
A Additional Results and Ablations

This appendix contains a number of figures that are already referenced from within the main paper.

A.1 Additional results on CATCH

Complementing Figure 4 in Section 3.3 are Figures 5, 6, and 7 which show policy change for
additional variants, in particular wider networks, behavioural cloning of π∗, and learning rate
annealing.

Policy change per state. Figure 8 shows the policy change per state averaged over different periods
of training and 1 000 seeds for the “DQN-like” agent with RMSProp optimiser. See Appendix B.3
for exact hyper-parameters. Note that episodes in CATCH always start with the paddle in the centre.
This means some states shown in the plots in Figure 8 are not actually possible, in particular states
corresponding to the dark top row of cells in all but the central column of plots. Another consequence
is that starting states (corresponding to the top row of cells in the middle column of plots) have
disproportionately more policy change. Indeed, in a version of the environment where the paddle is
initialised randomly, this large relative difference in policy change disappears. After convergence, in
states where the action gap is high (states where the ball is diagonal from the paddle) there is little
policy change as expected and most of the policy change happens in states corresponding to the ball
higher up where the exact actions taken matter less; see also Figure 9. There is some conflation from
the state distribution induced by the policy; everything else being equal, policy change is higher in
states that are updated more often. At the start of training and even a little while after convergence,
for states where the paddle is on one of the sides (the first and last column of plots) and the ball is
directly just above the paddle the relative amount of policy change is low. But well after convergence
this flips and policy change is relatively high in these states. Presumably this is because early in
training the agent has yet to learn that values for no-op action and the action that would move the
paddle into the wall have the same effect.

A.2 Redundant action spaces

The DoubleDQN and R2D2 settings differ in the actions spaces used to act in the set of Atari games.
As indicated in Table 1, DoubleDQN always employs the minimal action set 3 ≤ |A| ≤ 18 (see
subplot titles in Figure 15), while R2D2 always uses the full action set |A| = 18. Adding to that, the
experiments in Figure 10 also include a “redundant ×3” setting where the full action set is artificially
replicated 3 times (|A| = 54).

A.3 Unlimited policy change in a two-armed bandit

One minimalist setting in which it is possible to obtain large (cumulative) policy change is incremental
learning of similar Q-values using small step-sizes. For example, consider learning the two (tabular)
Q-values of a two-armed bandit. Q-values are initialised near each other (q0(a1) ≈ q0(a2), and their
true targets are also nearly identical (qP (a1) ≈ qP (a2), but far from initialisation, q0(·) ≪ qP (·).
With that set-up, a learning process that alternates between the actions to update can produce an
argmax switch on each update, because the last-updated Q-value will always be the larger one of the

101 102

Cumulative policy change
until convergence W1 : P

Q-learning with 3 layer MLP
Q-learning with 3 layer MLP wide

DQN-like with RMSProp
DQN-like with RMSProp wide

10 2 10 1

Average policy change
after convergence W +

100 102 104

Convergence step P

Figure 5: Ablation on the width of the network in CATCH. Here “wide” means the neural network
has 200 units per hidden layer instead of 50. Increasing the width of the network increases policy
change metrics W 1:P and W

+
in the DQN-like variant whereas for the Q-learning with 3 layer MLP

variant, it is the opposite.

14

100 101 102

Cumulative policy change
until convergence W1 : P

Q-learning with 1 layer MLP
Regression on q * with 1 layer MLP

Cloning of random tie-breaking * with 1 layer MLP
Cloning of deterministic * with 1 layer MLP

10 6 10 4 10 2

Average policy change
after convergence W +

100 102

Convergence step P

Figure 6: Additional supervised variants of CATCH: behavioural cloning of π∗ with a cross-entropy
loss and ground-truth targets. Note that the high W

+
in the random tie-breaking variant is due to the

many exact ties at the optimum; the deterministic variant has low W
+

.

101 102

Cumulative policy change
until convergence W1 : P

DQN-like with RMSProp
DQN-like with RMSProp and LR annealing

10 2 10 1

Average policy change
after convergence W +

100 102

Convergence step P

Figure 7: Variant on CATCH where the learning rate is annealed from 10−3 to 10−4 over 10 000 steps.
As expected the resulting average policy change after convergence is lower.

two. And with the appropriate setting of step-sizes and initialisation, P and thus W 1:P can be made
arbitrarily large.

A.4 High policy change in dynamic programming

Throughout the paper we treated policy change as an unexpected phenomenon. However, some
amount of policy change is inherent to all RL algorithms. Value-based methods, in particular, are
based on dynamic programming, which has at its core two operations: policy evaluation and policy
improvement. Since by definition policy improvement involves change, it is fair to ask: how much
change is in fact expected? In other words: if we could isolate all other effects, like approximation
and noise, how much policy change would still remain?

