strongly convex and
smooth function h( · ; z) with PK pieces. To this end, we first construct a partition {Pz,p1,...,pK

:
p1, . . . , pK ∈ [P ]} of Θ for each z ∈ Z as follows:

Pz,p1,...,pK
:={(θj)Kj=1 ∈ Θ : ∥θj − z∥ ∈ Tpj

∀j ∈ [K]}
where

κ :=
1

12(β + β′)η
√
KLTn

,

P :=

⌈
2R

κ

⌉
,

µp :=(p− 1)κ ∀p ∈ [P + 1],

Tp :=

{
[µp, µp+1) if p ∈ [P − 1]

[µP , µP+1] if p = P
.

We define h( · ; z) := hz,p1,...,pK
( · ) on Pz,p1,...,pK

if Pz,p1,...,pK
̸= ∅. Here, note that Pz,p1,...,pK

\
{z} ≠ ∅ if Pz,p1,...,pK

̸= ∅ from the definition of Pz,p1,...,pK
. Now, we define hz,p1,...,pK

( · ) as
follows: for some fixed νz,p1,...,pK

= ((νz,p1,...,pK
)j)

K
j=1 ∈ Pz,p1,...,pK

\ {z},

hz,p1,...,pK
(θ) :=

K∑
j=1

1

2

∥∥∥∥∥ 1

∥(νz,p1,...,pK
)j − z∥

∂

∂θ′j
f(θ′; z)

∣∣∣
θ′=νz,p1,...,pK

∥∥∥∥∥ · ∥θj − z∥2.
Our construction of hz,p1,...,pK

has some nice properties. For example, for

az,p1,...,pK
:= min

j

∥∥∥∥∥ 1

∥(νz,p1,...,pK
)j − z∥

∂

∂θ′j
f(θ′; z)

∣∣∣
θ′=νz,p1,...,pK

∥∥∥∥∥ ,
bz,p1,...,pK

:= max
j

∥∥∥∥∥ 1

∥(νz,p1,...,pK
)j − z∥

∂

∂θ′j
f(θ′; z)

∣∣∣
θ′=νz,p1,...,pK

∥∥∥∥∥ ,
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hz,p1,...,pK
is az,p1,...,pK

-strongly convex and bz,p1,...,pK
-smooth and α ≤ az,p1,...,pK

≤
bz,p1,...,pK

≤ β. Furthermore, for any ν′ = (ν′j)
K
j=1 satisfying

∥ν′j − z∥ = ∥(νz,p1,...,pK
)j − z∥, (C.2)

we have
∇f(ν′, z) = ∇hz,p1,...,pK

(ν′) (C.3)
from the symmetry of f and hz,p1,...,pK

.

Now, we bound ∥∇f(θ; z)−∇f(θ; z)∥ to utilize Theorem 2.2. For θ = (θj)
K
j=1 ∈ (BdR(0))K , let

p1, . . . , pK be indices in [P ] satisfying θ ∈ Pz,p1,...,pK
. Let ν′ be a point on the line connecting z

and θ such that ν′ satisfies (C.2), i.e. ∥ν′j − θj∥ ≤ κ for all j ∈ [K]. Then, we have

∥∇f(θ; z)−∇h(θ; z)∥ = ∥∇f(θ; z)−∇f(ν′; z) +∇f(ν′; z)−∇h(θ; z)∥
≤ ∥∇f(θ; z)−∇f(ν′; z)∥+ ∥∇h(θ; z)−∇hz,p1,...,pK

(ν′)∥

≤ β′κ
√
K +

√
K max

j∈[K]

{∥∥∥∥ ∂

∂θj
hz,p1,...,pK

(θ)− ∂

∂θj
hz,p1,...,pK

(ν′)

∥∥∥∥}
≤ (β + β′)κ

√
K

≤ 1

12ηLTn

The first inequality holds since ∇f(ν′; z) = ∇hz,p1,...,pK
(ν′) by (C.3) and other inequalities holds

from the definitions of β and β′. Now, we apply Theorem 2.2 with

h← h, P ← PK , ξ ← 1

12ηLTn
, T ← T, α← α, β ← β, L← L, B ← B.

