
POINTGOAL2 POINTBUTTON2 POINTPUSH2

Figure 6: Left: The three level-2 Safety Gym tasks with the POINT robot. Level-1 tasks have less
crowded maps. Green zones: goal locations; blue zones: hazard zones; cyan cubes: vases; purple
cubes: gremlins; orange cylinders: buttons; blue cylinders: pillars. Hazard zones are penetrable areas.
Vases are lightweight and can be moved by the robot. Unlike other static obstacles, gremlins have
circular movements. Right: the POINT and CAR robots.

GOAL PUSH BUTTON
POINT 204 268 268
CAR 216 280 280

Table 2: The observation dimensions of our custom Safety Gym tasks. For each combination, level 1
and 2 have the same observation space. All action spaces are [−1, 1]2.

A Task details

A.1 Safety Gym

In Safety Gym (Ray et al., 2019) environments, a robot with lidar sensors navigates through cluttered
environments to achieve tasks. There are three types of tasks (Figure 6) for a robot:

1) GOAL: reaching a goal location while avoiding hazard zones and vases.
2) BUTTON: hitting one goal button out of several buttons while avoiding gremlins and hazard zones.
3) PUSH: pushing a box to a goal location while avoiding pillars and hazard zones.

Each task has two levels, where level 2 has more obstacles and a larger map size than level 1. In total
there are 3× 2 = 6 tasks for a robot. We use the POINT and CAR robots in our experiments.

We customized the environment so that the robot has a natural lidar of 64 bins. The natural lidar
contains more information of object shapes in the environment than the default pseudo lidar. We
found that rich shape information is necessary for the agent to achieve a harsh constraint threshold. A
separate lidar vector of length 64 is produced for each obstacle type or goal. All lidar vectors and
the robot status vector (e.g., acceleration, velocity, rotations) are concatenated together to produce
a flattened observation vector. A summary of the observation dimensions is in Table 2. Whenever
an obstacle is in contact with the robot, a constraint reward of −1 is given. The utility reward is
calculated as the decrement of the distance between the robot (GOAL and BUTTON) or box (PUSH)
and the goal at every step. An episode terminates when the goal is achieved, or after 1000 time
steps. We define a success as achieving the goal before timeout. The map layout is randomized at the
beginning of each episode. We emphasize that the agent has no prior knowledge of which states are
unsafe, thus path planning with known obstacles does not apply here. Our customized Safety Gym is
available at https://github.com/hnyu/safety-gym.

A.2 Safe Racing

The agent’s observation includes a bird’s-eye view image (96× 96) and a car status vector (length
11) consisting of ABS sensor, wheel angles, speed, angular velocity, and the remaining tile por-
tion. The action space is [−1, 1]3. Based on the code https://github.com/NotAnyMike/gym/
blob/master/gym/envs/box2d/car_racing.py, we modify the original unconstrained car rac-
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Figure 7: The SAFERACING (left) and SAFERACINGOBSTACLE (right) tasks. In the former task, the
car needs to keep itself within the track to avoid penalties. In the latter task, the car gets a collision
cost once hitting an obstacle (red blocks). However, it can drive outside of the track without being
penalized. For each episode, the track layout and obstacles are randomly generated.

ing task (Brockman et al., 2016) to add obstacles on the track. A bird’s-eye view of the two safe
racing tasks is illustrated in Figure 7. We set the obstacle density ( #Obstacles

#TrackTiles ) to 10% for SAFERACIN-
GOBSTACLE.

B Training with 10M Environment Steps

In Figure 3, one might wonder if SEditor only improves sample efficiency of the Lagrangian SAC,
but doesn’t really improve the final performance on the 12 Safety Gym tasks. To answer this question,
we report here the SWU score comparison between SAC-actor2x-Lag and SEditor with 10M steps
on Safety Gym. The SWU scores are calculated based on the performance of unconstrained SAC at
10M steps (and thus are not directly comparable to those in Table 1).