In Section 3.3 we already touched on this subject with the experiments on CATCH using value
iteration. In this section we revisit the question and try to provide a more definite answer to it.
As it turns out, and perhaps not surprisingly, the answer to this question seems to be very domain
dependent. The expected amount of policy change that is inherent to dynamic programming can vary
significantly from one environment to the other.

To illustrate this point, we now describe a simple policy evaluation setting that does not involve
any approximation, incremental learning, or noise; and yet we see a large amount of policy change
happening. Given the value function qπ of a policy π, we compute the greedy policy π′ with respect
to qπ, and monitor the changes in the greedy policy induced by the intermediate functions as we
move from qπ to qπ′ .

To describe our example precisely, we will need two concepts. First, we define the greedy operator
g : Q → Π as

g(q) = π such that π(s) = argmaxaq(s, a), for all s ∈ S,
where q is an arbitrary function in Q and ties are broken in an arbitrary, but consistent, way. It will
also be convenient to introduce the Bellman operator of a policy π as

Tπq(s, a) = r(s, a) + γES′∼p(·|s,a),A′∼π(·|S′) [q(S
′, A′)] ,

where q ∈ Q, r(s, a) is the expected reward following the execution of a in s, p(s′|s, a) is the
probability of transitioning to state s′ given that action a was executed in state s, and E[·] is the
expectation operator. It is well known that limk→∞ T k

π q = qπ for any q ∈ Q.

Equipped with the concepts above, we can now present our example. Figure 11 shows an MDP
composed of an arbitrary number of states structured as two chains. We are interested in monitoring
how the policy will change in state s as we do policy evaluation. Suppose that we start with a policy

15

Figure 8: Policy change per state averaged over different periods of training and seeds, on CATCH.
Each row of subplots represents a given period of training expressed in multiples of P (performance
convergence step), namely “early”, “pre-convergence”, “post-convergence” and “late”. Each column
corresponds to states where the paddle is at a particular x-coordinate, also highlighted by a red square.
Each cell on a given figure represents the state corresponding to the (x, y) position of the ball. The
subplots in each row share the same scale, from 0 to a max value indicated on the y-axis label. Cells
highlighted by a grey square correspond to states where the action gap is non-zero for q∗, and we see
that policy change is indeed lowest there, after convergence. See also Figure 9.

16

0 10000 20000 30000 40000
Frames

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

po
lic

y
ch

an
ge

 W
+

States with action gap 0
States with action gap 2

Figure 9: Policy change across two groups of states in CATCH with the DQN-like agent with
RMSProp. The grey dotted line is the median convergence step P . Shaded areas denote the inter-
quartile range over 1000 seeds. This shows how late in training, and well after convergence, policy
change concentrates in the null space (where action gaps are zero, blue) and critical actions (orange)
are perturbed less and less often. See also Figure 8.

π that selects action red everywhere. Clearly, vπ(s) = 0. The greedy policy π′ = g(qπ) will select
actions associated with nonzero rewards whenever they are available; when they are not available, we
will assume that the greedy operator g will resolve the ties by always picking the green or the blue
action over their red counterpart.

Starting from qπ, we will now monitor how much the greedy policy g(T k
π′qπ) changes in s with the

sequence k = 1, 2, ..., that is, as we move from qπ to qπ′ as part of policy evaluation. For ease of
exposition, we will use πk ≡ g(T k

π′qπ) to refer to the greedy policies along the way. Clearly, in the
first step, when we change from π to π1 = g(T 1

π′qπ), the policy changes in s from red to green.
Now, in the second step, an easy calculation shows that the policy changes again, now from green to
blue. If we keep doing this exercise, a simple pattern emerges: policies πk whose index k is odd will
pick action green in s, while their counterparts with an even index will instead select blue on that
state. This means that W (πk, πk+1|s) = 1 along the sequence of greedy policies π1, π2,

This deliberately simple example illustrates that the maximum possible amount of policy change
can happen on a given state simply as an effect of policy evaluation. It is not difficult to construct
examples in which a similar effect is observed throughout state space.

In Section 5 we discussed how the well-known policy oscillation effect may be responsible for part
of the policy change when function approximation is used. The “dynamic-programming effect”
discussed in this section happens in addition to that, regardless of function approximation. In general,
we expect that policy change could be a result of both effects, plus other causes like the ones
discussed in Section 3.4 and Appendix A.3. Given all the empirical evidence we have collected,
we are reasonably confident that the causes discussed in Section 3.4—namely, global function
approximation and noise—play a much more important role than the policy oscillation and dynamic
programming effects in the setup studied.

