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Abstract

Room impulse response (RIR) functions capture how the surrounding physical
environment transforms the sounds heard by a listener, with implications for various
applications in AR, VR, and robotics. Whereas traditional methods to estimate RIRs
assume dense geometry and/or sound measurements throughout the environment,
we explore how to infer RIRs based on a sparse set of images and echoes observed
in the space. Towards that goal, we introduce a transformer-based method that
uses self-attention to build a rich acoustic context, then predicts RIRs of arbitrary
query source-receiver locations through cross-attention. Additionally, we design a
novel training objective that improves the match in the acoustic signature between
the RIR predictions and the targets. In experiments using a state-of-the-art audio-
visual simulator for 3D environments, we demonstrate that our method successfully
generates arbitrary RIRs, outperforming state-of-the-art methods and—in a major
departure from traditional methods—generalizing to novel environments in a few-
shot manner. Project: http://vision.cs.utexas.edu/projects/fs_rir.

1 Introduction

Sound is central to our perceptual experience—people talk, doorbells ring, music plays, knives chop,
dishwashers hum. A sound carries information not only about the semantics of its source, but also the
physical space around it. For instance, compare listening to your favorite song in a big auditorium
to hearing the same song in your cozy bedroom: the auditory experience changes drastically due
to differences in the environment. On its way to our ears, the sound undergoes various acoustic
phenomena: direct sound, early reflections, and late reverberations. Consequently, we hear spatial
sound shaped by the environment’s geometry, the materials of constituent surfaces and objects, and
the relative locations of the sound source and the listener. These factors together comprise the room
impulse response (RIR)—the transfer function that maps an original sound to the sound that meets
our ears or microphones [58].

Learning to model RIRs would have far-reaching implications for augmented reality (AR), virtual
reality (VR), and robotics. In AR/VR, a truly immersive experience demands that the user hear
sounds that are acoustically matched with the surrounding augmented/virtual space [60]. For example,
imagine a situation in which users of an AR/VR app, who are at different locations, are speaking to
each other through telepresence and moving about during the conversation. In mobile robotics, an
agent cognizant of environment acoustics could better solve important embodied tasks, like localizing
sounds, navigating to a target sound, or separating out a target sound(s) of interest. In any such
application, one must be able to anticipate the environment effects for arbitrarily positioned sources
observed from arbitrary receiver poses.

Traditional approaches to model room acoustics require extensive access to the physical environment.
They either assume a full 3D mesh of the space is available in order to simulate sound propagation
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Figure 1: Given few-shot audio-visual observations from a 3D scene (blue boxes), we aim to learn an acoustic
model for the entire environment such that we can generate a Room Impulse Response (RIR) for any arbitrary
query of source (S) and receiver (R) locations in the scene—without observing images/echoes at those locations.

patterns [10, 42], or else require densely sampling sounds at many source-microphone position pairs
all about the environment in order to measure the RIRs [26, 57]—both of which are expensive if not
impractical. Recent work attempts to lighten these requirements by predicting (sometimes implicitly)
the RIR from an image [55, 32, 23, 66, 62, 45, 9], but their output is specific to a single receiver
position for which the photo exists, prohibiting generalization to other positions in the space.

Mindful of these limitations, we propose to infer RIRs in novel environments using only few-shot
audio-visual observations. Motivated by how humans anticipate the overall structure of a 3D space
by looking at a few parts of it, we hypothesize that imagery and echoes captured from a few different
locations in a 3D scene can suggest its overall geometry and material composition, which in turn can
facilitate interpolation of an RIR to arbitrary (unobserved) locations. See Figure 1.

To realize this idea, we propose a transformer-based model called FEW-SHOTRIR along with a
novel training objective that facilitates high-quality prediction of RIRs by matching the energy decay
between the predicted and the ground truth RIRs. FEW-SHOTRIR directly attends to the egocentric
audio-visual observations to build an acoustic context of the environment. During training, our model
learns the association between what is seen and heard in a variety of environments. Then, given a
novel environment (e.g., a previously unseen multi-room home), the input is a sparse (few-shot) set of
images together with the true RIRs at those image positions. In particular, each true RIR corresponds
to positioning both the source and receiver where the image is captured, as obtained by emitting a
short frequency sweep and recording the echoes. The output is an environment-specific function
that can predict the RIR for arbitrary new source/receiver poses in that space—importantly, without
traveling there or sampling any further images or echoes.

