
A Implementation

In this part, we introduce our detailed implementation of EfficientImitate. Our code is available at
https://github.com/zhaohengyin/EfficientImitate.

A.1 Model Details

Our model is based on the EfficientZero [10] model. It is composed of several neural networks: rep-
resentation network f , dynamics network g, value network V , policy network π, BC policy network
πBC , discriminator network D, projector network, and predictor network. We use PyTorch [6] to
implement these networks. Their detailed structures are as follows.

A.1.1 State-based experiments

Representation Network The representation network is an MLP with one hidden layer of size 256.
Its output dimension is 128. It uses LeakyReLU [4] as the hidden layer’s activation function. The
output activation function is identity.

Dynamics Network The dynamics network is an MLP with one hidden layer of size 256. It con-
catenates the representation and the action as the input. Its output dimension is 128 (representation’s
dimension). It uses LeakyReLU as the hidden layer’s activation function. The output activation
function is identity.

Value Network The value network is an MLP with one hidden layer of size 128 (256 for Humanoid).
It uses LeakyReLU as the hidden layer’s activation function. The output activation function is identity.
We use the categorical value representation introduced in MuZero [7]. The value prediction is
discretized into 401 bins to represent the value between [−100, 100]. Therefore, the output dimension
of value network is 401.

Policy & BC Network The policy and the BC policy networks are both MLPs with one hidden
layer of size 128 (256 for Humanoid). These MLPs use LeakyReLU as the hidden layer’s activation
function. Their output activation functions are identity. They produce a Squarshed-Normal (Tanh-
Normal) action distribution [1], which is determined by a predicted mean and a predicted logstd.
Therefore, the output dimension is twice of the dimension of the action space.

Discriminator Network The discriminator network is an MLP with one hidden layer of size 128.
It uses LeakyReLU as hidden layer’s activation function. The output activation function is sigmoid.

Projector Network The projector network is an MLP with one hidden layer of size 512. It uses
ReLU [4] as the hidden layer’s activation function. The output activation function is identity. The
output dimension (projection dimension) is 128.

Predictor Network The predictor network is an MLP with one hidden layer of size 512. It uses
ReLU as the hidden layer’s activation function. The output activation function is identity. The output
dimension is 128.

A.1.2 Image-based experiments

Representation Network The representation network consists of a four layer convolutional neural
network and an MLP. Its structure is as follows.

• Convolution layer. Input dim: 12. Output dim: 32. Kernel Size: 5. Stride: 2. Padding: 2.

• ReLU activation.

• Convolution layer. Input dim: 32. Output dim: 32. Kernel Size: 3. Stride: 2. Padding: 1.

• ReLU activation.

• Convolution layer. Input dim: 32. Output dim: 32. Kernel Size: 3. Stride: 2. Padding: 1.

• ReLU activation.

1

https://github.com/zhaohengyin/EfficientImitate

• Convolution layer. Input dim: 32. Output dim: 32. Kernel Size: 3. Stride: 2. Padding: 1.

• Flatten.

• Linear layer. Output dim: 128.

• ReLU activation.

Dynamics Network The dynamics network is an MLP with one hidden layer of size 256. It con-
catenates the representation and the action as the input. Its output dimension is 128 (representation’s
dimension). It uses ReLU as the hidden layer’s activation function. The output activation function is
also ReLU.

Value Network The value network is an MLP with two hidden layers of size 100. It uses ReLU
as the hidden layer’s activation function. The output activation function is identity. We use the
categorical value representation introduced in MuZero. The value prediction is discretized into 401
bins to represent the value between [−40, 40]. Therefore, the output dimension of value network is
401.

Policy & BC Network The policy and the BC policy networks are both MLPs with two hidden
layers of size 100. These MLPs use ReLU as the hidden layer’s activation function. Their output
activation functions are identity. They produce a Squarshed-Normal action distribution, which is
determined by a predicted mean and a predicted logstd. Therefore, the output dimension of them is
twice of the dimension of the action space.

Discriminator Network The discriminator network is an MLP with one hidden layer of size 100.
It uses ReLU as hidden layer’s activation function. The output activation function is sigmoid.

Projector Network The projector network is an MLP. Its structure is as follows.

• Linear layer. Output dim: 1024. BatchNorm [3] with momentum 0.1. ReLU activation.

• Linear layer. Output dim: 1024. BatchNorm with momentum 0.1. ReLU activation.

• Linear layer. Output dim: 1024. BatchNorm with momentum 0.1.