A.5 Churn-aware off-policy correction

Following up on Section 4.3, this section spells out some concrete possibilities for forms of off-policy
correction that take the churn phenomenon into account. In a low-latency setting for example, it may
be worth truncating traces when the noise of ϵ-greedy leads to a low-advantage action getting executed,
but not when the action discrepancy is purely due to churn (µ was acting greedily). Alternatively,

17

Figure 10: Confusion matrices: between which actions do the argmax switches happen? Top row:
patterns that we could expect to see in games where all actions are distinct (“basic”), where only
left-right movement matters (“left-right”), etc. Middle rows: empirical confusion statistics from an
R2D2 experiment, warmer colors indicate higher likelihood (log-scaled). Note that some games have
an effectively reduced action set; for example, in PONG only up/down/no-op matters, but this pattern
(‘up-down’) does not show up in the switch statistics. Bottom rows: empirical confusion statistics in
an ablation experiment where all actions were redundantly replicated three times (unbeknownst to
the agent): here we would expect a pattern to emerge like in the top right (“redundant ×3”) if the
agent were to find out about the redundancy and only switch between these; but this does not happen.

18

Figure 11: Example of MDP in which a lot of policy change can happen at state s during exact policy
evaluation. States are represented as circles and actions are represented as arrows. Rewards are zero
in all transitions except when marked otherwise in the diagram.

10 2 10 1

Average policy change W

4

6

8

10

12

14

16

18

Nu
m

be
r o

f n
on

-re
du

nd
an

t a
ct

io
ns

10 2 10 1

Average policy change W

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

"D
ea

dl
in

es
s"

10 2 10 1

Average policy change W

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
 d

en
sis

ty

10 2 10 1

Average policy change W

0

50

100

150

200

250

Av
er

ag
e

re
wa

rd
 m

ag
ni

tu
de

Asterix
Boxing
Breakout
Freeway
Gopher
Gravitar
H.E.R.O.
Ms. Pac-Man
Pong
Q*bert
Riverraid
Seaquest
Skiing
Space Invaders
Venture

Figure 12: Relating average policy change W (across all seeds and time periods, in the R2D2 setup)
to various game-specific properties. The number of non-redundant actions refers to the minimal
action set (used directly in DoubleDQN). “Deadliness” is the correlation between episodic return and
episode length. Reward density is the fraction of transitions that produce a non-zero reward, and the
average reward magnitude is the average return divided by the number of non-zero reward events.

we think it is plausible to make truncation decisions based on (relative) advantage gaps, effectively
ignoring argmax switches between actions of similar value.

A.6 Relating churn to other game-specific properties

Overall, we have not identified game-specific properties that are clearly predictive of the magnitude
of policy change. Figure 12 provides a number of scatter plots for game-specific properties that we
had considered as possibly having an influence.

B Experimental Details

B.1 DQN experiments

We chose to use double Q-learning with DQN (DoubleDQN, [47]) instead of vanilla DQN [27, 28] for
all of our experiments, as it is generally the more robust and better tuned of the two algorithms. Apart

19

0.0 0.5 1.0 1.5
Cumulative policy change W0 : T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

va
lu

e

value iteration
policy iteration
oracle (1 step)

2 4 6 8
Cumulative policy change W0 : T

10 1

100

Er
ro

r r
at

e

10000, 1e-3
1000, 1e-4
1000, 1e-3
1000, 1e-2
100, 1e-3

Figure 13: Performance as a function of total accumulated policy change W 1:T . Left: Simple
dynamic programming baselines in a tabular grid world. In this scenario, value iteration (blue) goes
through P = 37 steps until reaching q∗, but does not accumulate more policy change (W 1:P = 0.57)
than an oracle that jumps from q0 to q∗ (pink). Policy iteration does just P = 3 steps but accumulates
W 1:P = 1.82. Each iteration or update is shown as a dot. Right: Supervised training of an MLP on
MNIST with various hyper-parameter settings, listed as (batch size, learning rate) pairs in the legend.
The multiple lines correspond to 3 different random seeds for each setting. Overall, vanilla MNIST
training goes through a handful of label changes per input (on average) over the course of training.

from overall improved performance, for the purposes of this investigation there is little difference
between the two, notably in terms of policy change, see Figure 23. We use an identical setting as
the original DoubleDQN paper, including all hyper-parameters (which differ slightly from those in
vanilla DQN). The main ones are listed in Table 1, the remaining ones in Table 2. Our implementation
is based on a slightly modified variant of the open-source DoubleDQN implementation in DQN
Zoo [36].

Our Atari investigations did not involve any hyper-parameter tuning. The modifications we did to
existing settings for the exploration experiments (Section 2) are binary ablations:

• Reducing ϵ = 0.01 to ϵ = 0 in the ϵ-greedy behaviour policies
• Using the target network instead of the online network for acting.

