
DevFly: Bio-inspired Development of Binary
Connections for Locality Preserving Sparse Codes

Tianqi Wei ∗

School of Informatics
University of Edinburgh

Edinburgh, UK EH8 9AB
tianqi-wei@outlook.com

Rana Alkhoury Maroun
School of Informatics

University of Edinburgh
Edinburgh, UK EH8 9AB

rana.e.elkhoury@gmail.com

Qinghai Guo
ACS Lab

Huawei Technologies
Shenzhen, China

guoqinghai@huawei.com

Barbara Webb
School of Informatics

University of Edinburgh
Edinburgh, UK EH8 9AB

B.Webb@ed.ac.uk

Abstract

Neural circuits undergo developmental processes which can be influenced by
experience. Here we explore a bio-inspired development process to form the
connections in a network used for locality sensitive hashing. The network is a
simplified model of the insect mushroom body, which has sparse connections from
the input layer to a second layer of higher dimension, forming a sparse code. In
previous versions of this model, connectivity between the layers is random. We
investigate whether the performance of the hash, evaluated in nearest neighbour
query tasks, can be improved by process of developing the connections, in which
the strongest input dimensions in successive samples are wired to each successive
coding dimension. Experiments show that the accuracy of searching for nearest
neighbours is improved, although performance is dependent on the parameter
values and datasets used. Our approach is also much faster than alternative methods
that have been proposed for training the connections in this model. Importantly, the
development process does not impact connections built at an earlier stage, which
should provide stable coding results for simultaneous learning in a downstream
network.

1 Introduction

The insect mushroom body (MB) is a learning centre in the insect brain, and its function is of interest
as a neural architecture for efficient association of arbitrary sensory patterns to actions. The MB is a
shallow network, with an input layer of projection neurons (PNs) that sparsely connect to a larger
number of Kenyon cells (KCs), which are fully connected to a small number of MB output neurons
(MBONs). In this paper we focus on the PN to KC connectivity, and consider how the activity pattern
in KCs could provide an efficient code for the input that enhances the appropriate generalisation from
previously experienced patterns to new inputs. In the MB, only a small portion of KCs is activated
at any time (Honegger et al., 2011), which is known as sparse coding (Olshausen & Field, 2004).
Sparse coding facilitates learning by letting each KC represent a more specific pattern of sensory
inputs, which reduces unintended association with a different pattern during learning (Treves & Rolls,
1991). Ideally, similarity in sensory input space should map to similarity in the space of sparse codes.

∗Now at School of Artificial intelligence, Sun Yat-sen University, Zhuhai, China.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



One way to interpret the function of the mapping from PN to KC is treating the mapping as a
locality-sensitive hash (Dasgupta et al., 2017). Ideally, a locality-sensitive hash (LSH) function can
preserve relative distances between data samples in the corresponding hash coding results (Hutchins,
1999), such that the codes can be used to efficiently locate close samples. Compared to a typical
LSH, the MB-inspired hash algorithm (Figure 1) proposed by Dasgupta et al. (2017), called FlyLSH,
maps inputs (with a dimension d) to a higher dimensional space (with a dimension m), using sparse
binary connections, and then creates a sparse binary code by choosing the top k-values and setting
them to 1. FlyLSH achieved better performance than a standard LSH algorithm with the same hash
length 2. This in turn allows FlyLSH to attain higher precision than LSH algorithms that use a dense
connectivity matrix. It has inspired some variations including deep nets that use FlyLSH as initial
layers. For example, work by Chancan et al. (2020) combined a FlyLSH based network with a
one-dimensional continuous attractor neural network and achieved a better performance than other
methods in visual place recognition tasks.

Figure 1: Two steps to pro-
duce a hash using binary con-
nections.

0 day 3 days 5 days

1st instar
early 

3rd instar
late 

3rd instar
puparium
formation pupa adult

γ neurons α'/β' neurons α/β neurons

Figure 2: Summary of the mushroom body development
(modified from (Lee et al., 1999)).

FlyLSH uses fixed random connections between the PN and KC layers, a feature inspired by
previous accounts of this connectivity in the MB (Caron et al., 2013; Masuda-Nakagawa et al., 2005).
However, more recent biological results suggest that the formation of connections between PNs and
KCs can be experience-dependent, and when a KC connects to PNs depends on (1) when the KC is
developmentally generated and (2) the existing connections (Eichler et al., 2017). Like other neural
circuits, the MB develops during the animal’s maturation from a few neurons to thousands of neurons,
and new connections are built during this process. In the fly, this happens during embryo, larvae,
pupae, and early adult stages (Figure 2) (Lee et al., 1999), with and without external stimulus. There
are also evidences suggesting that the distribution of the connections cannot be simply explained as
random (Eichler et al., 2017; Elkahlah et al., 2020; Hayashi et al., 2021).

In this paper, we propose a bio-inspired method that develops the binary connections between input
PNs and the coding KCs. The connections to each coding dimension are built according to strongest
dimensions of a selected sample, and once built, they will not be impacted by later development, so
that reliable coding results are preserved during the development process. We then test this method
against FlyLSH in a nearest neighbours search task using several datasets as inputs, to investigate
whether the performance can be improved by an MB-inspired process of developing the connections.