CP1 CG1 CB1 CP2 CG2 CB2 PP1 PG1 PB1 PP2 PG2 PB2 Overall Improvement
SAC-actor2x-Lag 0.91 0.84 1.00 0.82 0.84 0.80 1.02 1.00 0.74 0.75 1.00 1.00 0.89 17%

SEditor 1.01 1.00 0.85 1.28 1.00 0.98 0.94 1.00 0.97 1.42 1.00 1.00 1.04 -
Table 3: The SWU scores of SAC-actor2x-Lag and SEditor at 10M environment steps. Task name
abbreviations: CP - CARPUSH, CG - CARGOAL, CB - CARBUTTON, PP - POINTPUSH, PG -
POINTGOAL, and PB - POINTBUTTON.

We observe that both methods have saturated at 10M steps. Training more steps somewhat decreases
but not closes the gap between SAC-actor2x-Lag and SEditor regarding the final performance.

C Experiment on the Unmodified POINTGOAL1

Since we have modified the Safety Gym environments to pursue a much (98%) lower constraint
violation threshold, one might be curious to see if SEditor also performs well on the original
unmodified tasks. As a representative experiment, we compare SEditor (averaged over 4 random
seeds) with the results reported in Ray et al. (2019) and Stooke et al. (2020) on the unmodified
POINTGOAL1. We observe that all methods can satisfy the constraint threshold well; the difference
resides in their utility performance. We list their (rough) utility scores at different environment steps
below:

Steps Ray et al. (2019) (PPO-Lag) Ray et al. (2019)(TRPO-Lag) Stooke et al. (2020) SEditor
2.5× 107 - - 26 29
1× 107 13 17 23 27
5× 106 14 16 22 24

Table 4: The utility performance on the original POINTGOAL1. All methods are able to satisfy the
constraint threshold of 0.025.

It’s unsurprising that SEditor did pretty well under such a much higher cost limit. We also observe
that without P-control, SEditor’s cost curve is similar to the ones of KP = 0 in Stooke et al. (2020),
which is expected: the initial cost was high and then quickly dropped to the limit. Our cost stabilized
at about 3M steps while Stooke et al. (2020) stabilized at about 10M steps (with KI = 1× 10−2).
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D Ablation Study Results

Figure 8 and 9 show the comparison results between SEditor and its two variants SEditor-L2 and
SEditor-overwrite, as introduced in Section 4. All three approaches share a common training setting
except the changes to the action distance function d(a, â) or the editing function h(â,∆a).

We notice that Figure 8 and 9 have opposite results, where SEditor-L2 is comparable to SEditor in
the former while SEditor-overwrite is comparable to SEditor in the latter. This suggests a hypothesis
that the magnitude of ∆a output by SE is usually small in Safety Gym but larger in the safe racing
tasks, because SEditor-overwrite removes the inductive bias of â being close to h(â,∆a). To
verify this hypothesis, we record the output ∆a when evaluating the trained models of SEditor
on two representative tasks POINTPUSH1 and SAFERACINGOBSTACLE. For either task, we plot
the empirical distribution of ∆a over 100 episodes (each episode has 1000 steps). The plotted
distributions are in Figure 10. It is clear that on POINTPUSH1, the population of ∆a is more centered
towards 0. On SAFERACINGOBSTACLE, the population tends to distribute on the two extremes of
±1. This somewhat explains why the L2 distance can be a good proxy for the utility Q closeness on
Safety Gym but not on the safe racing tasks.
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Figure 8: The ablation study results on the 12 Safety Gym tasks. Odd columns: ↑ success rate. Even
columns: ↓ constraint violation rate (log scale). Red dashed horizontal lines: violation rate target
c = 5× 10−4. Shaded areas: 95% confidence interval (CI).
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Figure 9: The ablation study results on the safe racing tasks. Odd columns: ↑ undiscounted episode
return. Even columns: ↓ constraint violation rate (log scale). Red dashed horizontal lines: violation
rate target c = 5× 10−4. Shaded areas: 95% confidence interval (CI).
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Figure 10: The empirical distributions of ∆a over 100 episodes of POINTPUSH1 and SAFERACIN-
GOBSTACLE, by evaluating trained models of SEditor. Recall that their action dimensions are 2 and
3, respectively.
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Figure 11: Inference results during an example episode of SAFERACINGOBSTACLE, by evaluating a
trained model of SEditor. Top: The changing hinge loss of the utility state-action values of â and a,
and their changing squared L2 distance (per dimension). Note that the absolute magnitudes of the
two quantities are not comparable. Instead, only the relative trend within either curve is meaningful.
Middle: 7 key frames of the episode (zoom in for a better view). Bottom: bar plots of the utility
action â by UM and the edited action a by SE. Each plot corresponds to a key frame.
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Action dimension −1 +1
0 Steer left Steer right
1 No acceleration Full acceleration
2 No brake Full brake

Table 5: The semantics of the action space of SAFERACINGOBSTACLE. Since the action space is
continuous, numbers between the two extremes of ±1 represent a smooth transition.

