
A Pseudo-Code

Algorithm 1 Open-Ended Neural Reward Functions

Initialize θ0 and ψ0 and Oneg all.
i← 0
while TRUE do
Onegi , Oposi ← ∅, ∅
Set Rψi

as the reward of the MDP
Train πθi and Vθi using an actor-critic algorithm
for j = 0 to b do

Reset the MDP to the initial state
Follow πθi for k steps and add the observed states to Oneg
Follow a random policy for k′ steps and add the observed states to Opos

end for
Oneg alli ← Oneg alli−1

∪Onegi
ψi+1 ← ψi
Train ψi+1 with Lψ , Oposi , Onegi and Oneg alli
θi+1 ← θi
Set last layer of πθi+1

to 0
i← i+ 1

end while

B 2d Navigation: Experimental details

The episode length in the 2d navigation task is 250 steps. The guiding phase lasts for 2/3 of the total
steps of the 1-steps A2C agent learning. We sample the guiding length uniformly at random in the 0
to 200 range. For the negative samples we follow the learnt policy for 200 steps. For the positive
samples, we take random actions for 50 steps after following the policy for 200 steps.

Table 3: Hyperparameters for the 2d navigation task.

HYPERPARAMETER

BASE ENTROPY REGULARIZATION 0.005
EXTRA ENTROPY REGULARIZATION 0.05
EPISODE LENGTH 250
A2C LEARNING RATE 0.0001
A2C DISCOUNT FACTOR 0.99
BATCH-SIZE 2048
STEPS PER SKILL 2048 · 60000
POSITIVE/NEGATIVE SAMPLE TARGET VALUE 0.05/− 0.05

REWARD NETWORK UPDATES PER SKILL 500
REWARD NETWORK LEARNING RATE 0.001
REWARD NETWORK TRAINING BATCH SIZE 3 · 256

C Robotic environments: Architecture and hyper-parameters

We use the PPO (Schulman et al., 2017) implementation from (Freeman et al., 2021) with mod-
ifications such that it allows our training method to work. In Table 4 and Table 5 we list the
hyper-parameters we used. Note that we use a smaller learning rate for the bodies of the policy and
value network. We found that this was beneficial for transferring more knowledge from the previous
skill.

The environment specific parameters were found using Optuna (Akiba et al., 2019). For each
environment we ran a search to optimize final performance on the environment rewards (running in
positive x-direction). We used 200 runs and trained each of them for the same number of steps as a

16



Table 4: Hyperparameters for PPO shared in all three environments.

BRAX PPO HYPERPARAMETERS

POLICY HIDDEN LAYER SIZES [512, 512]
VALUE HIDDEN LAYER SIZES [512, 512]
BODY LEARNING RATE MULTIPLIER 0.5
EPISODE LENGTH 1000
ACTION REPEAT 1
NUMBER OF MINI-BATCHES 32
BATCH-SIZE 1024
PARALLEL ENVIRONMENTS 2048

Table 5: Environment specific PPO hyperparemeters.

HALF-CHEETAH ANT HUMANOID

LEARNING RATE 0.00010 0.00029 0.00017
REWARD SCALING 0.24532 5.58242 0.15326
UNROLL LENGTH 3 5 6
UPDATES PER EPOCH 15 14 10
DISCOUNT FACTOR 0.99109 0.92318 0.99114
ENTROPY COST 0.00062 0.00200 0.02087
ENVIRONMENT STEPS PER SKILL 10M 10M 20M

skill in our method. This yielded hyper-parameters which are able to learn tasks in the corresponding
environment. We did not take the downstream performance metrics (zero-shot performance and
particle-based information) into account. Doing so would have exceeded our compute budget. In
Table 6 the architecture and hyper-parameters used for the neural reward functions are listed. For the
supervised reward training we use the Adam optimizer (Kingma & Ba, 2014). All code can be found
in the supplementary material.