Our design has three key advantages: 1) the few-shot sparsity of the observations (on the order of
tens, compared to the thousands that would be needed for dense visual or geometric coverage) means
that RIR inference in a new space has low overhead; 2) the use of egocentric echoes means that
the preliminary observations are simple to obtain, as opposed to repeatedly moving both a sound
source (e.g., speaker) and the microphone independently to different relative positions; and 3) our
novel differentiable training loss encourages predictions that capture the room acoustics, distinct
from existing models that rely on non-differentiable RT60 losses [55, 50].

We evaluate FEW-SHOTRIR with realistic audio-visual simulations from SoundSpaces [10] compris-
ing 83 real-world Matterport3D [7] environment scans. Our model successfully learns environment
acoustics, outperforming the state-of-the-art models in addition to several baselines. We also demon-
strate the impact on two downstream tasks that rely on the spatialization accuracy of RIRs: sound
source localization and depth prediction. Our margin of improvement over a state-of-the-art model is
as high as 23% on RIR prediction and 67% on downstream evaluation.

2 Related Work

Audio Spatialization and Impulse Response Generation. Convolving an RIR with a waveform
yields the sound of that source in the context of the surrounding physical space and the receiver
location [4, 5, 19, 53]. Since traditional methods for measuring RIRs [26, 57] or simulating them
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with sound propagation models [3, 10, 42] are computationally expensive, recent approaches indi-
rectly generate RIRs by first estimating acoustic parameters [50, 16, 20, 31, 36, 61]—such as the
reverberation time (RT60), the time an RIR takes to decay by 60 dB, and the direct-to-reverberant
ratio (DRR), the energy ratio of direct and reflected sound—or matching the distributions of such
acoustic parameters in real-world RIRs [48]. Whereas Fast-RIR [50] assumes that the environment
size and reverberation characteristics are given, our model relies on learning directly from low-level
multi-modal sensory information, thus generalizing to novel environments.

Alternately, some methods use images to predict RIRs of the target environment [55, 32] by implicitly
inferring scene geometry [51] and acoustic parameters [32], or directly synthesizing spatial audio [23,
66, 62, 45, 9]. Although such image-based methods have the flexibility to extract diverse acoustic
cues, their predictions are agnostic to the exact source and receiver locations, making them unsuitable
for tasks where this mapping is important (e.g., sound source localization, audio goal navigation, or
fine-grained acoustic matching).

Audio field coding approaches [46, 39, 47, 6] are able to model exact source and receiver locations,
but to improve efficiency they rely on handcrafting features rather than learning them, which adversely
impacts generation fidelity [35]. The recently proposed Neural Acoustic Fields (NAF) [35] tackles
this by learning an implicit representation [41, 56] of the RIRs and additionally conditioning on
geometrically-grounded learned embeddings. While NAF can generalize to unseen source-receiver
pairs from the same environment, it requires training one model per environment. Consequently,
NAF is unable to generalize to novel environments, and both its training time and model storage
cost scale with the number of environments. On the contrary, given a few egocentric audio-visual
observations from a novel environment, our model learns an implicit acoustic representation of the
scene and predicts high-quality RIRs for arbitrary source-receiver pairs.

Audio-Visual Learning. Advances in audio-visual learning benefit many tasks, like audio-visual
source separation and speech enhancement [1, 2, 13, 17, 27, 40, 43, 52, 64, 65, 37, 38], object/speaker
localization [28, 29], and audio-visual navigation [10, 11, 8, 21, 15, 12, 63]. Using echo responses
along with vision to learn a better spatial representation [22], infer depth [14], or predict the floor-
plan [44] of a 3D environment has also been explored. In contrast, our model leverages the synergy
of egocentric vision and echo responses to infer environment acoustics for predicting RIRs. Results
show that both the visual and audio modalities play a vital role in our model training.

3 Few-Shot Learning of Environment Acoustics

We propose a novel task: few-shot audio-visual learning of environment acoustics. The objective is
to predict RIRs on the basis of egocentric audio-visual observations captured in a 3D environment.
In particular, for a few randomly drawn locations in the 3D scene, we are given egocentric RGB,
depth images, and the echoes heard at those positions (from which the corresponding RIR can be
computed, detailed below). Using those samples, we model the scene’s acoustic space in order to
predict RIRs for arbitrary pairings of sound source location and receiver pose (i.e., microphone
location and orientation).