Predictor Network The predictor network is an MLP. Its structure is as follows.

• Linear layer. Output dim: 512. BatchNorm with momentum 0.1. ReLU activation.

• Linear layer. Output dim: 1024.

A.2 MCTS Details

Our MCTS implementation is mainly based on the Sampled MuZero [2]. We also apply modifications
proposed by the EfficientZero. The detailed procedure is as follows.

Expansion For the task having a continuous action space, we can not enumerate all the possible
actions at a node as the original MCTS algorithm. To solve this problem, we use the sampling method
proposed by the Sampled MuZero. For the expansion of a node s (in the representation space), we
sample K actions {ai}Ki=1 from current policy π(a|s). In this work we propose to integrate BC
actions into MCTS, then we actually sample from

π̃(a|s) := (1− α)π(a|s) + απBC(a|s). (1)

Here α = 0.25 is a mixture factor.

Selection For the action selection, we selects action a∗ from the sampled actions that maximize the
probabilistic upper confidence bound

a∗ = arg max
a∈{ai}

Q(s, a) + c(s)π̂(a|s)
√∑

b N(s, b)

1 +N(s, a)
, (2)

2

where π̂(a|s) = 1
K

∑
i δ(a, ai). Q(s, a) is the current Q-estimation of the pair (s, a). N(s, a)

denotes the times that this pair is visited in MCTS. c(s) is a weighting coeffcient defined by

c(s) = c1 + log
1 + c2 +

∑
b N(s, b)

c2
, (3)

where c1 = 1.25, c2 = 19625.

To encourage exploration, we also inject Dirichlet noise to π̂(a|s) at the root node. So π̂(a|s) becomes

π̂(a|s) := (1− ρ)π̂(a|s) + ρND(ξ). (4)

Here, ρ = 0.25 is a mixture factor. ND(ξ) is the Dirichlet distribution, and ξ is set to 0.3.

At the root node of MCTS, we use the discriminator network D and value network V to calculate
Q-value by its original definition: Q(s, a) = R(s, a) + γV (g(s, a)). At the other nodes, we use the
mean Q-value calculation used by the EfficientZero.

Simulation & Backup The simulation and the backup process is the same as EfficientZero’s
implementation, and we refer the readers to EfficientZero for details.

A.3 Training Details and Hyperparameters

Finally, we introduce some important training details and the hyperparameters.

Initialization We initialize the weights and biases of the last layer of policy, BC policy, value, and
discriminator network to be zero. The other parameters are initialized by the default initializers in
PyTorch.

Discriminator In AIL training, it is very useful to apply the gradient penalty to the discriminator [5].
We also apply gradient penalty to the discriminator network.

Target Update We propose to use a target model for the calculation of policy, value, and AIL
reward during reanalyze. The target model is updated periodically during training subject to an update
frequency.

The training hyperparameters used in the state-based experiments are in Table 1. The training
hyperparameters used in the image-based experiments are in Table 2.

B Environment Details

B.1 State-based experiments

The setup of each task in the state-based experiments is in Table 3.

B.2 Image-based experiments

The setup of of each task in the image-based experiments is in Table 4. We use a 48× 48 resolution
in the image-based experiments.

C Other Ablations

We also perform ablations on the target discriminator and the multi-step discriminator loss. To
evaluate the effect of the target discriminator, we use the latest model to calculate AIL reward in
the value target. To evaluate the effect of the multi-step discriminator loss, we replace it with the
single-step discriminator loss. We conduct experiments on the state-based and image-based Walker
and Cheetah. The results are shown in Figure 2. We find that removing these components will
not only lead to instability in training but also harm the performance. Compared with the target
discriminator, the multi-step discriminator loss has a larger impact on the image-based tasks.

3

D Computation Resources

All of our experiments are conducted on a server with 4 NVIDIA RTX 3090 GPUs, 64 CPU cores,
and 256GB RAM. For the most of state-based and image-based experiments except Humanoid Walk
and image-based Hopper Hop, our experiments require 12-18 hours of training. The main bottleneck
is at the Reanalyse [8, 10], where the minibatch cannot be produced and sent to the training loop at a
high frequency. We are improving the computation efficiency by using better parallel computation
implementation and applying MCTS speed up techniques.

