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Abstract

We analyze graph smoothing with mean aggregation, where each node successively
receives the average of the features of its neighbors. Indeed, it has quickly been
observed that Graph Neural Networks (GNNs), which generally follow some
variant of Message-Passing (MP) with repeated aggregation, may be subject to
the oversmoothing phenomenon: by performing too many rounds of MP, the
node features tend to converge to a non-informative limit. In the case of mean
aggregation, for connected graphs, the node features become constant across the
whole graph. At the other end of the spectrum, it is intuitively obvious that some
MP rounds are necessary, but existing analyses do not exhibit both phenomena at
once: beneficial “finite” smoothing and oversmoothing in the limit. In this paper,
we consider simplified linear GNNs, and rigorously analyze two examples for
which a finite number of mean aggregation steps provably improves the learning
performance, before oversmoothing kicks in. We consider a latent space random
graph model, where node features are partial observations of the latent variables
and the graph contains pairwise relationships between them. We show that graph
smoothing restores some of the lost information, up to a certain point, by two
phenomena: graph smoothing shrinks non-principal directions in the data faster
than principal ones, which is useful for regression, and shrinks nodes within
communities faster than they collapse together, which improves classification.

1 Introduction

In recent years, deep architectures such as Graph Neural Networks (GNNs), along with the availability
of large sets of graph data, have significantly broadened the field of machine learning on graphs and
structured data, with a myriad of applications ranging from community detection [11] to molecule
classification [20], drug discovery [19], quantum chemistry [15], recommender systems [44], semi-
supervised learning, and so on. See [7, 16, 6, 46] for reviews. Most GNNs rely on the Message-
Passing (MP) framework [15, 23], with a plethora of variants. At each layer k, for each node i, a
representation z(k)

i is computed using the representations of the neighbors Ni of i in the graph at the
previous layer:

z
(k)
i = AGG

(
{z(k−1)
j }j∈Ni

)
(1)

where AGG is an aggregation function that, crucially, treats {z(k−1)
j }j∈Ni as an unordered set, to

respect the absence of node ordering in the graph. There are many variants of aggregation functions,
based on sum, mean, max, min, degree-normalized [23], attention-based [39], and so on. In this work,
we consider one of the most classical, mean aggregation:

z
(k)
i = 1∑

j aij

∑
j aijΨ

(
z

(k−1)
j

)
(2)
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Figure 1: Illustration of both beneficial smoothing and oversmoothing on Cora [32] (top) and Citeseer [14]
(bottom). From left to right: node features after performing respectively k = 0, 10, and 500 steps of mean
aggregation, along the first two principal-components (of the original unsmoothed features), for three classes of
nodes for better visibility. Figure on the right: Mean Square Error of Linear Ridge Regression (LRR) on the
smoothed features with respect to the order of smoothing k. We observe that smoothing first gather same-labels
nodes and improves learning, before they eventually collapses to a single point (note that here we show LRR for
consistency with the analysis presented in this paper, even though these are node classification tasks).

where the aij ∈ R+ are the entries of the adjacency matrix of the graph: either positive edge
weights or 0, 1 for unweighted edges, and Ψ is some function (usually a Multi-Layer Perceptron). In
other words, the aggregation process is a weighted average over the neighbors. As we will see, it
corresponds to a multiplication by (identity minus) the random walk Laplacian of the graph.

While MP is a natural and rather general framework, its limitations were quickly observed by
researchers and practitioners. Foremost among them is the so-called oversmoothing phenomenon [27]:
as the GNN gets deeper and many rounds of MP are performed, the node features z(k)

i tend to become
too similar across the graph, especially for small-world graphs with small diameter. Oversmoothing
prevents GNN from being too deep unless one is particularly careful. A non-negligible part of the
literature is dedicated to fighting oversmoothing with various strategies (see below).

On the theoretical side, oversmoothing has mostly been analyzed in the infinite-layer limit k →∞.
In this case, classical spectral analysis of graph operators such as the Laplacian can be leveraged to
indeed show that node features will always converge to some limit that carries a limited amount of
information [34]. This is particularly true for mean aggregation (2), with a constant limit across all
nodes for a connected graph, see Sec. 3. Unlike some other graph operators such as the symmetric
normalized Laplacian, where the limit still carries a small amount of information such as the degrees,
with the random walk Laplacian all information is lost in the limit (beyond a single constant).