Task Definition. Specifically, let O = {Oi}N be a set of N observations (N ≤ 20 in our
experiments) randomly sampled from a 3D environment, such that Oi = (Vi, Ai, Pi) where Vi is the
egocentric RGB-D view from a 90◦ field of view (FoV), Ai is the RIR of the binaural echo response
from a pose Pi = (xi, yi, θi) at location (xi, yi) and orientation θi. Given a query for an arbitrary
source and receiver pair, Q = (sj , rk), where sj = (xj , yj) is the omnidirectional sound source
location and rk = (xk, yk, θk) is the receiver microphone pose, which includes both its location and
orientation, the goal is to predict the binaural RIR RQ for the query Q. Thus, our goal is to learn
a function f to predict the RIR for an arbitrary query Q given the egocentric audio-visual context
{Oi}N , such that RQ = f(Q; {Oi}N ). Note that the query contains neither images nor echoes.

This task requires learning from both visual and audio cues. While the visual signal conveys
information about the local scene geometry and the material composition of visible surfaces and
objects, the audio signal, in the form of echo responses, is more long-range in nature and additionally
carries cues about acoustic properties, the global geometric structure, and material distribution in the
environment—beyond what’s visible in the image. Our hypothesis is that sampling and aggregating
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Figure 2: Our model predicts room impulse responses (RIR) for arbitrary source-receiver pairs in a 3D
environment, including novel scenes, by building its implicit acoustic representation in the few-shot context of
egocentric audio-visual observations. We train our model with a novel energy decay matching loss that helps
capture desirable acoustic properties in its predictions.

these two complementary signals from a sparse set of locations in a 3D scene can facilitate inference
of the full acoustic manifold and, consequently, enable high-quality prediction of arbitrary RIRs.

4 Approach

We introduce a novel approach called FEW-SHOTRIR for arbitrary RIR prediction in a 3D envi-
ronment based on few-shot context of egocentric audio-visual observations. Our model has two
main components (see Fig 2): 1) an audio-visual (AV) context encoder, and 2) a conditional RIR
predictor. The AV context encoder builds an implicit model of the environment’s acoustic properties
by extracting multimodal cues from the input AV context (Sec.4.1). The RIR predictor uses this
implicit representation of the scene and, conditioned on a query for an arbitrary source and receiver
pair, it predicts the respective RIR (Sec.4.2)

Our model is trained end-to-end to reduce the error in the predicted RIR compared to the ground-truth
using a novel training objective (Sec.4.3). Our objective not only encourages our model predictions
to match the target RIRs at the spectrogram level, but also ensures that the predictions and the targets
are similar with respect to important high-level acoustic parameters, thereby improving prediction
quality. Next, we describe these two model components and the proposed training objective in detail.

4.1 Audio-Visual Context Encoder

Our AV context encoder (Fig. 2a) extracts features from the observations {Oi}. This context is
sampled from the unmapped environment via an agent (a person or robot) traversing the scene
and taking a small set of AV snapshots at random locations. Our model starts by embedding each
observation Oi = (Vi, Ai, Pi) using visual, acoustic, and pose networks. This is followed by a multi-
layer transformer encoder [59] to learn an implicit representation of the scene’s acoustic properties.

Visual-Embedding. We encode the visual component Vi by first normalizing its RGB and depth
images such that all image pixels lie in the range [0, 1]. We then concatenate the images along the
channel dimension and encode them with a network fV (a ResNet-18 [25]) into visual features vi.

Acoustic-Embedding. To measure the RIRs for the echo inputs, we use the standard sine-sweeping
technique [18]. We first generate a “chirp” in the form of a sinusoidal sweep signal from 20Hz-20kHz
(the human audible range) at the sound source, capture the resulting spatial sound with a microphone
that has a (nearly) flat frequency response, and then retrieve the RIR at the receiver by convolving
the spatial sound with the inverse of the sweep signal. We then use the short-time Fourier transform
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(STFT) to represent all RIRs as magnitude spectrograms [55, 35] of size 2× F × T , where F is the
number of frequency bins, T is the number of overlapping time windows, and each spectrogram has
2 channels. Finally, having converted the observed binaural echoes to an RIR Ai, we compute its log
magnitude spectrogram and encode it with a network fA (a ResNet-18 [25]) into audio features ai.