For DADS (Sharma et al., 2019) we used the code provided by the authors. For RND (Burda et al.,
2018b) and ‘Disagreement’ (Pathak et al., 2019) we tuned the method specific hyper-parameters
optimizing for the MI-metric of the x-velocity. In particular, for each environment and method we
used 100 runs of 200M environment steps per run.

D Robotic environments: Zero-Shot Transfer

We use the Optuna hyperparameter tuning library (Akiba et al., 2019) to create Table 1. We ran
multiple optimization procedures. For each one, we fix a number of environment steps, then optimize
the final performance on the environment reward over 200 runs. We iteratively increased the number
of timesteps until the highest score of the 200 runs beats our averaged zero-shot performance. We
take the hyperparemters of that run and train 10 agents until they outperform our averaged zero-shot
performance. The average number of training steps needed for this is reported in Table 1. In the
HUMANOID environment three of the runs did not reach the score in 100M steps, at which point
we stopped training. We nonetheless took 100M into the average. The code for the hyperparameter
search and the results of our conducted studies can be found in the supplementary material.

E Robotic environments: Additional plots and Tables

In Figures 10, 11 respectively 12 we show more scatter plots for the ANT environment of our method,
RND (Burda et al., 2018b) respectively ‘Disagreement’ (Pathak et al., 2019). In Figures 13, 14
respectively 15 we show more scatter plots for the HUMANOID environment of our method, RND
respectively ‘Disagreement’.

In Table 7 we report the zero-shot results for the ablations and the intrinsic curiosity baselines. In
Table 8 we report the MI-metric results for the ablations.

17



Table 6: Neural reward function hyperparemeters for the BRAX environments.

NEURAL REWARD FUNCTION HYPERPAREMETERS
IN BRAX ENVIRONMENTS

HIDDEN LAYER SIZES [87]
HIDDEN LAYER NONLINEARITY TANH
TARGET VALUE a 5
GRADIENT STEPS 300
LEARNING RATE 0.001
TOTAL BATCH SIZE 171
NEGATIVE STEPS 300
POSITIVE STEPS 40
NUMBER OF SAMPLING ENVIRONMENTS 8192
FRACTION OF NEGATIVE SAMPLES STORED 0.01

Table 7: Zero-shot environment reward of our algorithm, ablations and baselines.

Task Method Zero-shot
reward

Ant Ours (full) 2506± 511
Ant Ours (policy ablation) 1731± 634
Ant Ours (value ablation) 2246± 794
Ant RND 9± 155
Ant Disagreement −170± 67

Humanoid Ours (full) 9092± 1063
Humanoid Ours (policy ablation) 8906± 616
Humanoid Ours (value ablation) 7357± 816
Humanoid RND 7734± 1916
Humanoid Disagreement 10107± 736

Table 8: Ablations for the Particle-based mutual information metric. Results are averaged over 10
runs.

Task Method MI(s, z)

Ant full method 1.33± 0.11
Ant policy ablation 1.09± 0.16
Ant value ablation 1.28± 0.15

Humanoid full method 1.29± 0.25
Humanoid policy ablation 0.88± 0.19
Humanoid value ablation 1.01± 0.09

F Montezuma’s Revenge: Adapting episode length

In order to save computation, we adapt the number of training steps according to several criteria. This
lets us save a lot of compute on the skills which are easy to learn. We use the following measures:

• We train for 1M steps with guiding from the previous policy. The number of guiding steps
is sampled uniformly at random between 0 and 450, each time the environment is reset.
Then we train for another 0.65M steps without any guiding.

• If the average reward goes down after removing the guiding or is too low at any point, we
restart the guiding phase for 0.65M steps.

• If the agent is reaching a terminal state in more than 10% of the episodes, we continue
training.

18



On top of this, we ignore positive samples that receive almost no reward. All these tricks enable us to
considerably reduce the training time. However, they are not a core change in our algorithm as they
could all be replaced by just training all generations for a longer fixed number of steps, just as before.