However, there has been little research at the other end of the spectrum, showing that some smooth-
ing is useful for learning, despite this fact being intuitively and empirically obvious. Generally,
researchers show the power of GNNs for a sufficient (unbounded) number of layers, such as the
now-famous ability to distinguish graph isomorphism as well as the Weisfeiler-Lehman test and all
its variants [47, 30], the ability to compute some graph functions [28], and so on. Since these results
are valid for an unbounded number of layers, the settings adopted in these works are, by definition,
incompatible with non-informative oversmoothing. To our knowledge, there is no work that formally
models both phenomena at once: some smoothing is provably useful for learning, while too much
smoothing inevitably leads to oversmoothing.

This work aims to fill this gap. We showcase two representative exemples, of regression and
classification, on which linear GNNs (aka, here, simply Linear Ridge Regression (LRR) on smoothed
features) are subject to this double phenomenon. Note that restricting ourselves to mean aggregation
makes this claim quite non-trivial: in the absence of any “informative” node features, no information
can be recovered by mean aggregation alone. For instance, it leaves constant node features unchanged,
and the limit k → ∞ is always a constant. So the challenge is the following: node features must
carry some information, such that a finite number of steps of mean aggregation provably increases
the amount of useful information, before it loses it in the limit. See Fig. 1 for an illustration.

To show this we adopt on a model of latent space random graphs, with node features. The latter
contain partial information about the unobserved latent variables on which both the labels and the
graph structure depend. On our examples, we prove that with high probability, graph smoothing
improves performance before oversmoothing occurs. We identify two key phenomena for this:
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smoothing shrinks non-principal directions in the data faster than principal ones (Sec. 4), and shrinks
communities faster than they collapse together (Sec. 5). Although our theoretical settings are
obviously simplified, we believe it is a step towards a better comprehension of graph aggregation and
of the relationship between node features and graph structure, at the heart of many phenomena in
graph machine learning.

Related Work Oversmoothing [27] is a very active area of research in geometric deep learning,
and an exhaustive list of works would be out of scope here. The research has been mainly focused on
novel architectures to relieve it, such as residual mechanisms [26, 10], randomly dropping connections
[18], introducing local jumps [48], clever normalizations [50, 17, 5, 37] or regularizations [9], among
others. Some works have acknowledged the important role of the aggregation function, and proposed
new exotic diffusion strategies [5] or to optimize it [24]. On the theoretical side, it has been mainly
shown that repeatedly applying graph smoothing operators indeed induces convergence of the node
features [34]. In this work, we analyze a model that present both the benefits of finite smoothing
despite oversmoothing in the limit.

Our theoretical framework is based on simplified linear GNNs and random graphs that explicitely
model the dependence between labels, node features, and graph structure. Despite their simplicity,
linear GNNs, sometimes called Simplified Graph Convolutional networks (SGC), have been observed
to exhibits relatively good performance [45, 33] and are routinely used in theoretical analyses [51].
Random graphs have been used extensively to analyze graph machine learning algorithms [43, 35] and
the theoretical properties of GNNs such as stability [21, 36], transferability [25] or universality [22].
Our model crucially includes observed node features, an essential part in analyzing the smoothing
process. They have been shown to be correlated to sought-for labels in real graphs [13], and that this
fact is key in the success of GNNs. Our proof is in fact more akin to analyzing a graph diffusion
process [31]: given appropriate initial conditions (observed node features), at initial time the diffusion
produces a better signal for learning, before it eventually collapses to a single point. To the best of
our knowledge, this is the first proof of this kind in a machine learning context.

Outline We describe our framework in Sec. 2. In Sec. 3, we briefly prove the oversmoothing
phenomenon when k → ∞, which is just the Markov chains ergodic theorem in our settings. In
Sec. 4, we study a regression problem. We derive an expression that predicts with good accuracy
the optimal smoothing order k? in some cases. In Sec. 5, we study a classification problem between
two Gaussians. Although we formally prove the existence of k? > 0, deriving an explicit expression
for the risk is still open in this case. Code to reproduce the figures is available at https://github.
com/nkeriven/graphsmoothing.

2 Preliminaries

Notations. The norm ‖·‖ is the Euclidean norm for vectors and spectral norm for (rectangular)
matrices. For a psd matrix Σ, the Mahalanobis norm is ‖x‖2Σ

def.
= x>Σx. The determinant of a matrix

is |S|, and its smallest eigenvalue is λmin(S). The multivariate Gaussian distribution with mean µ
and covariance Σ is denoted by Nµ,Σ(x) = det(2πΣ)−

1
2 e−

1
2‖x−µ‖

2
Σ−1 . We will use the shortened

notationsNµ = Nµ,Id andN = N0. Our bounds will involve various multiplicative constants poly(·)
which are polynomials in their input.