Pose-Embedding. To embed the camera pose Pi into feature pi, we first normalize all poses in
{Oi} to be relative to the first pose in the context P0 and then represent each Pi with a sinusoidal
positional encoding [59].

Modality-Embedding. To enable our model to distinguish between the visual and audio modalities
in the context, we introduce a modality token mi ∈ {mV ,mA} such that the visual mV and acoustic
mA modality embeddings are learned during training. While the visual modality (RGB-D images)
reveals the local geometric and semantic structure of the environment, the acoustic modality (the
echoes) carry more global acoustic information about regions of environments that are both within
and out of the field of view. Our modality-based embedding allows our model to attend within and
across modalities to capture both modality-specific and complementary environmental cues for a
comprehensive modeling of the acoustic properties of the scene.

Context Encoder. For each visual observation in {Oi} we concatenate its embedding vi with its
pose pi and modality mV and project this representation with a single linear layer to get visual
input SV

i . Similarily, we concatenate ai, pi, and mA and project it with another linear layer
to get the acoustic input SA

i . This creates a multimodal memory of size 2N , such that S =
{SV

0 , . . . , SV
N , SA

0 , . . . S
A
N}. Next, our context encoder attends to the embeddings in S with self-

attention to capture the short- and long-range correlations within and across modalities and through
multiple layers to learn the implicit representation C = {C1, . . . , C2N} that models the acoustic
properties of the 3D scene. This representation is then fed to the next module that generates the RIR
for an arbitrary source-receiver query, as we describe next.

4.2 Conditional RIR Predictor

Given an arbitrary source-receiver query Q = {sj , rk}, we first normalize the poses of sj and
rk relative to P0 and encode each with a sinusoidal positional encoding as we did in Sec.4.1 to
generate the pose encodings psj and prk, respectively. Then, we concatenate and project [psj , p

r
k]

using a single linear layer to get the query encoding q. Next, our RIR predictor, conditioned on q,
performs cross-attention on the learned implicit representation C using a transformer decoder [59],
and generates an encoding dQ that is representative of the target RIR for query Q (i.e., RQ). Again,
we stress that the query consists of only poses—no images or echoes.

We upsample dQ with transpose convolutions using a multi-layer network U to predict the magnitude
spectrogram in the log space for the RIR. Finally, we transform this log magnitude spectrogram back
to the linear space to obtain our model’s RIR prediction R̃Q for a query Q.

4.3 Model Training

Our model is optimized to predict the target RIR RQ for a given query Q during training in a
supervised manner using a loss L that captures both the prediction accuracy of the spectrogram as
well as high-level acoustic properties of the predicted R̃Q compared to the ground truth RQ. Our
loss L contains two terms: 1) an L1 reconstruction loss [55, 35] on the magnitude spectrogram of the
RIR, and 2) a novel energy decay matching loss LD.

For a target binaural spectrogram RQ with F frequency levels and T temporal windows, the L1 loss
tries to reduce the average prediction error in the time-frequency domain:

L1 =
1

2× F × T

2×F×T∑
i=1

||R̃Q
i −RQ

i ||1.

On the other hand, the LD loss tries to capture the reverberation quality of the RIR by matching
the temporal decay in energy of the predicted RIR with the target. LD allows our model to reduce
errors in important reverberation parameters that depend on the energy decay of the RIR, like RT60,
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which is the time taken by an impulse to decay by 60 dB, and DRR, which is the direct-to-reverberant
energy ratio (cf. Table 1). Although past approaches [55, 50] have tried to minimize the RT60 error
directly, incorporating an RT60 loss in a training objective is not viable due to the non-differentiable
nature of the RT60 function. On the contrary, our proposed LD is completely differentiable and can
be combined with any other RIR training objective.