2 Related works

Models of the MB have been presented by several different groups mostly in the context of associative
learning or classification tasks, such as (Huerta et al., 2004; Smith et al., 2008; Mosqueiro & Huerta,
2014; Bennett et al., 2021; Wessnitzer et al., 2012; Ardin et al., 2016; Zhu et al., 2021). Most of
these studies make the assumption that the connections between PNs and KCs are randomised. The
effect of non-random PN to KC connections has been explored for the biological task of odour
discrimination in a model by Zavitz et al. (2021). They find the effective dimensionality of the
KC layer is reduced, the response to odours potentially of ethological significance to the fly are
heightened and the generalisation between odours is improved. There are also recent models that

2Note there is a difference in the definition of the hash length of FlyLSH and that of a standard LSH. The
hash length of FlyLSH is counted by the number of KCs that activate, but the hash length of a standard LSH is
counted by both activated and non-activated coding dimensions.

2



include plasticity between PNs and KCs, such as MothNet (Delahunt & Kutz, 2019) and a model
by Peng & Chittka (2017) which adjusts the PN-KC synapses according to reward modulation and
coactivation of connected PN and KC, showing that this alters the generalisation/discrimination
tradeoff for KC encoding of sensory patterns.

A number of papers have explored the effects of altering the connection scheme from PN to KC
from the FlyLSH default, which is for each KC to receive inputs from n randomly selected PNs
where n is some fraction of the input dimension. Xu & Qiao (2018) explored the use of a variable n,
centred on the same mean, and reported improved performance over FlyLSH for nearest neighbour
search in CIFAR-10, as well as better performance than several data dependent (but unsupervised)
standard hash methods including PCA-hash, Spherical Hash and ITQ. Data-dependent methods for
forming the sparse connections should be expected to do better than random connections for the same
n. Ma et al. (2020) proposed an algorithm to iteratively construct the projection matrix to produce
the winner-take-all (WTA) output that maximises the distance between codes for the whole dataset,
subject to the limit n on the number of connections per KC. Ryali et al. (2020) proposed a method
similar to self-organising mapping to train a modified version of FlyLSH, which uses continuous
values instead of binary values for mapping, noting that this is equivalent to k-means clustering
with some additional constraints. Both methods outperform FlyLSH, but are relatively data greedy
because they use all images in the datasets for learning the connections. In Pehlevan et al. (2017) a
neurally plausible method for online k-means clustering is proposed and related to known PN-KC
connectivity properties, although the method is not explicitly tested as a hashing code.

Preissner & Herbelot (2019) took a contrasting approach when applying the FlyLSH method to a
language corpus. In their work the PN layer is incrementally expanded, and the KC connections
randomly redistributed, while preserving equal n, as words are encountered in new contexts. An
interesting point made in this approach is that the resulting sparse KC code is interpretable, for
example, the set of PNs connecting to one KC tend to refer to related or frequently co-occuring words
in the input data. However, like the previous methods, it requires multiple updates for every KC
during the training process.

There is relevant earlier research on growing ANNs (also described as resource allocation networks
(Platt, 1991)) where neurons and/or connections are gradually added to the network (see review by
Macleod & Maxwell (2001) and more recently (Mixter & Akoglu, 2020)). In this approach, new units
are added when the existing network does not meet some criteria with respect to newly presented data,
and then all the connection weights are retrained using gradient descent or similar standard methods.
These methods might also include pruning, to remove units that are not contributing to successful
performance, e.g., (Yingwei et al., 1998). In either case the aim is to produce a more compact network
size. By contrast, our developmental algorithm assumes a target total number of neurons, and tries to
connect each successive one to represent the data efficiently with respect to previous connections,
but without changing any existing connections. Interestingly, our approach (and the MB structure)
can be more closely compared to early work on ‘prototype’ learning in the form of RCE networks
(Reilly et al., 1982), where input samples are used to set the weights of successive nodes in the first
layer, with new connections to the next node formed if the existing node activations cannot support
successful classification in the following layer, but no further changes made to existing weights. RCE
networks have also been used in an unsupervised form (Marsland et al., 2002) where nodes are added
when none of the current nodes are sufficiently activated.

3 Methods

The aim of the algorithm presented here is to produce a locality sensitive hash code such that the
distance in the sample space is positively correlated to the distance in the code space. In the following,
the distance in sample space is measured as Euclidean distance, and the distance in the code space is
measured as Hamming distance for the binary coding (Sharma & Navlakha, 2018).

Hashing by FlyLSH or its variations consists of two steps (Figure 1), a linear mapping from the input
(with dimension d) to the code space (with dimension m), and binarisation of the resulting activity
pattern. Note that following FlyLSH, we equalise the mean of the pixel intensities across images
(Dasgupta et al., 2017) by substracting the mean from each sample so that the sum of all the pixels is
zero.

3



In FlyLSH, the linear mapping step uses a binary matrix R generated by randomly choosing n = ⌊αd⌋
indexes from the input dimensions for each code dimension, where 0 < α < 1, typically α ∼ 0.1,
and ⌊·⌋ is the floor operation. Thus, for each row of R, n elements are randomly set to 1, and the
remainder are 0. After all of the coding dimensions are computed, they are binarised by choosing the
top k values and setting them to 1, with all remaining values set to 0.

Note that although in the fly, and in contrast to standard LSH, m ≫ d, in practice FlyLSH is often
tested with high dimensional inputs resulting in m ≤ d. The key properties preserved from the fly
are the use of a low sampling ratio α rather than full connectivity, and a sparse code k ≪ m. For
clarity, we have not followed Dasgupta et al. (2017) in referring to k as the hash length, as in practice
the full code of length m is used to calculate Hamming distance, but see section 4.1 below.