SSL. In this paper, we consider Semi-Supervised Learning (SSL) [8, 23] on an undirected graph
of size n. We observe a weighted adjacency matrix A = [aij ]

n
i,j=1 ∈ Rn×n+ as well as node

features z1, . . . zn ∈ Rp at each node of the graph. We also observe some labels y1, . . . , yntr ∈ R at
training time and aim to predict the remaining labels yntr+1, . . . , yn. In a classification framework,
y ∈ {−1, 1}. For simplicity, we assume that ntr and nte = n− ntr are both in O (n)1. We denote by
Z ∈ Rn×p the matrix whose rows contain the node features, Ztr, Zte respectively its first ntr and last
nte rows, and similarly Ytr, Yte the vectors containing the observed and non-observed labels.

Graph smoothing with mean aggregation. Here we consider a simplified situation of linear GNN
with mean aggregation, that is, equation (2) with linear Ψ. Since all linear weights collapses into a

1while this is an important topic in SSL [4], here we do not focus on the number of needed labels and perform
an asymptotic analysis instead.
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single matrix, a linear GNN with k layers just corresponds to performing k rounds of mean aggregation
on the node features, then learning on the smoothed features. We denote by dA = [

∑
i aij ]j ∈ Rn+

the vector containing the degrees of the graph and D = diag(dA). Assuming that all degrees are
non-zero, performing one round of mean aggregation corresponds to multiplying Z by L = D−1A.
Note that Id− L is then the random walk Laplacian of the graph. The smoothed node features after
k rounds of mean aggregation are:

Z(k) = LkZ .

Each row, denoted by z(k)
i ∈ Rp, contains the smoothed features of an individual node. Similar to the

non-smoothed features, its first ntr and last nte rows are denoted Z(k)
tr , Z

(k)
te .

Learning. In this paper, we consider learning with a Mean Square Error (MSE) loss and Ridge
regularization. For λ > 0, the regression coefficients vector on the smoothed features is

β̂(k) def.
= argminβ

1
2ntr

∥∥∥Ytr − Z(k)
tr β

∥∥∥2

+ λ ‖β‖2 =
(

(Z
(k)
tr )>Z

(k)
tr

ntr
+ λId

)−1
(Z

(k)
tr )>Ytr
ntr

(3)

Then, the test risk is defined as

R(k) def.
= n−1

te

∥∥∥Yte − Ŷte
(k)
∥∥∥2

where Ŷte
(k)

= Z
(k)
te β̂(k) (4)

It is well known that when k →∞, the matrix Lk will converge to a matrix with constant rows, and
R(∞) def.

= limk→∞R(k) will just be close to the variance of Y , see Sec. 3 for a precise statement.
Very often, this degrades the results with respect to doing a simple linear regression: R(0) < R(∞).
Our goal is to illustrate some situations where a finite amount of smoothing provably improves the
test risk, that is, there is an optimal k? > 0 such thatR(k?) < min(R(0),R(∞)).

Random graph model. To perform a fine-grained analysis of our problem, we need a statistical
model linking the graph, the node features, and the labels. We adopt popular latent space random
graph models akin to graphons [29]. Although such models are obviously idealized, we believe that
they faithfully convey the main insights. In these models, to each node i is associated an unobserved
latent variable xi ∈ Rd with d > p (often d � p), and edge weights are assumed to be equal to
aij = W (xi, xj) where W : Rd × Rd → R+ is a connectivity kernel. Note that edges may also be
taken as random Bernoulli variables, but we do not consider this here for simplicity. Moreover, we
consider that the (xi, yi) are drawn iid from some joint distribution, and the node features are a linear
projection of the latent variables to a lower dimension: zi = M>xi for some unknown M ∈ Rd×p
that satisfies M>M = Idp. At the end of the day:

∀i, j, (xi, yi)
iid∼ P, zi = M>xi, aij = W (xi, xj) (5)

For this model, note that

Z(k) = LkZ = LkXM = X(k)M where X(k) = LkX

In other words, the smoothed node features Z(k) also correspond to a linear projection of the
(unknown) smoothed latent variables X(k). To summarize, compared to “classical” machine learning
on the (xi, yi), we do not observe directly the xi, but only a projection of them zi = M>xi. Although
we assume that M is orthogonal, we do not assume that it is “information-preserving” (e.g. it does
not satisfy the Johnson-Lindenstrauss lemma), but rather that information is lost between the x and
the z. However, we also observe the graph W (xi, xj). Our goal is illustrate how mean aggregation
may restore some of the lost information.