E Visualization

One approach to interpret the learned model is by the t-SNE [9] plot. We use the image-based
Walker experiment as an example. We use the trained model at 100k env steps to generate the state
embeddings of one expert trajectory, and in environment trajectory at 0k, 25k, 50k, 75k, and 100k
steps. Then we use t-SNE to visualize the embeddings on the 2D plane. As is shown in the Figure 1,
the agent’s trajectory gradually matches expert’s trajectory (blue) during training. Moreover, the
expert’s trajectory has a circle structure, which represents the periodic pattern of the Walker’s walking
behavior. Therefore, our model can represent the environment in a meaningful way.

Figure 1: The t-SNE plot of the learned state embeddings.

0 10K 20K 30K 40K 50K
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Cheetah (State)

0 10K 20K 30K 40K 50K
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Walker (State)

0 10K 20K 30K 40K 50K
Steps

0.0

0.2

0.4

0.6

0.8

1.0
Cheetah (Image)

0 20K 40K 60K 80K 100K
Steps

0.0

0.2

0.4

0.6

0.8

1.0
Walker (Image)

Ours(No Target)
Ours(No Multi)
Ours

Figure 2: The ablation of target discriminator and multi-step discriminator loss. The results are
averaged over three seeds. The shaded area displays the range of one standard deviation.

4

Table 1: Hyperparameters for the state-based experiments

Discount Factor 0.99
Minibatch Size 256
Optimizer SGD
Optimizer: Learning Rate 0.01
Optimizer: Momentum 0.9
Optimizer: Weight Decay 1e-4
Maximum Gradient Norm 10
Unroll Steps 5
TD Steps 1
BC Loss Coeff. 0.01
Value Loss Coeff. 1.0
Policy Loss Coeff. 1.0
Discriminator Loss Coeff. 0.1 (1.0 for Humanoid)
Gradient Penalty 1.0
Target Update Interval 200
Consistency Loss Coeff. 2.0
Reanalyze Ratio 1.0
Number of Simulations in MCTS 50
Number of Sampled Actions 16
BC Ratio α 0.25

Table 2: Hyperparameters for the image-based experiments

Discount Factor 0.99
Minibatch Size 128
Stacked Frames 4
Optimizer SGD
Optimizer: Learning Rate 0.02
Optimizer: Momentum 0.9
Optimizer: Weight Decay 1e-4
Maximum Gradient Norm 10
Unroll Steps 5
TD Steps 1
BC Loss Coeff. 0.01
Value Loss Coeff. 1.0
Policy Loss Coeff. 1.0
Discriminator Loss Coeff. 0.1
Gradient Penalty 1.0
Target Update Interval 200
Consistency Loss Coeff. 20.0
Reanalyze Ratio 1.0
Number of Simulations in MCTS 50
Number of Sampled Actions 16
BC Ratio α 0.25

5

Table 3: Task setup in the state-based experiments

Task Action Repeat Expert Performance

Cartpole Swingup 8 881.3
Ball-in-cup Catch 4 920.1
Reacher Easy 4 911.4
Finger Spin 4 574.2
Walker Walk 4 865.6
Cheetah Run 4 607.3
Hopper Hop 4 300.0
Humanoid Walk 2 782.8

Table 4: Task setup in the state-based experiments

Task Action Repeat Expert Performance

Cartpole Swingup 8 881.3
Ball-in-cup Catch 4 920.1
Reacher Easy 4 911.4
Finger Spin 4 574.2
Walker Walk 2 873.5
Cheetah Run 4 607.3
Hopper Hop 4 300.0

6

References
[1] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

[2] T. Hubert, J. Schrittwieser, I. Antonoglou, M. Barekatain, S. Schmitt, and D. Silver. Learning
and planning in complex action spaces. In International Conference on Machine Learning,
2021.

[3] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, 2015.

[4] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In International Conference on Machine Learning, 2013.

[5] M. Orsini, A. Raichuk, L. Hussenot, D. Vincent, R. Dadashi, S. Girgin, M. Geist, O. Bachem,
O. Pietquin, and M. Andrychowicz. What matters for adversarial imitation learning? In Neural
Information Processing Systems, 2021.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. In Neural Information Processing Systems, 2019.

[7] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[8] J. Schrittwieser, T. Hubert, A. Mandhane, M. Barekatain, I. Antonoglou, and D. Silver. Online
and offline reinforcement learning by planning with a learned model. In Neural Information
Processing Systems, 2021.

[9] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(11), 2008.

[10] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering atari games with limited data. In
Neural Information Processing Systems, 2021.

7

	Implementation
	Model Details
	State-based experiments
	Image-based experiments

	MCTS Details
	Training Details and Hyperparameters

	Environment Details
	State-based experiments
	Image-based experiments

	Other Ablations
	Computation Resources
	Visualization