The method we propose (which we call DevFly) uses bioinspired development processes to replace
the random choice that generates matrix R. It mimics the biological observation that in the MB,
individual KCs mature at different times and each will make connections to PNs as they mature, that
is, there is no single stage at which all PN-KC wiring occurs. We assume that, in the MB, when some
criteria is triggered, synapses are built from those PNs that have strongest activities to an immature
KC; subsequently the connections for this now mature KC remain fixed. Correspondingly, in DevFly,
when some criteria is triggered, the connections are built from strongest input dimensions to a new
code dimension. We propose three alternative criteria, which are referred to as Method 1,2 and 3.
Method 1 is shown in Algorithm 1. Method 2 and 3 are shown in Algorithm 2. The code is available
in the supplementary materials.

Algorithm 1 Connection develop-
ment for Method 1
Input: Data Samples
S = {s1, s2, . . . sq, . . . su}.
Parameter: code dimension m,
number of connections per KC n.
Output: KC weights
R = {r1, r2, . . . rj , . . . rm}.

1: j := 1
2: # Randomly choose m samples

from S.
3: for sq in m samples from S do
4: # Set the weights of a KC

according to a sample.
5: Find the indexes i′ ∈ Zn of

top n values in the sample.
6: ri′∈i′ := 1, where ri ∈ rj .
7: j++
8: end for
9: return R

Algorithm 2 Connection development for Method 2 and 3
Input: Data Samples S = {s1, s2, . . . sq, . . . su}.
Parameter: threshold θ, threshold increasing rate β, code
dimension m, number of connections per KC n.
Output: KC weights R = {r1, r2, . . . rj , . . . rm}.

1: Let R := 0, j := 1, q := 1.
2: while j ≤ m do
3: # Iterate for next unfamiliar sample sq .
4: while ∃ j′ ∈ {1, 2, . . . , j} such that rj′sq > θ do
5: q ++
6: if q > u then
7: θ := βθ
8: q := 0
9: end if

10: end while
11: # Set the weights of a KC according to a sample.
12: if Method 2 then
13: Find the indexes i′ of top n values in the sample.
14: else if Method 3 then
15: Randomly choose n indexes i′ using the normalised

sample as probability.
16: end if
17: ri∈i′ := 1, where ri ∈ rj .
18: j ++ .
19: end while
20: return R

Method 1: connection development according to randomly picked samples. The first method is
designed to test the importance of connecting from the strongest input dimensions, by simply setting
the criteria to be randomness: (1) Randomly choose data samples, as many as the number of code
dimensions. (2) Given a sample, sort the sample dimensions by their input value and take the n
largest. (3) Connect the largest n input dimensions to a code dimension. (4) Repeat the previous step
until all code dimensions are connected.

Method 2: connection development according to unfamiliar samples In the second method, we
set the criteria so as to build new connections only when a sample input is not already well connected.

4



That is, given a sample, an unconnected code dimension will be connected to the strongest input
connections only if none of the previously connected code dimensions have an output stronger than a
threshold. The threshold can be interpreted as a means of recognising “familiar" samples. (1) Set a
threshold for when to connect. (2) Given the first sample, sort the sample dimensions by their input
value and take the n largest. (3) Connect the largest n input dimensions to a code dimension. (4) For
the next sample, check the response of connected code dimensions. If all them are weaker than the
threshold, connect an unconnected code dimension according to the large n input dimensions in this
sample. (5) Repeat the previous step until all code dimensions are connected. If all samples have
been examined but some code dimensions remain unconnected, increase the threshold, for example,
by timing a factor β, and then loop through the samples again.

Method 3: connection development randomly according to unfamiliar samples We propose an
additional variation on Method 2 by introducing noise when building the connections. Instead of
connecting the input dimensions and code dimensions strictly according to the strongest input dimen-
sions, the connection is built by randomly selecting input dimensions according to the distribution
of the input dimensions. This seems biologically more realistic, but we also believe that with this
modification, the new connections could have better generalisation while capturing the features.

The code is available on GitHub 3.

4 Experiments

We applied the three connection development methods to FlyLSH, and tested them on four different
datasets for the precision in finding nearest neighbours. The datasets are MNIST (CC BY-SA 3.0),
CIFAR-10 (MIT), SIFT10M and GloVe (Apache-2.0). MNIST (LeCun et al., 1998) is a dataset with
images of handwriting digits from 0 to 9. Each of the images has a size of 28× 28 and is in greyscale.
CIFAR-10 (Krizhevsky, 2009) is a dataset with images from ten classes of objects. Each of the
images has a size of 32 × 32 for each RGB channel. SIFT10M (Jegou et al., 2010) also contains
vectors representing images but has a smaller dimension (128) and is specifically designed for nearest
neighbours search. The GloVe dataset (Pennington et al., 2014) contains pre-trained vectors with a
dimension of 300 for word representation, and the vectors have linear substructures in their space.
These datasets do not include personally identifiable information or offensive content.