The “forked tandem” setup used in several ablations in Section 3.2 follows [34] and is based on their
accompanying open-source implementation.7

Our Atari experiments are run with the same ALE variant of the Atari 2600 benchmark [2] as in the
original DQN and DoubleDQN works, using an action repeat of 4, a zero discount on transitions
involving a life loss, and the only source of stochasticity being a random number (uniformly between
0 and 30) of no-op actions applied at the beginning of each episode. Unless stated otherwise, all these
experiments are run with 3 seeds for each configuration.

A lot of preliminary investigations used a small subset of Atari games (BREAKOUT, PONG, MS.
PAC-MAN and SPACE INVADERS). For the final runs on 15 games, we picked a representative subset
of the 57 Atari games, with a preference for games on which DoubleDQN can achieve a decent
performance level.

B.2 R2D2 experiments

The agent denoted as “R2D2” throughout the paper is a variant of the Recurrent Replay Distributed
DQN architecture [21]. It comprises 192 CPU-based actors concurrently generating experience

7https://github.com/deepmind/deepmind-research/tree/master/tandem_dqn

20

Agent DoubleDQN R2D2
Convolutional torso channels 32, 64, 64 32, 64, 128, 128
Convolutional torso kernel sizes 8, 4, 3 7, 5, 5, 3
Convolutional torso strides 4, 2, 1 4, 2, 2, 1
Pre-LSTM linear layer units N/A 512
LSTM hidden units N/A 512
Post-LSTM linear layer units N/A 256
Value head units 512 Dueling 2× 256
Action repeats 4 4
Actor parameter update interval 4 steps 400 steps
ϵ for ϵ-greedy policy annealed from 1 to 0.01 fixed 0.01
Replay sequence length 1 80
Replay buffer size 106 4× 106 observations
Priority exponent N/A 0.9
Importance sampling exponent N/A 0.6
Discount γ 0.99 0.997
Target network update interval 120 000 frames (7 500 updates) 400 updates
Gradient clipping 1

32 N/A
Normalisation N/A Return-based [40]
Optimiser & settings RMSProp [46] Adam [23],

learning rate η = 2.5× 10−4, learning rate η = 2× 10−4,
decay = 0.95, ϵ = 10−6 β1 = 0.9, β2 = 0.999, ϵ = 10−6

Table 2: Atari agent hyper-parameter values (in addition to those in Table 1). These follow [47] and
[40], respectively.

and feeding it to a distributed experience replay buffer, and a single GPU-based learner randomly
sampling mini-batches of experience sequences from replay and performing updates of the recurrent
value function by gradient descent. The value function is represented by a convolutional torso feeding
into a linear layer, followed by a recurrent LSTM core, whose output is processed by a further linear
layer before finally being output via a Dueling value head [49]. The exact parameterization follows
the slightly modified R2D2 presented in [11, 40], see Table 2 for a full list of hyper-parameters. It is
trained using the Adam optimiser [23] on a 5-step Q-learning loss, using a periodically updated target
network for bootstrap target computation. Replay sampling is performed using prioritized experience
replay [41] with priorities computed from sequences’ TD errors following the scheme introduced
in [21]. The agent uses a fixed replay ratio of 1, i.e. the learner or actors are throttled dynamically
if the average number of times a sample gets replayed exceeds or falls below this value. It also
uses unclipped rewards and unclipped gradients, and an accompanying return-based normalisation,
as in [40]. Differently from those Atari RL agents following DQN [28], our agent uses the raw
210× 160 RGB frames as input to its value function (one at a time, without frame stacking), though
it still applies a max-pool operation over the most recent 2 frames to mitigate flickering inherent to
the Atari simulator. As in most past work, an action-repeat of 4 is applied, episodes begin with a
random number of no-op actions (up to 30) being applied, and time-out after 108 000 frames (i.e.
30 minutes of real-time game play). The agent is implemented with JAX [5], uses the Haiku [17],
Optax [7], Chex [6], and RLax [18] libraries for neural networks, optimisation, testing, and RL losses,
respectively, and Reverb [8] for distributed experience replay.

All our experiments ran for 40 000 learner updates. With a replay ratio of 1, sequence length of 80
(adjacent sequences overlapping by 40 observations), a batch size of 32, and an action-repeat of 4
this corresponds to a training budget of ≈ 200M environment frames (≈ 100 times fewer than the
original R2D2). In wall-clock-time, one such experiment takes about 2 hours. All experiments are
conducted across 15 games, using 3 seeds per game, unless stated otherwise.