E Hinge Loss vs. L2 distance

In Figure 9, SEditor-L2 is especially bad compared to SEditor, indicating that the L2 distance is not a
good choice for measuring the difference between the utility action â and the edited action a, when
we actually attempt to compare their state-action values. For further analysis, we evaluate a trained
SEditor model on SAFERACINGOBSTACLE, and inspect the following inference results during an
episode:

a) The action proposed by UM πϕ, also known as the utility action â ∈ [−1, 1]3;
b) The edited action a ∈ [−1, 1]3 by SE πψ as the output to the environment;
c) The hinge loss of their utility state-action values (Eq. 8);
d) The squared L2 distance (per dimension) of the two actions 1

3∥â− a∥2

We select 7 key frames of the episode and visualize their corresponding inference results in Figure 11.
The semantics of the action space is listed in Table 5.

In the first frame, the car just gets back on track from outside and there is an obstacle in front of
it. The utility action â steers left while the edited action a steers right due to safety concern. This
causes their squared L2 distance to be quite large. However, Q(s, a; θ) is no worse than Q(s, â; θ),
and thus in this case πψ of SEditor only needs to focus on maximizing the constraint reward, while
πψ of SEditor-L2 has to make compromises. The second frame is where the hinge loss is positive
because â commands acceleration while a does not, resulting in a potential decrease of the utility
return. (The front tires of the car are already steered all the way to the right, thus both actions turn
left.) Overall, SE is more cautious and wants to slow down when passing the obstacle. For frames
2 and 3, â and a are similar, as the car is temporarily free from constraint violation. Frame 4 is an
example where a subtle difference in the L2 distance results in a large hinge loss. The car is driving
near the border of the track, and at any time it could go off-track and miss the next utility reward (a
reward is given if the car touches a track tile). Thus â turns all the way to the left to make sure that
the off-track scenario will not happen. However, because there is an obstacle in front, a makes the
steering less extreme. Since the car is at the critical point of being on-track, even a small difference
in steering results in a large hinge loss. In comparison, the left-front and left-rear tires are already
on the track in frame 5, and even though a wants to turn right a little bit to avoid the obstacle, the
utility return is not affected and the hinge loss is still zero. Frame 6 is an example where both the L2
distance and hinge loss are small.
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Figure 12: Several key frames of an evaluation episode of SEditor. Each frame is paired with two
visualized optimization landscapes, one using an additive action editing function while the other
directly overwriting the action proposal â with ∆a. Each contour map is generated by enumerating
∆a given a sampled action proposal â from UM πϕ, and evaluating the value of of Eq. 7 (b). The map
axes correspond to the agent’s action dimensions (2D). Note that because we normalize the constraint
reward by its moving average mean and standard deviation (Table 6), the values on the map can be
positive.

F Action Editing Function

In Section 3, our motivation for an additive action editing function is to ensure an easier optimization
landscape for SE πψ. We hypothesize that if each proposed â is “mostly” safe, then there is an
inductive bias for πψ to output ∆a→ 0. In Section 4 on the Safety Gym tasks, we did observe that
SEditor-overwrite (directly using ∆a as the final action) is worse than SEditor. To further show why
an additive editing function is beneficial, when evaluating SEditor we visualize the function surface
of Eq. 7 (b) w.r.t. ∆a given a sampled action proposal â in Figure 12. It is clear that compared to an
overwriting editing function, an additive editing function always has a much larger set of optimal ∆a.
Furthermore, this set almost always covers those ∆a that are close to 0. Thus the additive editing
function does provide a very good inductive bias for SE πψ .