To compute LD, we first (similar to [55]) obtain the energy decay curve of an RIR by summing
its spectrogram along the frequency axis to retrieve a full-band amplitude envelope, and then use
Schroeder’s backward integration algorithm to compute the decay curve DE . However, unlike [55],
which computes the RT60 value from the decay curve through a series of non-differentiable operations,
our LD directly measures the error in the energy decay curve between the prediction and the target,
which not only makes it completely differentiable but also useful for capturing different energy based
acoustic properties other than RT60, like DRR and early decay time (EDT) [49]. Towards that goal,
we compute the absolute error in DE between R̃Q and the target RQ for those temporal positions at
which the target energy decay DE(R

Q) is non-zero. This lets our model ignore optimizing for the
all-zero tails in shorter RIRs. LD is defined as follows:

LD =
1

2× T

2×T∑
i=1

||DE(R̃
Q)i −DE(R

Q)i||1 ⊙ 1[DE(R
Q)i ̸= 0]

Our final training objective is L = L1 + λLD, where λ is the weight for LD. We train our model
using Adam [30] with a learning rate of 10−4 and λ = 10−2.

5 Experiments

Evaluation setup. We evaluate our task using a state-of-the-art perceptually realistic 3D audio-
visual simulator. In particular, we use the AI-Habitat simulator [54] with the SoundSpaces [10]
audio and the Matterport3D scenes [7]. While Matterport3D contains dense 3D meshes and image
scans of real-world houses and other indoor spaces, SoundSpaces provides pre-computed RIRs to
render spatial audio at a spatial resolution of 1 meter for Matterport3D. These RIRs capture all major
real-world acoustic phenomena (see [10] for details). This framework enables us to evaluate our task
on a large number of environments, to test on diverse scene types, to compare methods under the
same settings, and to report reproducible results. To our knowledge, there is no existing public dataset
having both imagery and dense physically measured RIRs. Furthermore, due to the popularity of
this framework (e.g., [22, 11, 15, 37, 44, 9]) we can test our model on important downstream tasks
for RIR generation that are relevant to the larger community.

Dataset splits. We evaluate with 83 Matterport3D scenes, of which we treat 56 randomly sampled
ones as seen and the remaining 27 as unseen. Unseen environments are only used for testing. For
the seen environments, we hold out a subset of queries Q for testing and use the rest for training
and validation. Our test set consists of 14 sets of 50 arbitrary queries for each environment, where
our model uses the same randomly chosen observation set for all queries in a set. This results in a
train-val split with 8,107,904 queries, and a test split with 39,900 queries for seen and 18,200 queries
for unseen. Our testing strategy allows us to evaluate a model on two different aspects: 1) for a given
observation set from an environment, how the RIR prediction quality varies as function of the query,
and 2) how well the model generalizes to environments previously unseen during training.

Observations. We render all RGB-D images for our model input at a resolution of 128 × 128
and sample binaural RIRs at a rate of 16 kHz. To generate the RIR spectrograms, we compute the
STFT with a Hann window of 15.5 ms, hop length of 3.875 ms, and FFT size of 511. This results in
two-channel spectrograms, where each channel has 256 frequency bins and 259 overlapping temporal
windows. Unless otherwise specified, for both training and evaluation, we use egocentric observation
sets of size N = 20 samples for our model.

Existing methods and baselines. We compare our approach to the following baselines and state-
of-the-art methods (see Supp. for implementation and training details):

• Nearest Neighbor: a naive baseline that outputs the input echo’s RIR that is closest to the query Q
in terms of the receiver pose r.
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Table 1: RIR prediction results. All methods here train a single model to handle all seen/unseen environment
queries. See Table 2 for comparisons with NAF [35], which trains one model per seen environment. All
metrics use base 10−2 and lower is better. Results are statistically significant between our model and the nearest
baselines (p ≤ 0.05).

Seen environments Unseen environments
Model STFT RTE DRRE MOSE STFT RTE DRRE MOSE

Nearest Neighbor 4.65 1.15 385 24.4 4.87 1.26 391 28.0
Linear Interpolation 4.44 1.22 393 24.3 4.67 1.32 403 27.2
AnalyticalRIR++ 2.94 0.98 463 28.1 3.02 1.19 467 29.4
Fast-RIR [50]++ 1.37 1.25 137 13.7 1.45 1.61 369 15.2
FEW-SHOTRIR (Ours) 1.10 0.43 106 8.66 1.22 0.65 164 10.5
Ours w/ N = 1 1.69 0.74 362 17.2 1.70 0.90 372 17.4
Ours w/o echoes 1.63 0.63 334 19.5 1.67 0.95 357 20.0
Ours w/o vision 1.63 0.67 332 19.2 1.58 0.83 347 19.3
Ours w/o LD 1.39 1.60 347 14.0 1.44 2.11 363 14.5

• Linear Interpolation: a naive baseline that computes the top four closest observation poses for the
query receiver, and outputs the linear interpolation of the corresponding echoes’ RIRs.