B.3 CATCH experiments

For CATCH [33] experiments, Table 3 lists the hyper-parameters for each of the variants specified
in Figure 4. For each variant, seeds that did not converge after 5 000 episodes of training were
filtered out. In practice, all seeds for all variants in the table converged. For all CATCH experiments

21

Value iteration
Tabular Q-learning Learning rate 0.1

Batch size 1
Q-learning with 1 layer MLP Learning rate 0.1

Batch size 1
Optimiser SGD
hidden layers 1

Regression on q∗ with 1 layer MLP Learning rate 0.1
Batch size 1
Optimiser SGD
hidden layers 1

Q-learning with 3 layer MLP Learning rate 0.1
Batch size 1
Optimiser SGD
hidden layers 3

DQN-like with RMSProp Learning rate 0.001
Batch size 32
Optimiser RMSProp
Optimiser ε 10−5

Replay capacity 1 000
hidden layers 3

DQN-like with SGD Learning rate 0.01
Batch size 32
Optimiser SGD
Replay capacity 1 000
hidden layers 3

DQN-like with Adam Learning rate 0.001
Batch size 32
Optimiser Adam
Optimiser ε 10−8

Replay capacity 1 000
hidden layers 3

(Common hyper-parameters) Exploration ϵ 0.1
units per hidden layer 25

Table 3: CATCH case study variant settings. These are the relevant settings for the variants used to
generate Figure 4.

convergence is defined as when the greedy policy achieves the maximum score for 100 evaluation
episodes. Convergence is periodically tested every 100 training episodes.

B.4 Dynamic programming

To measure policy change of dynamic programming in a tabular MDP, we exploit the knowledge of
the exact transition dynamics, encoded via a matrix T to compute value or policy iteration updates
that do not involve sampling or interactions. Values are initialised at 0, and for the purposes of
measuring policy change, all argmax actions whose Q-values are exactly tied also share equal
probability mass. As example domain we use a 16 × 16 Gridworld with 4-room structure, initial
state in one corner, goal state in opposing corner and γ = 0.97. Figure 13 (left) shows the amounts
of policy change accumulated in such a process.

B.5 MNIST experiments

For a simple initial supervised learning experiment, we used an off-the-shelf neural network training
setup on MNIST. Thus we used a 3-layer MLP with 300 and 100 hidden units, ReLU non-linearities,
a softmax output, cross-entropy loss and the Adam optimiser [23]. Policy change is measured on the
softmax probability outputs of the classification network, with equal weight on all samples of the test

22

50 100 150 200
Million frames

0.0

0.1

0.2
Po

lic
y

ch
an

ge

Boxing, = 0.01

0

50

Sc
or

e

50 100 150 200
Million frames

Freeway, = 0.01

0

20

Sc
or

e

50 100 150 200
Million frames

Pong, = 0.01

20

0

20

Sc
or

e

50 100 150 200
Million frames

Pong, = 0.0

20

0

20

Sc
or

e

Figure 14: Policy change on plateaus. We observe a high amount of policy change (per single update,
i.e., W (πt, πt+1)) even in periods where overall policy performance is flat (see performance curves
on inset plots). Each curve corresponds to a single run (seed) and is smoothed over 10M frames. An
interesting effect to highlight is in FREEWAY, where one seed (blue) converges to high performance
and the other two seeds collapse to zero performance, and the “broken” runs also have much lower
churn. The right-most figure shows (on PONG) that converged performance, together with ϵ = 0
leads to policy change that eventually does seem to decay.

set. It is accumulated across all P gradient updates. Our experiments are stopped when reaching 2%
training error, which happens after P ≈ 1 000− 10 000 updates. Figure 13 (right) shows the results.

23

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W
(

t,
t+

k)

Asterix, | | = 9 Boxing, | | = 18 Breakout, | | = 4 Freeway, | | = 3 Gopher, | | = 8

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W
(

t,
t+

k)

Gravitar, | | = 18 H.E.R.O., | | = 18 Ms. Pac-Man, | | = 9 Pong, | | = 3 Q*bert, | | = 6

0 50 100 150 200
Million frames

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W
(

t,
t+

k)

Riverraid, | | = 18

0 50 100 150 200
Million frames

Seaquest, | | = 18

0 50 100 150 200
Million frames

Skiing, | | = 3

0 50 100 150 200
Million frames

Space Invaders, | | = 6

0 50 100 150 200
Million frames

Venture, | | = 18
k = 1
k 10
k 100

Figure 15: Average policy change W as a function of training stage in DoubleDQN, across 15 Atari
games. Often, but not always, policy change is larger in early learning. Different colours show
different interval sizes k across which W (πt, πt+k) is measured. In some scenarios these show a
more cumulative effect (e.g., GRAVITAR), in others the change between the very next policy (k = 1)
is almost as large to the change after k = 100 updates, as in SKIING. Dotted lines indicate what
“maximal” policy change would look like for a given action space size |A|, i.e., if argmax actions
were completely random. Thin lines are individual seeds (3), thick lines their average. See Figure 14
for a detailed look at the low levels of policy change after convergence as in PONG or FREEWAY.