G Parameterization

We set λ = softplus(λ0) to enforce the Lagrangian multiplier λ ≥ 0, where λ0 is a real-valued
variable. Thus Eq. 6 (b) becomes

min
λ0

(softplus(λ0)Λπψ◦ϕ) (10)

as unconstrained optimization solved by typical SGD.
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We parameterize both policies πϕ and πψ as Beta distribution policies (Chou et al., 2017). The
advantage of Beta over Normal (Haarnoja et al., 2018) is that it natively has a bounded support of
[0, 1] for a continuous action space. It avoids using squashing functions like tanh which could have
numerical issues when computing the inverse mapping. With PyTorch, we can use the reparameteri-
zation trick for the Beta distribution to enable gradient computation in Eq. 7. Generally speaking,
Eq. 7 is re-written as

(a) max
ϕ

E
s∼D,ϵ1,ϵ2,

a=h(fϕ(s,ϵ1),fψ(s,fϕ(s,ϵ1),ϵ2))

[
Q(s, a; θ)

]
,

(b) max
ψ

E
s∼D,ϵ1,ϵ2,

a=h(fϕ(s,ϵ1),fψ(s,fϕ(s,ϵ1),ϵ2))

[
− d(a, fϕ(s, ϵ1)) + λQc(s, a; θ)

]
,

where ϵ1 and ϵ2 are sampled from two fixed noise distributions. Then gradients can be easily
computed for ϕ and ψ.

H Hyperparameters and Compute

In this section, we list the key hyperparameters used by the baselines and SEditor. A summary for the
Safety Gym experiments is in Table 6. For the safe racing experiments, we only list the differences
with Table 6 in Table 7. For the remaining implementation details, we refer the reader to the source
code https://github.com/hnyu/seditor.

With the model hyperparameters and training configurations above, a single job (one random seed)
of each compared method in Section 4 takes up to 6 hours training on any of the Safety Gym tasks
and up to 20 hours training on either safe racing task, on a single machine of Intel(R) Core(TM)
i9-7960X CPU@2.80GHz with 32 CPU cores and one RTX 2080Ti GPU. In practice, we use our
internal cluster with similar hardware to launch multiple jobs in parallel.

Hyperparameter PPO-Lag FOCOPS SAC SAC-actor2x-Lag SEditor

Number of parallel environments 32 ← ← ← ←
Initial rollout steps before training N/A N/A 10000 ← ←

Number of hidden layers∗ 3 ← ← ← ←
Number of hidden units of each layer∗ 256 ← ← ← ←

Beta distribution min concentration 1.0 ← ← ← ←
Frame stacking 4 ← ← ← ←

Reward normalizer clipping◦ 10.0 ← ← ← ←
Hidden activation tanh ← ← ← ←

Entropy regularization weight 10−3 N/A N/A N/A N/A
Entropy target per dimension N/A N/A −1.609† ← (−1.609,−1.609)

KLD weight‡ N/A 1.5 N/A N/A N/A
Trust region bound‡ N/A 0.02 N/A N/A N/A

Initial Lagrangian multiplier λ 1.0 ← ← ← ←
Learning rate of λ 0.01 ← ← ← ←

Learning rate▷ 10−4 ← 3× 10−4 ← ←
Training interval (action steps per environment) 8 ← 5 ← ←

Mini-batch size 256 ← 1024 ← ←
Mini-batch length for n-TD or GAE 8 ← ← ← ←

TD(λ) for n-TD or GAE 0.95 ← ← ← ←
Discount γ for both rewards 0.99 ← ← ← ←

Number of updates per training iteration 10 ← 1 ← ←
Target critic network update rate τ N/A N/A 5× 10−3 ← ←

Target critic network update period N/A N/A 1 ← ←
Replay buffer size N/A N/A 1.6× 106 ← ←

Table 6: Hyperparameters used in our experiments of Safety Gym for different approaches. The
symbol “←” means the same value with the column on the left. ∗Both for the policy and value/critic
networks. SAC-actor2x-Lag has a double-size policy network. ◦We normalize each dimension of the
reward vector by its moving average mean and standard deviation, and the clipping is performed on
normalized values. †This roughly assumes that the target action distribution has a probability mass
concentrated on 1

10 of the support [−1, 1]. ‡Following the FOCOPS paper (Zhang et al., 2020). ▷We
explored both 10−4 and 3× 10−4 for PPO/FOCOPS, and the former was selected.
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Hyperparameter PPO-Lag FOCOPS SAC SAC-actor2x-Lag SEditor

Number of parallel environments 16 ← ← ← ←
Initial rollout steps before training N/A N/A 50000 ← ←