• AnalyticalRIR++: We modify our model to predict RT60 and DRR for the query using the
egocentric observations. The modification uses the same transformer encoder-decoder pair, but
replaces the transposed convolutions with fully-connected layers for RT60 or DRR prediction.
It then analytically shapes an exponentially decaying white noise [33] on the basis of these two
parameters to estimate the target RIR.

• Fast-RIR [50]++: Fast-RIR [50] is a state-of-the-art model that trains a GAN [24] to synthesize
RIRs for rectangular rooms on the basis of environment and acoustic attributes, like scene size and
RT60, which it assumes to be known a priori. Since FEW-SHOTRIR makes no such assumptions
and is not restricted to rectangular rooms, we improve this method into Fast-RIR++: we use our
modified model for AnalyticalRIR++ to estimate both the target RT60 and DRR, and use panoramic
depth images at the query source and receiver to infer the scene size. We also train this model by
augmenting the originally proposed objective with our LD loss to further improve its performance.

• Neural Acoustic Fields (NAF) [35]: a state-of-the-art model that uses an implicit scene represen-
tation [41] to model RIRs. As discussed above, a NAF model can only predict new RIRs in the
same training scene; it cannot generalize to an unseen environment without retraining a new model
from scratch to fit the new scene.

Evaluation Metrics. We consider four metrics: 1) STFT Error, which measures the average error
between predicted and target RIRs at the spectrogram level; 2) RT60 Error (RTE) [55, 49, 50],
which measures the error in the RT60 value for our predicted RIRs. 3) DRR Error (DRRE) [49],
which measures the error in the estimated energy ratio between direct and reverbant sounds in an
RIR; and 4) Mean Opinion Score Error (MOSE) [9], which uses a deep learning objective [34] to
measure the difference in perceptual quality between a prediction and the target when convolved with
human speech. While STFT Error measures the fine-grained agreement of a prediction to the target,
RTE and DRRE capture the extent of acoustic mismatch in a prediction, and MOSE evaluates the
level of perceptual realism for human speech.

5.1 RIR Prediction Results

Table 1 (top) reports our main results. The naive Nearest Neighbor and Linear Interpolation baselines
incur very high STFT error, which shows that using echoes from poses that are spatially close
to the query receiver as proxy predictions are insufficient, emphasizing the difficulty of the task.
AnalyticalRIR++ fares better than the naive baselines on STFT and RTE but has a higher DRRE and
MOSE, showing that reconstructing an RIR using simple waveform statistics is not enough. Fast-
RIR++ shows the strongest performance among the baselines. Its improvement over AnalyticalRIR++,
with which it shares the RT60 and DRR predictors, shows that high-quality RIR prediction benefits
from learned methods that go beyond estimating simple acoustic parameters.
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Table 2: RIR prediction results for our model vs. NAF [35]. All metrics use base 10−2.

Seen environments (3) Unseen environments (all)
Seen zones Unseen zones

Model STFT RTE DRRE MOSE STFT RTE DRRE MOSE STFT RTE DRRE MOSE

NAF 2.31 10.2 523 36.1 2.22 2.65 322 34.7 3.62 5.11 463 56.6
Ours 0.90 1.97 95.7 7.08 1.58 1.25 155 13.6 1.22 0.65 164 10.5

Model STFT RTE DRR MOSE

Nearest Neighbor 6.88 68.8 386 22.7
Linear Interpolation 6.61 68.7 388 21.5
AnalyticalRIR++ 3.37 7.95 474 26.0
NAF [35] 3.62 51.1 367 56.6
Fast-RIR [50]++ 1.58 1.23 436 17.1
FEW-SHOTRIR (Ours) 1.51 1.30 202 14.0

Table 3: RIR prediction results with ambient environment sounds
in unseen environments. All metrics use base 10−2.
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Figure 3: Training time comparison vs.
NAF [35]

Our model outperforms all baselines by a statically significant margin (p ≤ 0.05) on both seen and
unseen environments. This shows that our approach facilitates environment acoustics modeling in
a way that generalizes to novel environments without any retraining. Furthermore, its performance
improvement over Fast-RIR [50]++ emphasizes the advantage of directly predicting RIRs on the
basis of the implicit acoustic model inferred from egocentric observations, as opposed to indirect
synthesis of RIRs by first estimating high-level acoustic characteristics for the target. As expected,
our model has more limited success for very far-field queries; widely separated source and receivers
make modeling late reverb difficult (see Supp for details).