Then in the bound of Theorem 2.2, we have

2L

(
γTR+

1− γT

1− γ
ηξ

)
≤ 1

n

since γTR ≤ 1/(3Ln) and 1−γT

1−γ =
∑T−1

j=0 γ
j ≤ T . This completes the proof of Theorem 3.2.

C.4 Proof of Theorem 3.3

For i ∈ [n] and j ∈ [K], we first define gi,j as

gi,j(θ) :=(θ′k)
K
k=1 where θ′k =

{
θk − 2η(θk − zi) if k = j

θk if k ̸= j
.

For ε := 1
8Rn , We define

Φε := {(θ′j)Kj=1 : θ′j =
(
gij,tj ,j ◦ · · · ◦ gij,1,j(θ

(0))
)
j
, tj ∈ [T ] ∪ {0}, ij,1, . . . , ij,tj ∈ [n], ∀j ∈ [K]}.

Given θ(0), since gi,j is γ-contractive by Lemma A.4, we have for any t ≥ 0, i1, . . . , it ∈ [n], and
j ∈ [K], (

git ◦ · · · ◦ gi1(θ(0))
)
j
∈
⋃

ϕ∈Φε

BdK−1/2ε(ϕj),

i.e.
git ◦ · · · ◦ gi1(θ(0)) ∈

⋃
ϕ∈Φε

Bdε (ϕ), (C.4)

Namely, Φε contains all possible SGD parameters starting from θ(0) where each element in Φε is an
algorithm depending on at most KT samples. Since each f( · ; z) is (4R)-Lipschitz on Θ, we apply
Theorem B.1 with

Φn ← {git ◦ · · · ◦ gi1(θ(0)) : t ≥ 0, i1, . . . , it ∈ [n]}
ΦT,ε ← Φε, ε← ε, T ← KT, δ ← δ, L← 4R, B ← B.

where
|Φε| ≤

∑
t1,...,tK∈[T ]∪{0}

n
∑K

k=1 tk ≤
∑

t1,...,tK∈[T ]∪{0}

nKT ≤ (T + 1)K · nKT ≤ (2n)KT

and the assumption (B.1) in Theorem B.1 is satisfied by (C.4). This leads us to the bound in
Theorem 3.3.
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D Expected generalization gap: Strongly convex and smooth case

In this section, we bound the expected generalization gap using our localized cover for a contractive
iterative stochastic optimizer g (see Definition 3), i.e. each g( · ; z) is contractive for all z ∈ Z . Here,
we use S for denoting the set of samples {z1, . . . , zn} and gi for denoting g( · ; zi).
Theorem D.1. Suppose that Assumptions 1 & 2 hold and there exists γ ∈ (0, 1) such that g( · ; z)
is γ-contractive on Θ ⊆ BdR(0) for all z ∈ Z . Let T := max

{⌈
log(2LRn)
log(1/γ)

⌉
, 0
}

. Then for any

θ(0) ∈ Θ, t ≥ 0, and i1, . . . , it ∈ [n], the t-th iterate θ(t) := git ◦ · · · ◦ gi1(θ(0)) satisfies

|ES [F̂ (θ
(t))− F (θ(t))]| ≤ BT + 1

n
.

Compared to the uniform stability-based bound for γ-contractive 1
n

∑n
i=1 gi under L′-Lipschitz

f( · ; z) and ∥g(θ; z)∥ ≤ K [KWS22]

|Eθ(0),i1,...,it,S [F̂ (θ
(t))− F (θ(t))]| ≤ 2KL′

(1− γ)n
, (D.1)

our bound in Theorem D.1 is linear in B, has an additional log n factor, and requires contractive
g( · ; z) but does not depend on L† and K. Here, note that our bound uniformly holds for all
parameters generated by SGD while the bound (D.1) requires the expectation over θ(0) and the
indices i1, . . . , it used for the t updates using the iterative stochastic optimizer.