G Montezuma’s Revenge: Environment details

Figure 8 shows the initial state of Montezuma’s Revenge and the cropped version of it that is used for
our agent.

(a) (b)

Figure 8: (a) Initial state in the first room of Montezuma’s Revenge. The agent controls the red/yellow
character and its actions are moving up, down, right or left, and jumping. Touching the skull or
jumping from a high height makes the agent lose a life. The agent must collect the key and open
one of the two doors to access the next room. (b) Cropped version of the input that we use in our
algorithm.

H Montezuma’s Revenge: Experimental details

In Montezuma’s Revenge, we use the PPO implementation from the coax11 library, with 1-step
temporal differences. If the average score per 500 steps is below 5, we go back to the guiding phase.
Due to the large memory requirements to store all negative samples, after the 15-th epoch we rewrite
old negative samples to add the new ones. Table 9 summarizes our hyper-parameters.

Table 9: Hyperparameters for Montezuma’s Revenge.

HYPER-PARAMETER

BASE ENTROPY REGULARIZATION 0.003
EXTRA ENTROPY REGULARIZATION 0.03
EPISODE LENGTH 500
PPO LEARNING RATE 0.0003
PPO DISCOUNT FACTOR 0.99
PPO EPSILON 0.2
PPO BATCH SIZE 1024
PPO REPLAY BUFFER SIZE 4096
PPO REPLAY EPOCHS 4
PARALLEL ENVIRONMENTS 32
POSITIVE/NEGATIVE SAMPLE TARGET VALUE 0.05/− 0.05

REWARD NETWORK UPDATES PER SKILL 1500
REWARD NETWORK LEARNING RATE 0.001
REWARD NETWORK TRAINING BATCH SIZE 3 · 243

11https://github.com/coax-dev/coax

19



I Additional 2d navigation experiments

In Figure 9 we show results of the 2d navigation task with three alternative environments. These
environments illustrate the behavior of our algorithm in environments that require backtracking.
In particular, Figure 9(b) shows a failure mode of our approach. A trap prevents the agent from
backtracking and thus stops the progress of our algorithm once the search reaches that region.

(a) (b) (c)

Figure 9: The crosses correspond to the circles in Figure 2. (a) A T-Maze with two possible paths.
The method backtracks when it reaches the end of the path and explores the other one. (b) The dotted
line can not be crossed more than once in each episode. This traps the agent and makes it impossible
to backtrack. The method gets stuck in one of the two traps. (c) A narrow path that leads to an
intersection.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills of
all additional 9 runs in ANT . n was picked by hand in each run. The second half of the trajectory is
shown. Colors change from early skills in purple to late skills in red.

20



(a) (b) (c)

(d) (e) (f)

Figure 11: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills of
6 out of 10 RND runs in ANT . n was picked by hand in each run. The second half of the trajectory
is shown. Colors change from early skills in purple to late skills in red.

(a) (b) (c)

(d) (e) (f)

Figure 12: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills of
6 out of 10 ‘Disagreement’ runs in ANT . n was picked by hand in each run. The second half of the
trajectory is shown. Colors change from early skills in purple to late skills in red.

21



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills
of all additional 9 runs in HUMANOID . n was picked by hand in each run. The second half of the
trajectory is shown. Colors change from early skills in purple to late skills in red.

22



(a) (b) (c)

(d) (e) (f)

Figure 14: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills of
6 out of 10 RND runs in HUMANOID . n was picked by hand in each run. The second half of the
trajectory is shown. Colors change from early skills in purple to late skills in red.

(a) (b) (c)

(d) (e) (f)

Figure 15: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills of
6 out of 10 ‘Disagreement’ runs in HUMANOID . n was picked by hand in each run. The second half
of the trajectory is shown. Colors change from early skills in purple to late skills in red.

23