Following the protocol in the experiments by Dasgupta et al. (2017) and Sharma & Navlakha (2018),
for each of the datasets, we chose 10000 samples as an experiment dataset for the nearest neighbours
search. In each experiment, m samples from a dataset were used to train the model, then 1000
samples were randomly chosen for querying. For each query sample, we listed the 200 samples with
the smallest Hamming distances to the query sample, then compared the list with the true neighbours
list found according to their Euclidean distances. We report the results for the three DevFly methods
with different hyperparameters, varying k, m and α. Each of the tests with a specific combination
of hyperparameters was repeated 10 times for statistical results. For comparison, we also run the
random FlyLSH described by Dasgupta et al. (2017) on the same datasets. Because the original
code by Dasgupta et al. (2017) is not available, we used code published by the same research group
(Sharma & Navlakha, 2018) to implement these methods. We noticed that the performances reported
for FlyLSH are not consistent in those two papers. Hence, comparisons are based on our experimental
results only. For reference, both Fly methods consistently outperform a traditional LSH (Hutchins,
1999) if its hash length is set to k.

4.1 Query time

An LSH using a sparse binary code based on winner-take-all (WTA) has an advantage in query
time. Because the number of activating coding dimensions is fixed, to carry out a nearest neighbour
search query for a given sample it is not necessary to compare all of the coding dimensions. Instead,
it is sufficient to just compare those coding dimensions which are activated (coded as 1) by the
query sample. Hence, the query time will scale with k rather than with m. This provides a potential
advantage over DenseFly (Sharma & Navlakha, 2018). DenseFly varies from FlyLSH by not using
top-k WTA but instead using a threshold to set code elements to 1 or 0. As we show in figure 3 the
mean average query time for Method 1 using a fixed sparseness, i.e., k = m/20 is significantly lower.

3https://github.com/InsectRobotics/DevFlyPublication.git.

5

https://github.com/InsectRobotics/DevFlyPublication.git


40 80 160 240 320 400 480 560 640
Number of KCs

0

5

10

15

20

Se
ar

ch
 T

im
e 

(s
)

Method1
DenseFly

Figure 3: The search speed advantage of using a sparse code (Method 1) instead of a dense code
(DenseFly). Tested on MNIST with 10000 samples. The search time is the time taken for 1000
queries. They were repeated for 10 times to compute the average and variance. Each query retrieves
200 nearest neighbours. Hash codes of all the samples, including the query samples, were computed
before the queries; for Method 1, the sparse coding uses a fixed k = m/20. Please note the 10
repeats were executed at the same time in parallel to simulate concurrent queries, so a much shorter
time is expected if the repeats are sequential. Tested on a computer running Ubuntu 20.04 with
Intel®Core™i9-10940X CPU with 28 hyperthreading logical cores. The code was implemented in
Python and most of the code for testing these two methods were shared.

Figure 4: Performance on four datasets. 10000 samples were taken from each dataset for the tests.
1000 queries for 200 nearest neighbours were made for the means and variances. m = 20k, α = 0.1.

The same advantage applies to our other developmental methods (and to the original FlyLSH) as they
also use top-k WTA for binarisation.

4.2 Search accuracy

DevFly methods are tested on four datasets and the mean Average Precision (mAP) for nearest
neighbour query is shown is Figure 4. Precision here measures the ratio of true neighbours in the
neighbours found by our methods. The average precision is the precision of 1000 queries in an
experiment, and the mAP is the mean of average precision for ten experiments. In these experiments,
α = 0.1, sparseness m/k = 20, but k varies. We also tested the effects of changing the sparseness
by varying m/k. The results are shown in supplementary Figures S.1 to S.4.

All the developmental methods show a similar performance on MNIST, and perform better than
FlyLSH for all k. For MNIST, the relative improvements range from 9% for k = 32 to 106% for
k = 2, even with Method 1, in which the connections are made without any criteria for choosing the
samples used to determine the connections.

For the other datasets, at least one developmental method outperforms FlyLSH, although which
method performs best varies with the dataset. Notably for GloVe, the randomness introduced
in Method 3 produces no improvement on performance over FlyLSH. For CIFAR-10, both the
improvement with DevFly methods and the overall performance are relatively low. This might
be caused by the different complexity of this dataset compared to MNIST. CIFAR-10 has larger

6



A B

Figure 5: (A) Cumulative sum of explained variances of the principal components of the four datasets,
plus a randomly generated dataset with a uniform distribution. (B) Variances of the sample dimensions
across the same datasets. The y-axis is plotted in log scale.

dimension, d = 32× 32× 3 = 3072, than MNIST, d = 28× 28 = 784. More crucially, for MNIST,
the information for distinguishing the digits is clearly given by the highest intensity pixels, so our
method which forms connections based on intensity will correspond to the key distinguishing features
of the data. For illustration, we can visualise the weights for 100 KCs formed by Method 2 after 320
steps of development which clearly reflect the structure of the data (Figure S.6). Images in CIFAR-10
are photos of real objects, which have richer and more complex details than images in MNIST, and
the pixels with the strongest intensities are not necessarily the most informative, e.g. they might be
part of the background, corresponding to sky.