FEW-SHOTRIR (Ours) vs. NAF [35]. Recall that, unlike our approach, NAF requires training one
model per environment. Thus, for fair comparison, we train one model per scene for both NAF and
our method. Due to the high computational cost of training NAF (as we discuss later) we limit our
training to three large seen environments. Further, we split each seen environment into seen zones,
which we use for training and also testing the models’ interpolation capabilities, and unseen zones,
which test intra-scene generalization. To give NAF access to our model’s observations, we finetune
it on our model’s echo inputs before testing. For unseen environments, our model adopts the setup
from the previous section, whereas we train NAF from scratch on our model’s observed echoes; note
that NAF’s scene-specificity does not allow finetuning of a model trained on a seen environment.

Table 2 shows the results. Our model significantly (p ≤ 0.05) outperforms NAF [35] on seen
environments when considering both seen and unseen zones. The seen zone results underscore the
better interpolation capabilities of our model in comparison to NAF when tested on held-out queries
from the training zones. Our method’s improvement over NAF on unseen zones shows that our
model design and training objective lead to much better intra-scene generalization, even when NAF
is separately finetuned on the observation sets from the unseen zones. While NAF improves over the
naive baselines from Table 1 on STFT error, it does worse than other methods on most metrics. This
demonstrates that just learning to predict a limited amount of echoes contained in the observation set
of our model is insufficient to accurately model acoustics for unseen environments.

Figure 3 compares the training cost between NAF [35] and our model using wall clock time, when
both models are trained on 8 NVIDIA Quadro RTX 6000 GPUs. When we train one model per
environment, NAF takes 20 hours to converge on average, while our model takes 23 hours. However,
our model design allows us to train one model jointly on all 56 Matterport3D training scenes in
32 hours, which reduces the average training time by 50×—down to 0.6 hours per environment.
Moreover, for unseen environments, training NAF on echoes requires 2.1 hours for each observation
set. In contrast, our model design enables training on a large number of scenes at a much lower
average cost, while also allowing generalization to novel environments without further training.
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Seen Unseen
Model SLE DPE SLE DPE

True RIR (Upper bound) 14.9 0.97 17.0 1.25

Nearest Neighbor 202 1.50 214 1.57
Linear Interpolation 202 1.39 213 1.49
AnalyticalRIR++ 254 1.64 270 1.69
NAF [35] – – 329 1.68
Fast-RIR [50]++ 168 1.39 201 1.52

FEW-SHOTRIR (Ours) 50.3 1.35 64.6 1.45

Table 4: Downstream task evaluation of RIR predictions
for sound source localization and depth estimation. All
metrics use a base of 10−2 and lower is better.
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Figure 4: STFT error vs. context size N .

5.2 Model Analysis

Ablations. In Table 1 (bottom) we ablate the components of our model. When removing one of the
modalities from the input, we see a drop in performance, which indicates that our model leverages
the complementatry information from both vision and audio to learn a better implicit model of the
scene. We also observe a performance drop across all metrics, especially on the RTE metric, upon
removing our energy decay matching loss LD. This shows that having LD as part of the training
objective allows our model to better capture desirable reverberation characteristics for the target
query, like RT60, while also additionally helping to score better on other metrics. Furthermore, we
see that reducing the observation set to just 1 sample, i.e., N = 1, impacts our model’s performance.
However, even under this extreme condition, our model still shows better generalization compared to
several baselines. We further investigate the impact of context size on our model’s performance in
Figure 4. Our model already reduces the error significantly using a context size of 5, with diminishing
reductions as it gets a larger context. This plot also highlights the low-shot success of our model
vs. the strongest baseline, Fast-RIR++.