Although the bounds in Theorem D.1 and (D.1) provide some information about the expected
generalization gap, these bounds cannot be used for understanding the absolute deviation |F̂ (θ(t))−
F (θ(t))|, which can be of practical interest. In the following theorem, we provide a bound on the
expectation of the absolute generalization gap where Ψ≥T (θ) and ΨT (θ) are defined for general gi,
analogous to Definition 1:

ΨT (θ
(0)) :={giT ◦ · · · ◦ gi1(θ(0)) : i1, . . . , iT ∈ [n]},

Ψ≥T (θ
(0)) :=

⋃
t≥T

Ψt(θ
(0)). (D.2)

Theorem D.2. Assume the setup in Theorem D.1. Then there exists some absolute constant C > 0
such that

ES

[
sup

θ(t)∈
⋃

θ(0)∈Θ
Ψ≥T (θ(0))

|F̂ (θ(t))− F (θ(t))|

]
≤ BT + 1

n
+ CB

√
T log n

n
.

To our knowledge, the bound in Theorem D.2 is the first bound on ES [|F̂ (θ(t)) − F (θ(t))|] for
the contractive case, including strongly convex and smooth functions. Compared to Theorem D.1,
the bound in Theorem D.2 looses O(

√
T/(n log n)) factor for taking the absolute value inside

the expectation. Nevertheless, this bound can be improved by removing the supremum inside the
expectation.
Corollary D.1. Assume the setup in Theorem 2.1. Then there exists some absolute constant C > 0
such that for any θ(0) ∈ Θ, t ≥ 0, and i1, . . . , it ∈ [n], we have

ES

[
|F̂ (θ(t))− F (θ(t))|

]
≤ BT + 1

n
+ CB

√
1

n
.

Compared to Theorem D.2, the bound in Corollary D.1 does not have
√
T log n factor but the LHS in

the bound is weaker.

D.1 Proof of Theorem D.1

For any θ(t) ∈
⋃

θ(0)∈Θ Ψ≥0(θ
(0)), let θ(t) = git ◦ · · · ◦ gi1(θ(0)). Let ϕ = git ◦ · · · ◦ git−T+1

(0)
and I = {it−T+1, . . . , it} ⊂ [n] if t > T and ϕ = git ◦ · · · ◦ gi1(0) and I = {i1, . . . , it} ⊂ [n]
otherwise. Then as in the proof of Lemma 2.1, we have

θ(t) ∈ Bdε (ϕ) (D.3)

23



for ε = 1/(2Ln), regardless of the choice of S. Using this, we have

|ES [F̂ (θ
(t))− F (θ(t))]| ≤ |ES [(F̂ (θ

(t))− F̂ (ϕ)]|+ |ES [F (θ
(t))− F (ϕ)]|+ |ES [F̂ (ϕ)− F (ϕ)]|

≤ 2Lε+ |ES [F̂ (ϕ)− F (ϕ)]|

≤ 2Lε+

∣∣∣∣ES

[
1

n

∑
i∈[n]\I

(f̂(ϕ; zi)− F (ϕ))
]∣∣∣∣+ ∣∣∣∣Ezi:i∈I

[
1

n

∑
i∈I

(f̂(ϕ; zi)− F (ϕ))
]∣∣∣∣

= 2Lε+

∣∣∣∣Ezi:i∈I

[
1

n

∑
i∈I

(f̂(ϕ; zi)− F (ϕ))
]∣∣∣∣

≤ 2Lε+
BT

n
=
BT + 1

n
.

The first inequality is from the triangle inequality and the second inequality is from (D.3). The
third inequality is again from the triangle inequality and the first equality is from the fact that ϕ is
independent of {zi : i ∈ I}. The last inequality is from Assumption 2. Since the above bound holds
for any θ(0) ∈ Θ and It, this completes the proof of Theorem D.1.

D.2 Proof of Theorem D.2

In this proof, we assume T < n since the statement trivially follows otherwise. As in the statement
of Lemma 2.1, one can observe that⋃

θ(0)∈Θ

Ψ≥T (θ
(0)) ⊆

⋃
ϕ∈ΨT (0)

Bdε (ϕ) (D.4)

for ε = 1/(2Ln). For each ϕ ∈ ΨT (0), let Iϕ := {i1, . . . , iT } such that ϕ = giT ◦ · · · ◦ gi1(0).
Using this we can derive the following bound: for ΠΨT (0)(θ