The higher performance of the models on MNIST and SIFT10M than on GloVe is, we believe,
due to the data in MNIST and SIFT10M lying on a lower dimensional manifold, relative to their
input dimensions, than GloVE, and hence requiring fewer samples to adequately represent the space.
Principal components of the variables of a dataset can give us a good indication of the size of
this space, and as shown in Figure 5 (A), the cumulative sum of explained variance by principle
components increases much more slowly for GloVe than the other datasets. This is confirmed by
observing that none of the models was able to find more than 10% of the nearest neighbours when
tested on a randomly generated dataset (see section S.B.4). However, this does not explain the worse
performance on CIFAR-10. Instead, we observe that, ideally, to preserve the nearest neighbours in
the input space, each KC (which represents a centroid in space) should be activated proportionally to
the Euclidean distance between the input sample and the centroid. However, as the intermediate code
by KCs y′

j := Rsq is actually defined by the dot product, the activations are biased by samples that
have a bigger norm. This is not the case with datasets that have samples with equal L2 norms, as the
dot product is local when samples lie on the same hypersphere (SIFT10M) or have approximately this
property (MNIST). Experimentally, we can test this by checking if equalising the norms improves the
performance, and we indeed see a significant improvement for CIFAR-10 (Figure S.8). However, if
the goal is LSH, equalising the norms should not be considered to be an acceptable pre-processing
step, as it does not preserve the distances of the original dataset.

4.3 Learning efficiency

There are many existing methods for tuning the projection matrix in LSH, and the methods can be
categorised into three groups, unsupervised, supervised, and semisupervised. These methods can also
be further categorised according to the levels of supervised information, linearity, one-shot/multiple-
shot. For a comprehensive review, see the survey by Wang et al. (2016). Among them, we have not
found a development based method.

Another alternative approach to optimising PN-KC connections for an MB-inspired hashing model is
BioHash (Ryali et al., 2020). BioHash proposed a method similar to self-organising mapping to train
a modified version of FlyLSH, which uses a dense connection matrix and continuous values instead
of binary values for mapping. We modified BioHash in order to have the same number of active KCs
as DevFly and FlyLSH. We find that BioHash takes much more time to reach the same precision
level as either Method 1 or Method 2 (Figure 6). Only 320 iterations were needed for DevFly versus
10000 iterations for BioHash to reach the same performance level. In application, fast convergence

7



0 10 2 10 1 100 101 102

Time (s)

0.0

0.1

0.2

0.3

0.4

M
ea

n 
Av

er
ag

e 
Pr

ec
isi

on
 (m

AP
)

BioHash
Method 1
Method 2

Figure 6: Performance over training time for Method 1 and Method 2 versus BioHash. Note that the
scale of the x-axis is semilog; it is linear from 0 to 10−2 and logarithmic for the rest of the range.

of the model helps for timeliness. For huge multi-dimensional datasets, the bigger the dataset, the
stricter the computational requirements are, and thus DevFly can be used in cases where BioHash is
too costly. This also means that DevFly is more suitable for cases where the available training data is
scarce.

4.4 Insensitivity to sample order

We also tested DevFly with ordered samples to check if training with non-random samples would
impact performance. Because the original MNIST dataset is in a random order, we sorted 10000
samples according to their labels. Then, in Method 1, m samples are randomly chosen from the
ordered data and used to form the successive connections to KCs while maintaining their labelling
order. For Methods 2 and 3, in training, all samples labelled 0 were fed to the model, then all samples
labelled 1 were fed, etc. Methods 2 and 3 may loop all samples several times before all KCs are
connected if the initial threshold is small and β is close to 1, but the samples keep ordered. The
results suggest that for all three methods, the order does not impact the performance (Figure S.5).
Hence, training with a development-like approach, which only builds new connections and keeps
the existing connections, helps to reduce the sensitivity to the order of samples. Note that FlyLSH
results are not impacted by the order of samples simply because it does not use the dataset at all in
initialising the matrix R.

5 Discussion

In this paper, we proposed a method to improve the performance of FlyLSH by developmental
initialisation of its binary connections from input dimensions to code dimensions. This was inspired
by biological data showing that in the insect mushroom body (the neural circuit that inspired FlyLSH)
the connections are not random but there is a process of development in which PNs connect to KCs.
We implement this as a simple wiring process driven by the highest values in data samples. We show
this improves the performance of FlyLSH in a range of nearest neighbour search tasks. Essentially,
FlyLSH detects features of the input space and represents them in a sparse high dimensional code.
Using random connections can result in detectors for features that do not exist in the dataset, whereas
DevFly constructs the feature detectors from samples in the dataset, hence improves the efficiency of
the coding for non-uniform dataset. The advantage provided by DevFly diminish as the feature space
gets larger (Table S.2, S.3, and S.4) as the random method covers more of the space.

A limitation of our methods that this process is not guaranteed to produce the optimal solution, but as
we have shown it can nevertheless be effective for LSH problems. There are many known methods for
optimising the (sparse) connectivity between layers to preserve locality (or other desired) properties
of the data. However most of these require multiple passes through a large number of randomly
ordered samples from the dataset and are significantly more costly to compute. The method we use
here is aimed at scenarios - such as real brains - where ‘rewiring’ is costly, and a method that requires
all weights to be adjusted for each new sample is expensive, as well as potentially disruptive as each
new input changes the existing encoding.

8



The improvement in performance of DevFly over FlyLSH is due to an overlap between the regions
with highest variance and those with highest intensity (Figure S.7). Essentially, our method assumes
that the strongest signals in the input dimensions correspond to the most relevant signals for similarity
(here defined as Euclidean distance in the input data). In CIFAR-10, the dimensions containing the
highest intensity pixels don’t overlap with the dimensions that vary the most (Figure S.7). By relying
on the highest pixel activations to produce the hash, the most important dimensions in CIFAR-10 will
be overlooked, leading to poor results. For the other datasets, where high intensity pixels coincide
with high variance, DevFly has an advantage because it disregards those areas with low variance,
whereas FlyLSH sampling randomly will weight them equally. Hence a possible way to improve
performance in this case would be to pre-process the data to extract the features relevant to similarity
- in a sense this is what we see already for SIFT10M.