Ambient environment sounds. We test our model’s ability to generalize in the presence of ambient
and background sounds. To that end, we repeat the experiment from Sec.5.1 where this time we insert
a random ambient or background sound (e.g., running heater, dripping water). This background noise
impacts the echoes input to our model. Table 3 reports the results. Even in this more challenging
setting, our method substantially improves over all methods on almost all metrics.

Qualitative results. Figure 5 shows two RIR prediction scenarios for our model: high reverberation,
where the query receiver is located close to the source in a very narrow and reverberant corridor
surrounded by walls, and low reverberation, where the source and receiver are spread apart in a
more open space. Our model shares the same observation samples across these settings. With
high reverb, our model focuses on vision due to its ability to better reveal the compact geometry
of the surroundings and its effects on scene acoustics, whereas echoes are distorted from strong
reverberation. For low reverb, echoes are probably more informative about the acoustics of the more
open surroundings due to their long-range nature. However, in both cases, our model prioritizes
samples that provide good coverage of the overall scene, rather than just scoping out the local area
around the query. This allows our model to make predictions that closely match the targets.

5.3 Downstream Applications for RIR Inference: Source Localization and Depth Estimation

Next we consider two downstream tasks inspired by AR/VR and robotics: sound source localization
and depth estimation from echoes. For both tasks, spatial audio generated by more accurate RIRs
should translate into better representation of the true acoustics, and hence better downstream results.

We train a model for each task using ground truth RIR magnitude spectrograms and evaluate using
the predicted magnitude spectrograms from our model and all baselines for the same set of queries
from both seen and unseen environments. Table 4 reports the results. DPE is the average L1 error
between a normalized depth target and its prediction, and SLE is the average L1 error in prediction
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Figure 5: RIR predictions for a high and low reverberation case, where our model uses the same observations in
both cases. For high reverb, our model relies more on vision than echoes for inferring scene acoustics, since
echoes could be misleading in this case due to its long reverberation tail. For low reverb, our model uses echoes
more, likely because their long-range nature better informs about the acoustics of the more open surroundings.

of the source location (in meters) relative to the receiver for a query. Our method outperforms all
baselines by a statistically significant margin (p ≤ 0.05). In particular, for the more difficult unseen
environments, our model reduces the error relative to the ground truth upper bound by 74% for SLE
and 25% for DPE when compared to Fast-RIR++, highlighting that our model’s predictions capture
spatial and directional cues more precisely than all other baselines and existing methods.

6 Potential Societal Impact

Our model enables modeling the acoustics in a 3D scene using only few observations. This has
multiple applications with a positive impact. For example, accurate modeling of the scene acoustics
enables a robot to locate a sounding object more efficiently (like finding a crying baby, or locating a
broken vase). Additionally, this allows for a truly immersive experience for the user in augmented
and virtual reality applications. However, RIR generative models allow the user to match the acoustic
reverberation in their speech to an arbitrary scene type, and hence hide their true location from the
receiver, which may have both positive and negative implications. Finally, our model uses visual
samples from the environment for more accurate modeling of the acoustic properties of the scene.
However, the dataset used in our experiments contains mainly indoor spaces that are of western
designs, and with a certain object distribution that is common to such spaces. This may bias models
trained on such data toward similar types of scenes and reduce generalization to scenes from other
cultures. More innovations in the model design to handle strong shifts in scene layout and object
distribtutions, as well as more diverse datasets are needed to mitigate the impact of such possible
biases.

7 Conclusion

We introduced a model to infer arbitrary RIRs having observed only a small number of echoes and
images in the space. Our approach helps tackle key challenges in modeling acoustics from limited
observations, generalizing to unseen environments without retraining, and enforcing desired acoustic
properties in the predicted RIRs. The results show its promise: substantial gains over existing models,
faster training, and benefits for downstream source localization and depth estimation. In future work,
we plan to explore ways to optimize the placement of the observation set and explore ways to curate
large-scale real world data for sim2real transfer.

Acknowledgements: Thanks to Tushar Nagarajan and Kumar Ashutosh for feedback on paper drafts. UT Austin
is supported in part by the IFML NSF AI Institute, NSF CCRI, and DARPA L2M. K.G. is paid as a research
scientist by Meta, and C.C. was a visiting student researcher at Facebook AI Research when this work was done.
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