(t)) := argminϕ∈ΨT (0) ∥θ(t) − ϕ∥,

ES

[
sup

θ(t)∈
⋃

θ(0)∈Θ
Ψ≥T (θ(0))

|F̂ (θ(t))− F (θ(t))|

]
≤ ES

[
sup

ϕ∈ΨT (0)

|F̂ (ϕ)− F (ϕ)|

]

+ ES

[
sup

θ(t)∈
⋃

θ(0)∈Θ
Ψ≥T (θ(0))

|F̂ (θ(t))− F̂ (ΠΨT (0)(θ
(t)))|+ |F (θ(t))− F (ΠΨT (0)(θ

(t)))|

]

≤ 2Lε+ ES

[
sup

ϕ∈ΨT (0)

|F̂ (ϕ)− F (ϕ)|

]

≤ 1

n
+ ES

 sup
ϕ∈ΨT (0)

∣∣∣∣∣∣ 1n
∑
i∈Iϕ

(f(ϕ; zi)− F (ϕ))

∣∣∣∣∣∣
+ ES

 sup
ϕ∈ΨT (0)

∣∣∣∣∣∣ 1n
∑

i∈[n]\Iϕ

(f(ϕ; zi)− F (ϕ))

∣∣∣∣∣∣


≤ BT + 1

n
+ ES

 sup
ϕ∈ΨT (0)

∣∣∣∣∣∣ |[n] \ Iϕ|n
· 1

|[n] \ Iϕ|
∑

i∈[n]\Iϕ

(f(ϕ; zi)− F (ϕ))

∣∣∣∣∣∣


≤ BT + 1

n
+ CB

√
T log n

n
.

The first inequality is from the triangle inequality and the second inequality is from (D.4). The third
inequality is again from the triangle inequality and the definition of ε, and the fourth inequality
is from Assumption 2. Since each 1

|[n]\Iϕ|
∑

i∈[n]\Iϕ
(f(ϕ; zi) − F (ϕ)) is sub-Gaussian with the

sub-Gaussian norm bounded by cB/
√
|[n] \ Iϕ| for some absolute constant c (see Proposition 2.5.2

in [Ver18]), the last inequality follows from a standard upper bound for empirical processes (see
Exercise 2.5.10 in [Ver18]). This completes the proof of Theorem D.2.

D.3 Proof of Corollary D.1

As in the proof of Theorem D.2, we assume that T < n without loss of generality. The proof here is
almost identical to that of Theorems D.1 & D.2.
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For any θ(t) ∈
⋃

θ(0)∈Θ Ψ≥0(θ
(0)), let θ(t) = git ◦ · · · ◦ gi1(θ(0)). Let ϕ = git ◦ · · · ◦ git−T+1

(0)
and I = {it−T+1, . . . , it} ⊂ [n] if t > T and ϕ = git ◦ · · · ◦ gi1(0) and I = {i1, . . . , it} ⊂ [n]
otherwise. Then for ε = 1/(2Ln), we have

θ(t) ∈ Bε(ϕ). (D.5)

Using this, we derive the following inequality:

ES [|F̂ (θ(t))− F (θ(t))|] ≤ ES [|(F̂ (θ(t))− F̂ (ϕ)|] + ES [|F (θ(t))− F (ϕ)|] + ES [|F̂ (ϕ)− F (ϕ)|]
≤ 2Lε+ ES [|F̂ (ϕ)− F (ϕ)|]

≤ 2Lε+ ES

[∣∣∣∣ 1n ∑
i∈[n]\I

(f̂(ϕ; zi)− F (ϕ))
∣∣∣∣]+ Ezi:i∈I

[∣∣∣∣ 1n∑
i∈I

(f̂(ϕ; zi)− F (ϕ))
∣∣∣∣]

≤ 2Lε+ ES

[∣∣∣∣ 1n ∑
i∈[n]\I

(f̂(ϕ; zi)− F (ϕ))
∣∣∣∣]+ BT

n

≤ BT + 1

n
+
|[n] \ I|

n
Ezi:i∈[n]\I

[∣∣∣∣ 1

|[n] \ I|
∑

i∈[n]\I

(f̂(ϕ; zi)− F (ϕ))
∣∣∣∣]

≤ BT + 1

n
+
|[n] \ I|

n

(
CB

√
1

|[n] \ I|

)

≤ BT + 1

n
+ CB

√
1

n
.