Note that in some cases, hashing methods include additional steps to increase performance. For
example, multi-bin search by Kamel et al. (2015), a two-step evaluation is used to find the nearest
neighbours: (1) the hash is used to find the bins that contain similar samples, (2) nearest neighbours
are determined according to other information, which can be the raw data. The second step can
significantly improve the accuracy. Other methods compute several hash tables and use them to
compare across different results for the same query. The models used here only focus on the first step,
and were trained only by learning some samples once, so the precision is expected to be lower than
state-of-the-art hashing. Adding additional steps is still feasible to further improve the performance.

Our results also show this method is better suited to datasets that are clustered, have samples with a
relatively constant norm, and in general have higher values in those input dimensions that are relevant
to the similarity measure. For consistency with previous work we have used Euclidean distance in
the input space (after image intensity equalisation) as the ‘ground truth’ for similarity, but note this
may not be the best measure for datasets such as CIFAR-10. Of interest is whether our method could
be adapted to develop wiring from the input dimensions that show most correlated variability to the
code dimensions. For example, wiring from the changing pixels of a security camera video.

The fact that a weight in DevFly methods only updates once for the entire life of the model facilitates
the implementation of this model to hardware. For example, programmable ROM, which permits
data to be written to memory only once, can be used to save the weights while learning. It is also
easy to be implemented on an integrated circuit with minimum die size usage. The implementation
of Method 3 on hardware does not necessarily need a random number generator. In fact, Method 3
suggests that for datasets like CIFAR-10, variation that naturally results from unreliable hardware
can be an advantage for better generalisation, providing higher fault tolerance for hardware.

In the insect MB and the mammal cerebellum, sparse coding is used to extract and separate low-level
features across different neurons (Olshausen & Field, 2004; Farris, 2011). Hence, DevFly should also
be suitable to improve the detection of low-level features in shallow layers of a deep net, such as the
deep net used by Chancan et al. (2020) for place recognition. Error propagation-based approaches
have difficulties to train shallow layers due to averaging of the gradient during propagation. Although
there are some tricks like ResNet to convey more information by shortcut connections, it is worth
considering the use of an unsupervised approach to update shallower layers directly according to data
samples. Importantly, a developmental training approach provides more stable signals for deeper
layers during training as it does not alter existing connections.

A particular application of this model of interest to us in future is reinforcement learning (RL). An
approach to improve exploration efficiency in RL is to count visited states for computing the novelty.
For continuous tasks or tasks with high-dimensional observations, using the raw observation as a
state to count is not feasible. Tang et al. (2017) proposed a model that uses LSHs instead of the
raw observation for state counting which achieved “surprisingly good results". They claimed that
static hash methods such as SimHash perform worse than methods that can learn from data, such
as autoencoders. However, they also argued that it is important to keep the mapping from states to
codes relatively consistent over time, otherwise the same state could be mapped to different codes by
training. DevFly suits this application because each weight only updates once so the learned coding
dimension never changes, i.e., improving coding quality while minimising unnecessary change.

LSH nearest neighbour classification can be used for a wide range of applications from security
camera recognition to medical image analysis. By introducing a biologically inspired method we
might hope that the resulting system would more closely resemble the decisions made by humans
and hence have a positive societal impact. We also note that the simplicity of the approach makes

9



it suitable for edge computing, which could allow data (such as that from security cameras) to
be processed locally, with consequence privacy advantages in limiting data transfer. As this work
emphasises the development of connections and can belong to a special case of optimisation, it does
not have a direct negative societal impact.

Acknowledgement

Funding: This work was supported by the Huawei Technologies Co.,Ltd. [grant number
YBN2020045132]

References
Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., & Webb, B. (2016). Using an Insect Mushroom Body Circuit

to Encode Route Memory in Complex Natural Environments. PLoS Computational Biology, 12, 1–22. doi:doi:
10.1371/journal.pcbi.1004683.

Bennett, J. E., Philippides, A., & Nowotny, T. (2021). Learning with reinforcement prediction errors in a
model of the Drosophila mushroom body. Nature Communications 2021 12:1, 12, 1–14. URL: https:
//www.nature.com/articles/s41467-021-22592-4. doi:doi: 10.1038/s41467-021-22592-4.

Caron, S. J. C., Ruta, V., Abbott, L. F., & Axel, R. (2013). Random convergence of olfactory inputs in
the Drosophila mushroom body. Nature, 497, 113–7. URL: http://www.ncbi.nlm.nih.gov/pubmed/
23615618. doi:doi: 10.1038/nature12063. arXiv:NIHMS150003.

Chancan, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., & Milford, M. (2020). A Hybrid compact
neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 5, 993–1000. doi:doi:
10.1109/LRA.2020.2967324. arXiv:1910.06840.

Dasgupta, S., Stevens, C. F., & Navlakha, S. (2017). A neural algorithm for a fundamental computing
problem. Science, 358, 793–796. URL: http://science.sciencemag.org/https://www.sciencemag.
org/lookup/doi/10.1126/science.aam9868. doi:doi: 10.1126/science.aam9868.