CNN layers (channels, kernel size, stride)∗ (32, 8, 4), (64, 4, 2), (64, 3, 1) ← ← ← ←
Number of hidden layers after CNN∗ 2 ← ← ← ←

Number of hidden units of each layer after CNN∗ 256 ← ← ← ←
Frame stacking 1 ← ← ← ←

Hidden activation for CNN relu ← ← ← ←
Entropy regularization weight 10−2 N/A N/A N/A N/A
Entropy target per dimension N/A N/A −1.609† ← (−1.609,−0.916†)

Learning rate 3× 10−4 ← ← ← ←
Mini-batch size 128 ← 256 ← ←

Table 7: Hyperparameters used in our experiments of safe racing for different approaches. The
symbol “←” means the same value with the column on the left. ∗Both for the policy and value/critic
networks. SAC-actor2x-Lag has a double-size policy network. †This roughly assumes that the target
action distribution has a probability mass concentrated on 1

5 of the support [−1, 1].
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I Success and Failure Modes

Finally, we show example success and failure modes of SEditor on different tasks in Figure 13
and Figure 14, respectively. We briefly analyze the failure case of each episode in Figure 14. In
CARGOAL2, the robot faced a crowded set of obstacles in front of it, making its decision very difficult
considering the safety requirement. It took quite some time to drive back and forth, before committing
to a path through the two vases in its right front (the fourth frame). However, when passing a vase,
the robot incorrectly estimated its shape and the distance to the vase. Even though the majority of its
body passed, its left rear tire still hit the vase (the last two frames). In POINTBUTTON2, the robot
sped too much in the beginning of the episode, and collided into an oncoming gremlin due to inertia
(the floor is slippery!). It did not learn a precise prediction model of the gremlin’s dynamics. In
CARPUSH2, the robot spent too much time getting the box away from the pillar and did not achieve
the goal in time. These failure cases might be just due to insufficient exploration in similar scenarios.
In SAFERACINGOBSTACLE, the robot learned to take a shortcut for most sharp turns, essentially
sacrificing some utility rewards for being safer (skipping obstacles). The reason is that during every
sharp turn with a certain speed, the car’s state is quite unstable. It requires very precise control to
avoid obstacles during this period, which has not been learned by our approach.

CARGOAL2

CARBUTTON2

CARPUSH2

SAFERACING

SAFERACINGOBSTACLE

Figure 13: Key frames of several successful episodes of our approach. The robot in each episode
finishes the task without violating any constraint. For the safe racing tasks, we only show one
representative segment of the track due to space limit.
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CARGOAL2

POINTBUTTON2

CARPUSH2

SAFERACINGOBSTACLE

Figure 14: Key frames of several episodes where the robot violated constraints or only learned a
sub-optimal policy. In Safety Gym, whenever a constraint is violated, a red sphere is rendered around
the robot (the fifth frame of CARGOAL2 and the fourth frame of POINTBUTTON2).
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J Pseudocode

Algorithm 1: SEditor
Input: Learning rate α
Initialize: Randomize θ, ϕ, and ψ; reset the replay buffer D ← ∅
for each training iteration do

// Rollout begins
Reset the rollout batch Br ← ∅
for each rollout step do

Action proposal by UM: â ∼ πϕ(â|s)
Action editing by SE: ∆a ∼ πψ(∆a|s, â)
Output action a = h(â,∆a)
Environment transition s′ ∼ P(s′|s, a)
Add the transition to the rollout batch Br ← Br

⋃{(s, a, s′, r(s, a), rc(s, a))}
end
Store the rollout batch in the buffer D ← D⋃Br
// Training begins
Estimate the gradient of the Lagrangian multiplier λ by evaluating Eq. 9 on Br
Update the multiplier by Eq. 10: λ0 ← λ0 − αΛπψ◦ϕ
Sample a training batch B from the replay buffer D for gradient steps below
Perform one gradient step on the critic parameters θ by TD backup (Eq. 5) on Q and Qc
Perform one gradient step on UM: ϕ← ϕ+ α∆ϕ (gradient of Eq. 7, a)
Perform one gradient step on SE: ψ ← ψ + α∆ψ (gradient of Eq. 7, b)
Update other parameters such as entropy weight, target critic network, etc.

end
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