The first and second inequality follows from the triangle inequality and (D.5), respectively. The third
inequality is again from the triangle inequality while Assumption 2 gives us the fourth inequality.
The sixth inequality is from Proposition 2.5.2 and Exercise 2.5.10 in [Ver18] where the last inequality
naturally follows. Since the above bound holds for any θ(0) ∈ Θ and It, this completes the proof of
Corollary D.1
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E Comparison with existing bounds

Table 1: Summary of generalization bounds for constant step-size SGD. In the column “As-
sumptions”, Lip. assumes L′-Lipschitz f( · ; z), Weak Lip. assumes Assumption 1, Bdd. assumes
f(Θ;Z) ⊂ [0, B′], and Bdd. Dev. assumes Assumption 2. If LHS of a bound does not contain
expectation, that bound is a high-probability bound. For simplicity, we hide values other than
d, t, T, L, L′, B,B′, P, ξ, n in ≲ where T = log(LRn) and Θ ⊂ BdR(0).

Reference Objective Assumptions Stable
as t→∞ Bound: ∆(t)= F̂ (θ(t))−F (θ(t))

[HRS15]

Strongly convex
& smooth

Lip.

✓

|E[∆(t)]| ≲ (L′)2/n ∗

Thm D.1

Weak Lip.,
& Bdd. Dev.

|E[∆(t)]| ≲ BT/n ∥

Thm D.2 E[sup |∆(t)|] ≲ B
√

T logn/n ‡∥

Cor D.1 E[|∆(t)|] ≲ B
√

1/n ∥

Thm 2.1 sup |∆(t)| ≲ B
√

T logn/n ‡

Cor 2.1–2.2 |∆(t)| ≲ B
√

1/n

[HRS15] Convex
& smooth

Lip.

✗

|E[∆(t)]| ≲ (L′)2t/n ∗

[FV19] Lip. & Bdd. |∆(t)| ≲ t log2 n/n+
√

1/n ¶

[BFGT20] Convex
& non-smooth

Lip. |E[∆(t)]| ≲ (L′)2(
√
t+ t/n) ∗

Lip. & Bdd. |∆(t)| ≲ (L′ logn)2(
√
t+ t/n) +B′√1/n

[HRS15] Non-convex
& smooth

Lip. |E[∆(t)]| ≲ (L′)
2

βc+1 t
βc

βc+1 /n ∗§

Thm 2.2 Weak Lip.
& Bdd. Dev. ✓

sup |∆(t)| ≲ B
√

dT 2 logn/n ‡

Approx. piecewise
strongly convex

& smooth
sup |∆(t)| ≲ B

√
T log(nP )/n+ Lξ ‡

Table 2: Summary of generalization bounds for a (piecewise) contractive optimizer with update
functions g1, . . . , gn. The column “Non-cvx SGD” evaluates if a bound can be used for SGD on
non-convex objectives without diverging as t→∞.

Reference Optimizer Assumptions Non-cvx
SGD Bound: ∆(t)= F̂ (θ(t))−F (θ(t))

[KWS22] Contractive
1
n

∑n
i=1 gi

Lip. &
∥gi(Θ)∥ ≤ K ✗ |E[∆(t)]| ≲ KL′/n ∗

Thm D.1

Contractive gi
Weak Lip.

& Bdd. Dev. ✗

|E[∆(t)]| ≲ BT/n ∥

Thm D.2 E[sup |∆(t)|] ≲ B
√

T logn/n ‡∥

Cor D.1 E[|∆(t)|] ≲ B
√

1/n ∥

Thm 4.1 sup |∆(t)| ≲ B
√

T logn/n ‡

Cor 2.1–2.2 ♭ |∆(t)| ≲ B
√

1/n

Thm 4.1 Approx. piecewise
contractive gi

Weak Lip.
& Bdd. Dev. ✓ sup |∆(t)| ≲ B

√
T log(nP )/n+ Lξ ‡

∗The expectation is taken over {z1, . . . , zn}, {i1, . . . , it}, θ(0).
∥The expectation is taken over {z1, . . . , zn}.
‡The supremum is taken over θ(t) ∈