Delahunt, C. B., & Kutz, J. N. (2019). Putting a bug in ml: The moth olfactory network learns to read mnist.
Neural Networks, 118, 54–64.

Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C. M., Saumweber, T., Huser,
A., Eschbach, C., Gerber, B., Fetter, R. D., Truman, J. W., Priebe, C. E., Abbott, L. F., Thum, A. S., Zlatic,
M., & Cardona, A. (2017). The complete connectome of a learning and memory centre in an insect brain.
Nature, 548, 175–182. URL: http://www.nature.com/doifinder/10.1038/nature23455. doi:doi:
10.1038/nature23455.

Elkahlah, N. A., Rogow, J. A., Ahmed, M., & Clowney, E. J. (2020). Presynaptic developmental plasticity allows
robust sparse wiring of the drosophila mushroom body. eLife, 9, 1–32. doi:doi: 10.7554/eLife.52278.

Farris, S. M. (2011). Are mushroom bodies cerebellum-like structures? Arthropod Structure and Development,
40, 368–379. URL: http://dx.doi.org/10.1016/j.asd.2011.02.004. doi:doi: 10.1016/j.asd.2011.02.
004.

Hayashi, T., MacKenzie, A. J., Ganguly, I., Smihula, H. M., Jacob, M. S., Litwin-Kumar, A.,
& Caron, S. J. C. (2021). Mushroom body input connections form independently of sen-
sory activity in drosophila melanogaster. bioRxiv, . URL: https://www.biorxiv.org/
content/early/2021/11/07/2021.11.06.467552. doi:doi: 10.1101/2021.11.06.467552.
arXiv:https://www.biorxiv.org/content/early/2021/11/07/2021.11.06.467552.full.pdf.

Honegger, K. S., Campbell, R. A., & Turner, G. C. (2011). Cellular-resolution population imaging reveals
robust sparse coding in the drosophila mushroom body. Journal of Neuroscience, 31, 11772–11785. URL:
http://www.r-project.org. doi:doi: 10.1523/JNEUROSCI.1099-11.2011.

Huerta, R., Nowotny, T., García-Sanchez, M., Abarbanel, H. D., & Rabinovich, M. I. (2004). Learning
classification in the olfactory system of insects. Neural computation, 16, 1601–1640.

Hutchins, C. J. (1999). Similarity Search in High Dimensions via Hashing. In the 25th VLDB Conference (pp.
311–312). volume 87.

Jegou, H., Douze, M., & Schmid, C. (2010). Product quantization for nearest neighbor search. IEEE transactions
on pattern analysis and machine intelligence, 33, 117–128.

10

https://www.nature.com/articles/s41467-021-22592-4
https://www.nature.com/articles/s41467-021-22592-4
http://www.ncbi.nlm.nih.gov/pubmed/23615618
http://www.ncbi.nlm.nih.gov/pubmed/23615618
http://arxiv.org/abs/NIHMS150003
http://arxiv.org/abs/1910.06840
http://science.sciencemag.org/ https://www.sciencemag.org/lookup/doi/10.1126/science.aam9868
http://science.sciencemag.org/ https://www.sciencemag.org/lookup/doi/10.1126/science.aam9868
http://www.nature.com/doifinder/10.1038/nature23455
http://dx.doi.org/10.1016/j.asd.2011.02.004
https://www.biorxiv.org/content/early/2021/11/07/2021.11.06.467552
https://www.biorxiv.org/content/early/2021/11/07/2021.11.06.467552
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2021/11/07/2021.11.06.467552.full.pdf
http://www.r-project.org


Kamel, A., Mahdy, Y. B., & Hussain, K. F. (2015). Multi-bin search: improved large-scale content-based image
retrieval. International Journal of Multimedia information Retrieval, 4, 205–216.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. Technical Report.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86, 2278–2323. doi:doi: 10.1109/5.726791.

Lee, T., Lee, A., & Luo, L. (1999). Development of the Drosophila mushroom bodies: Sequential generation of
three distinct types of neurons from a neuroblast. Development, 126, 4065–4076. doi:doi: 10.1242/dev.126.
18.4065.

Ma, C., Gu, C., Li, W., & Cui, S. (2020). Large-scale image retrieval with sparse binary projections. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 1817–1820).

Macleod, C., & Maxwell, G. M. (2001). Incremental evolution in ANNs: Neural nets which grow. Artificial
Intelligence Review, 16, 201–224. doi:doi: 10.1023/A:1011951731821.

Marsland, S., Shapiro, J., & Nehmzow, U. (2002). A self-organising network that grows when required.
Neural Networks, 15, 1041–1058. URL: https://www.sciencedirect.com/science/article/pii/
S0893608002000783. doi:doi: https://doi.org/10.1016/S0893-6080(02)00078-3.

Masuda-Nakagawa, L. M., Tanaka, N. K., & O’Kane, C. J. (2005). Stereotypic and random patterns of
connectivity in the larval mushroom body calyx of Drosophila. Proceedings of the National Academy of
Sciences of the United States of America, 102, 19027–19032. URL: www.pnas.orgcgidoi10.1073pnas.
0509643102. doi:doi: 10.1073/pnas.0509643102.

Mixter, J., & Akoglu, A. (2020). Growing Artificial Neural Networks, . URL: http://arxiv.org/abs/2006.
06629. arXiv:2006.06629.