24

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W
(

t,
t+

k)

Asterix, | | = 18 Boxing, | | = 18 Breakout, | | = 18 Freeway, | | = 18 Gopher, | | = 18

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W
(

t,
t+

k)

Gravitar, | | = 18 H.E.R.O., | | = 18 Ms. Pac-Man, | | = 18 Pong, | | = 18 Q*bert, | | = 18

0 20 40 60 80 100
Number of updates k

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W
(

t,
t+

k)

Riverraid, | | = 18

0 20 40 60 80 100
Number of updates k

Seaquest, | | = 18

0 20 40 60 80 100
Number of updates k

Skiing, | | = 18

0 20 40 60 80 100
Number of updates k

Space Invaders, | | = 18

0 20 40 60 80 100
Number of updates k

Venture, | | = 18
mean

Figure 16: Average policy change W (πt, πt+k) as a function of the number of in-between updates k.
In contrast to Figure 15, these results are from the R2D2 agent (always using the full action set of
|A| = 18). Thick green lines show the average across training, while thin lines show snapshots from
different points in training, with cooler and warmer colors denoting early and late stages of training
respectively. We can see how policy change quickly rises and then saturates, generally between 20%
and 60%. This means that, compared to πt, the policy πt+100 generally does not differ much more
than πt+20. This is consistent with the hypothesis that policy churn only affects a subset of states. An
outlier here are the SKIING results, where the observed fraction of argmax switches (in a minibatch
of 32× 80 states) is always either 0 or 1: this seems to indicate that the Q-values have essentially no
state-dependence (note that performance also does not take off in this game, see Figure 24).

50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0

Ch
ur

n

Breakout

50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Ms pacman

50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Pong

50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Riverraid

50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Space invaders

AL, churn @1
AL, churn @100
AL, churn @1000
QL, churn @1
QL, churn @100
QL, churn @1000

50 100 150 2000.00

0.02

0.04

0.06

Ac
tio

n
ga

p

Breakout

50 100 150 200

0.1

0.2

0.3

0.4
Ms pacman

50 100 150 200
0.00

0.01

0.02

0.03

0.04

0.05
Pong

50 100 150 200

0.05

0.10

0.15

0.20
Riverraid

50 100 150 200

0.02

0.04

0.06

0.08

0.10

Space invaders
Advantage Learning
Double Q-Learning

Figure 17: Double Q-Learning (“QL”, red) versus action-gap-increasing Advantage Learning (“AL”,
blue), on a set of 5 games. Top: policy change, where “@k” denotes the interval in W (πt, πt+k).
Bottom: corresponding action gaps. This provides time-series detail to Figure 3 (right).

25

0 50 100 150 200
0

100

200

300

Ep
iso

de
 R

et
ur

n

Breakout

0 50 100 150 200
0

1000

2000

3000

4000

5000

Ms pacman

0 50 100 150 200
20

10

0

10

20
Pong

0 50 100 150 200
0

5000

10000

15000

Riverraid

0 50 100 150 200
0

2000

4000

6000

Space invaders

Advantage Learning
Double Q-Learning

Figure 18: Performance results of Double Q-Learning and Advantage Learning, as in Figure 17,
but in the ϵ = 0 setting. Despite reduced churn, Advantage Learning is the higher-performing
algorithm, indicating that not the full amount of DoubleDQN’s observed policy change is needed
for performance, even in the absence of other forms of exploration. This matches the insights in
Figure 21.

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0

Ch
ur

n

Breakout

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Ms pacman

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Pong

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Riverraid

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Space invaders

Churn @1000
Churn @100
Churn @10
Churn @1
Total Churn

50 75 100 125 150 175 200
0

100

200

300

400

Ep
iso

de
 R

et
ur

n

Breakout

50 75 100 125 150 175 200

500

1000

1500

2000

Ms pacman

50 75 100 125 150 175 200
10

12

14

16

18

20

Pong

50 75 100 125 150 175 200
0

2000

4000

6000

8000

10000

12000
Riverraid

50 75 100 125 150 175 200

200
400
600
800

1000
1200
1400

Space invaders

Active
Passive

Figure 19: Stationary data in the “forked tandem” setting: after 50M frames (start of x-axis), a
passive learner is forked off, which means that it does not influence behaviour anymore (and cannot
self-correct). It receives a data stream from a fixed, frozen policy network. Top: active vs. passive
performance. Bottom: policy change. the purple curve (“total churn”) denotes the difference between
the active (frozen) policy and the current policy of the passive (but learning) network.