⋃
θ(0)∈Θ Ψ≥T (θ

(0)) (see Definition 1 and (D.2)).
§β denotes the smoothness parameter and the adaptive learning rate must satisfy ηt ≤ c/t.
¶This bound is under 1-Lipschitz continuity of f( · ; z) and f(Θ,Z) ⊂ [0, 1].
♭Although Corollaries 2.1–2.2 are for SGD, the same result holds for contractive gi with the same proof.
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F Lower bound on uniform stability-based bound for piecewise strongly
convex and smooth objectives

In this section, we show that the uniform stability-based bound [HRS15] is Ω(1) for piecewise
strongly convex and smooth functions after sufficiently many SGD iterations in general. To this end,
we first introduce the formal definition of the uniform stability and a standard tool for showing that
the stability implies generalization, which are from Definition 2.1 and Theorem 2.2 in [HRS15].
Definition 7 (Uniform stability). A randomized algorithm ρ is “ε-uniformly stable” if for all data
sets S,S ′ ∈ Zn such that S and S ′ differ in at most one example, we have

sup
z∈Z

Eρ[f(ρ(S); z)− f(ρ(S ′); z)] ≤ ε.

Theorem F.1. If ρ is ε-uniformly stable, then

|ES,ρ[F̂ (ρ(S))− F (ρ(S))]| ≤ ε.

For the remaining section, we provide an example that

sup
z∈Z

Eρ[f(ρ(S); z)− f(ρ(S ′); z)] = Ω(1),

regardless of n where ρ denotes sufficiently many SGD updates. Namely, the uniform stability-based
bound based on Theorem F.1 is Ω(1).

Let Θ = [0, 4], Z = {0, 1}, θ(0) ∼ Unif([0, 4]), P(z = 0) = P(z = 1) = 1
2 , f( · ; 0) = min{(x −

1)2, 12 + 1
2 (x − 3)2}, f( · ; 1) = (x − 1)2, and the auxiliary gradient ∇f(2; 0) = 2 at the non-

differentiable point θ = 2, i.e., f( · ; z) is piecewise 1-strongly convex and 2-smooth with the
partition P = {[0, 2], (2, 4]}. For simplicity, choose η = 1/3 which can be generalized to arbitrary
η ∈ (0, 1). Under this setup, using Theorem 2.2, one can easily derive a generalization bound that
does not increase with the number of SGD iterations and converges to zero as n grows.

However, under the same setup and sufficiently many SGD iterations, the uniform stability-based
bound is lower bounded by a constant regardless of n. To see this, let S = (0, . . . , 0) and S ′ =
(1, 0, · · · , 0). Then, one can observe that f([0, 2]; 0) ⊂ [0, 2] and f((2, 4]; 0) ⊂ (2, 4], i.e. SGD
iterates for S converge to either 1 or 3 depending on whether θ(0) ∈ [0, 2] or θ(0) ∈ (2, 4]. Since we
assumed θ(0) ∼ Unif([0, 4]), we have

lim
t→∞

Eθ(t) [f(θ(t); 1)] =
1

2
f(1; 1) +

1

2
f(3; 1) = 2 (F.1)

where θ(t) denotes a random parameter generated by t SGD updates for S , from θ(0) ∼ Unif([0, 4]).
Furthermore, we have f(Θ; 1) ⊂ [0, 2] and f([0, 2]; 0) ⊂ [0, 2]. This implies that if a single SGD
update for S ′ use the first sample in S ′ (i.e. z = 1), which occurs with high probability under
sufficiently many SGD iterations, then the SGD iterates will converge to 1 almost surely. In other
words, we have

lim
t→∞

Eϕ(t) [f(ϕ(t); 1)] = f(1; 1) = 0 (F.2)

where ϕ(t) denotes a random parameter generated by t SGD updates for S ′, from ϕ(0) ∼ Unif([0, 4]).
Combining (F.1) and (F.2) implies a constant lower bound on the uniform stability-based bound,
regardless of n, under sufficiently many SGD iterations. We note that the same conclusion can also
be derived for any η ∈ (0, 1) as long as the number of SGD iterations is large enough.
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