Mosqueiro, T. S., & Huerta, R. (2014). Computational models to understand decision making and patternrecog-
nition in the insect brain. Current Opinion in Insect Science, 6, 80–85. doi:doi: 10.1016/j.cois.2014.10.005.

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14,
481–487. doi:doi: 10.1016/j.conb.2004.07.007.

Pehlevan, C., Genkin, A., & Chklovskii, D. B. (2017). A clustering neural network model of insect olfaction. In
2017 51st Asilomar Conference on Signals, Systems, and Computers (pp. 593–600). IEEE.

Peng, F., & Chittka, L. (2017). A Simple Computational Model of the Bee Mushroom Body Can Explain
Seemingly Complex Forms of Olfactory Learning and Memory. Current Biology, 27, 224–230. URL:
http://dx.doi.org/10.1016/j.cub.2016.10.054. doi:doi: 10.1016/j.cub.2016.10.054.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp.
1532–1543).

Platt, J. (1991). A resource-allocating network for function interpolation. Neural computation, 3, 213–225.

Preissner, S., & Herbelot, A. (2019). To be fair: a case for cognitively-inspired models of meaning. In CLiC-it.

Reilly, D. L., Cooper, L. N., & Elbaum, C. (1982). A neural model for category learning. Biological cybernetics,
45, 35–41.

Ryali, C. K., Hopfield, J. J., Grinberg, L., & Krotov, D. (2020). Bio-inspired hashing for unsupervised
similarity search. 37th International Conference on Machine Learning, ICML 2020, PartF16814, 8265–8276.
arXiv:2001.04907.

Sharma, J., & Navlakha, S. (2018). Improving similarity search with high-dimensional locality-sensitive hashing.
arXiv:1812.01844.

Smith, D., Wessnitzer, J., & Webb, B. (2008). A model of associative learning in the mushroom body. Biological
Cybernetics, 99, 89–103. doi:doi: 10.1007/s00422-008-0241-1.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., De Turck, F., & Abbeel, P.
(2017). #Exploration: A study of count-based exploration for deep reinforcement learning. In Advances in
Neural Information Processing Systems (pp. 2754–2763). volume 2017-Decem. arXiv:1611.04717.

11

https://www.sciencedirect.com/science/article/pii/S0893608002000783
https://www.sciencedirect.com/science/article/pii/S0893608002000783
www.pnas.orgcgidoi10.1073pnas.0509643102
www.pnas.orgcgidoi10.1073pnas.0509643102
http://arxiv.org/abs/2006.06629
http://arxiv.org/abs/2006.06629
http://arxiv.org/abs/2006.06629
http://dx.doi.org/10.1016/j.cub.2016.10.054
http://arxiv.org/abs/2001.04907
http://arxiv.org/abs/1812.01844
http://arxiv.org/abs/1611.04717


Treves, A., & Rolls, E. T. (1991). What determines the capacity of autoassociative memories in the brain?
Network: Computation in Neural Systems, 2, 371–397. doi:doi: 10.1088/0954-898X_2_4_004.

Wang, J., Liu, W., Kumar, S., & Chang, S. F. (2016). Learning to hash for indexing big data - A survey.
Proceedings of the IEEE, 104, 34–57. doi:doi: 10.1109/JPROC.2015.2487976. arXiv:1509.05472.

Wessnitzer, J., Young, J. M., Armstrong, J. D., & Webb, B. (2012). A model of non-elemental olfactory learning
in Drosophila. Journal of Computational Neuroscience, 32, 197–212. doi:doi: 10.1007/s10827-011-0348-6.

Xu, K., & Qiao, Y. (2018). Randomized sampling-based fly local sensitive hashing. In 2018 25th IEEE
International Conference on Image Processing (ICIP) (pp. 1293–1297). IEEE.

Yingwei, L., Sundararajan, N., & Saratchandran, P. (1998). Performance evaluation of a sequential minimal
radial basis function (rbf) neural network learning algorithm. IEEE Transactions on neural networks, 9,
308–318.

Zavitz, D., Amematsro, E. A., Borisyuk, A., & Caron, S. J. (2021). Connectivity patterns that shape
olfactory representation in a mushroom body network model. bioRxiv, . URL: https://www.biorxiv.
org/content/early/2021/08/16/2021.02.10.430647. doi:doi: 10.1101/2021.02.10.430647.
arXiv:https://www.biorxiv.org/content/early/2021/08/16/2021.02.10.430647.full.pdf.

Zhu, L., Mangan, M., & Webb, B. (2021). SPATIO-temporal memory for navigation in a mushroom body model.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (pp. 415–426). volume 12413 LNAI. URL: https://doi.org/10.1101/2020.
10.27.356535. doi:doi: 10.1007/978-3-030-64313-3_39.

12

http://arxiv.org/abs/1509.05472
https://www.biorxiv.org/content/early/2021/08/16/2021.02.10.430647
https://www.biorxiv.org/content/early/2021/08/16/2021.02.10.430647
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2021/08/16/2021.02.10.430647.full.pdf
https://doi.org/10.1101/2020.10.27.356535
https://doi.org/10.1101/2020.10.27.356535


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section
3

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] See Figure 4 and other figures in supplementary
materials.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the caption of Figure 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.
(b) Did you mention the license of the assets? [Yes] See Section 4.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

There is no new asset in this work.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Section 4.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


	Introduction
	Related works
	Methods
	Experiments
	Query time
	Search accuracy
	Learning efficiency
	Insensitivity to sample order

	Discussion