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0

Ch
ur

n

Breakout

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Ms pacman

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Pong

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Riverraid

50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0
Space invaders

Churn @1000
Churn @100
Churn @10
Churn @1
Total Churn

Figure 20: Stationary data and targets. Setup as in Figure 19, but instead of Q-learning bootstrap
targets, stationary regression targets are constructed from Monte-Carlo returns.

50 100 150 200
Environment frames (millions)

0

100

200

300

Ep
iso

de
 R

et
ur

n

Breakout

50 100 150 200
Environment frames (millions)

500

1000

1500

2000

2500

Ms pacman

50 100 150 200
Environment frames (millions)

20

10

0

10

20
Pong

50 100 150 200
Environment frames (millions)

2500

5000

7500

10000

12500

15000
Riverraid

50 100 150 200
Environment frames (millions)

0

1000

2000

3000

4000
Space invaders

update interval=16
update interval=100
update interval=1000
update interval=10000
update interval=120000

Figure 21: Ablation experiment with a separate copy of the Q-network used exclusively for acting;
this network is a periodic copy of the online (learning) network, just like the target network, but
updated at a different frequency. “Interval = 16” corresponds to the DoubleDQN baseline, while
“Interval = 120 000” corresponds to the “act with target network” of Section 2 and Figure 2 (denoted
“no churn” there). We find again (cf. Figure 18) that the full empirical magnitude of policy change in
DoubleDQN is not needed for exploration: reducing the number of different greedy policies used for
acting by a factor 100− 1 000 still retains a very similar exploration effect.

26

50 100 150 2000.00

0.05

0.10

0.15

0.20

Ch
ur

n
@

 1

Breakout

50 100 150 2000.00

0.05

0.10

0.15

0.20
Ms pacman

50 100 150 2000.00

0.05

0.10

0.15

0.20
Pong

50 100 150 2000.00

0.05

0.10

0.15

0.20
Riverraid

50 100 150 2000.00

0.05

0.10

0.15

0.20
Space invaders

Baseline (no layers frozen)
All but top 4 layers frozen
All but top 3 layers frozen
All but top 2 layers frozen
All but top 1 layers frozen

50 100 150 200
0

100

200

300

Ep
iso

de
 R

et
ur

n

Breakout

50 100 150 200

500

1000

1500

2000

2500
Ms pacman

50 100 150 200
20

10

0

10

20
Pong

50 100 150 200
2000
4000
6000
8000

10000
12000
14000
16000

Riverraid

50 100 150 2000
500

1000
1500
2000
2500
3000
3500

Space invaders

Figure 22: Ablation experiment that relates the depth of the neural network being trained to the amount
of policy change. After 50M frames of regular training, all but a few top layers of DoubleDQN’s
neural network are frozen, and the remainder of training can only change weights in the last 1− 4
layers. We find a correlation between churn and trainable capacity, but the most significant step-
change occurs between one or more trainable layers, i.e., between linear FA (on top of frozen features)
and deep learning.

50 100 150 2000.00

0.05

0.10

0.15

0.20

Ch
ur

n
@

 1

Breakout

50 100 150 2000.00

0.05

0.10

0.15

0.20
Ms pacman

50 100 150 2000.00

0.05

0.10

0.15

0.20
Pong

50 100 150 2000.00

0.05

0.10

0.15

0.20
Riverraid

50 100 150 2000.00

0.05

0.10

0.15

0.20
Space invaders

Double Q-Learning
Q-Learning

50 100 150 200
0

100

200

300

Ep
iso

de
 R

et
ur

n

Breakout

50 100 150 200

500

1000

1500

2000

2500

Ms pacman

50 100 150 200
20

10

0

10

20
Pong

50 100 150 200
2000

4000

6000

8000

10000

12000

14000
Riverraid

50 100 150 200

500

1000

1500

2000

2500

Space invaders

Double Q-Learning
Q-Learning

Figure 23: DQN versus DoubleDQN. Overall, DoubleDQN has somewhat better performance, while
the level of policy change is a bit lower but not drastically different; in fact, the variation across
games or across learning stages tends to be larger than the difference between algorithms.

27

0k

100k

200k

300k

400k

500k

600k

Ep
iso

di
c

re
tu

rn

Asterix

20

0

20

40

60

80

100
Boxing

0

100

200

300

400
Breakout

0

10

20

30

Freeway

0k

20k

40k

60k

80k

100k

120k

140k
Gopher

0

500

1000

1500

2000

2500

Ep
iso

di
c

re
tu

rn

Gravitar

0

2500

5000

7500

10000

12500

H.E.R.O.

0k

2k

4k

6k

8k

10k
Ms. Pac-Man

20

10

0

10

20
Pong

0k

10k

20k

30k

40k

50k

60k
Q*bert

0.5 1.0 1.5 2.0
Frames 1e8

0k

2k

4k

6k

8k

10k

12k

14k

Ep
iso

di
c

re
tu

rn

Riverraid

0.5 1.0 1.5 2.0
Frames 1e8

0

500

1000

1500

2000

Seaquest

0.5 1.0 1.5 2.0
Frames 1e8

-35k

-30k

-25k

-20k

-15k

-10k

-5k
Skiing

0.5 1.0 1.5 2.0
Frames 1e8

0

500

1000

1500

2000

2500

Space Invaders

0.5 1.0 1.5 2.0
Frames 1e8

0

250

500

750

1000

1250

Venture
> 0
= 0

Figure 24: R2D2 performance curves. The setting is the same as in Figure 2, namely 200M frames,
15 games, 3 seeds each (thin lines), but the agent architecture is very different (see Table 1). In
comparison, the R2D2 agent is less robust to ϵ = 0; despite high policy change, exploration appears to
suffer in half of the games. We assume this difference is mainly due to two aspects: first, DoubleDQN
has a high amount of random exploration in early learning (it takes 4M frames until ϵ has decayed to
0). Second, DoubleDQN traverses many more distinct policy networks over the course of its lifetime
(≈ 107), compared to R2D2 (≈ 104), due to the latter’s much larger batch size, greater parallelism,
and smaller replay ratio. Note also that the maximal “policy age” (in gradient updates) and as a
consequence policy diversity representend in the replay buffer data is very different in R2D2 and
DQN. Because of the data generation parallelism (and the near-deterministic dynamics of the Atari
environment), diversity of replay data in R2D2 may be driven more by ϵ-exploration than in DQN.
The case ϵ = 0 may therefore result in a very narrow data distribution and potentially collapse of the
neural network representation in R2D2.

0.0 2.5 5.0 7.5 10.0
Billion frames

100

200

300

400

500

Ep
iso

de
 re

tu
rn

explore_goal_locations_small

0.0 2.5 5.0 7.5 10.0
Billion frames

20

40

60

80

100

explore_object_locations_small

0.0 2.5 5.0 7.5 10.0
Billion frames

10

20

30

40

50

60
lasertag_three_opponents_small

0.0 2.5 5.0 7.5 10.0
Billion frames

2

4

6

8

10
rooms_collect_good_objects_test

0.0 2.5 5.0 7.5 10.0
Billion frames

10

20

30

40

50

rooms_keys_doors_puzzle

0.0 2.5 5.0 7.5 10.0
Billion frames

10

20

30

40

50

rooms_watermaze

0.0 2.5 5.0 7.5 10.0
Billion frames

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W

explore_goal_locations_small

0.0 2.5 5.0 7.5 10.0
Billion frames

explore_object_locations_small

0.0 2.5 5.0 7.5 10.0
Billion frames

lasertag_three_opponents_small

0.0 2.5 5.0 7.5 10.0
Billion frames

rooms_collect_good_objects_test

0.0 2.5 5.0 7.5 10.0
Billion frames

rooms_keys_doors_puzzle

0.0 2.5 5.0 7.5 10.0
Billion frames

rooms_watermaze

Figure 25: Experiments using R2D2 [21] on 6 levels of the DM-Lab [1] benchmark suite of 3D
environments (3 seeds of 10B frames each), with |A| = 15. The average observed policy change
(≈ 20%, see bottom plots) is overall in line with the Atari results, but somewhat higher, possibly
because of the different action space, where most actions can be easily undone at the next step.

28

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y
ch

an
ge

 W

Breakout

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Ms. Pac-Man

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Pong
Lag

1000
100
10
1

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
River Raid

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Space Invaders

0 50 100 150 200
Frames (millions)

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffe

re
nt

 a
rg

m
ax

0 50 100 150 200
Frames (millions)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
Frames (millions)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
Frames (millions)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
Frames (millions)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 26: Preliminary experiments with an actor-critic agent on a subset of Atari games (5 seeds
each), with minimal action spaces per game (as in the DDQN setup, see Figure 15). The agent is an
implementation of IMPALA [14] in the Sebulba framework [19]. The policy change is comparable
to other agents on Atari, showing policy churn is present in actor-critic agents, not just value-based
agents. Note policy change reduces to zero as training progresses because the learning rate is linearly
annealed to zero. Top row: Total variation policy change W , as defined in Eqs. 1 and 2; as these
are soft policies, the change is expected to be smaller than it would be for switches between greedy
policies. Bottom row: Shows the average argmax switches on the same experiment. Different
colours show different intervals k across which W (πt, πt+k) is measured (as in Figure 15).

29