In the rest of the paper, we use the Gaussian kernel with a small additive term ε > 0:

W (x, y) = ε+Wg(x, y) where Wg(x, y)
def.
= e−

1
2‖x−y‖

2

(6)

The coefficient ε is added to lower-bound the degrees of the graph and avoid degenerate situations.
While this seems to be needed for our current proof technique, we use ε = 0 in Fig. 2 and 3. The
Gaussian kernel is a classical model in theoretical graph machine learning [38].
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3 Oversmoothing

In this section, we briefly examine the oversmoothing case, when k →∞ while all other parameters
are fixed. In this case, it is well-known that all node features converge even for general GNNs [34].
For completeness, we state below this result in our settings. We have the following well-known
ergodic theorem for stochastic matrices such as L.
Theorem 1 (Ergodic theorem for stochastic matrices, e.g. [2, Thm. 4.2].). Recall that dA is the
vector of degrees, let d̄ = dA/d

>
A1n. We have

Lk −−−−→
k→∞

1nd̄
> (7)

This easily allows us to prove the next result.
Corollary 1. We have the following

Ŷte
(k)
−−−−→
k→∞

(
‖v‖2

λ+‖v‖2 ȳtr

)
1nte (8)

where v = Z>d̄ and ȳtr = n−1
tr
∑ntr
i=1 yi.

Proof. We use Thm. 1 to get LkXM → 1nv
>, and (λId + vv>)−1v = v

λ+‖v‖2 .

Hence, in the limit k → ∞, the predicted labels become all equal. When λ ≈ 0, this value is, as
expected, the average of the labels in the training set ȳtr. Using simple concentration inequalities, it
is generally easy to show that R(∞) ≈ Var(y) +O (1/

√
n). In most cases, this leads to situations

where R(0) < R(∞), that is, it is better to perform regression directly on the node features. In the
next sections, we analyze some examples where smoothing provably helps.

4 Finite smoothing: Linear Regression

In this section, we consider a problem of linear regression on Gaussian data. We consider x ∼ N0,Σ

for some positive definite covariance matrix Σ, and y = x>β?, without noise for simplicity (noise
would just add an additional variance terms to all our bounds). We will first describe our main result
that holds under a certain condition that is not necessarily easy to interpret, then give a sketch of
proof in Sec. 4.1, and an example in dimension d = 2 where this assumption is satisfied in Sec. 4.2.

For a symmetric positive semi-definite matrix S ∈ Rd×d, we define the following function

Rreg.(S)
def.
= (Σ

1
2 β?)>

(
Id− S 1

2M(λId +M>SM)−1M>S
1
2

)2

(Σ
1
2 β?) ∈ R+ (9)

where we recall that M is the projection matrix to obtain the node features z = M>x. Note that it
satisfies 0 6 R(S) 6 ‖β?‖2Σ. Our result will be valid under the following assumption:

Assumption 1. We have Rreg.(Σ) > Rreg.((Id + Σ−1)−2Σ).

Note that (Id + Σ−1)−2Σ is indeed symmetric since (Id + Σ−1)−1 and Σ permute. Our main result
can be stated informally as follows, it is detailed in the next section along with a sketch of proof.
Recall that the kernel is taken as (6).
Theorem 2 (Existence of optimal smoothing for regression.). Take any ρ > 0, and suppose that
Assumption 1 holds. If ε is sufficiently small and n is sufficiently large, then with probability 1− ρ,
there is k? > 0 such thatR(k?) < min(R(0),R(∞)).

4.1 Sketch of proof

As we will see, it is easy to show that R(0) < R(∞) with high probability. Our main goal will
therefore be to show thatR(1) < R(0) with high probability under Assumption 1, which is sufficient
to show the existence of an optimal k? > 1. Using concentration inequalities, we will prove a
rigorous non-asymptotic bound forR(1). In the next section, we also derive an intuitive expression
forR(k) (although without rigorous proof), which we observe to match the numerics quite well.
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The first step is to derive a closed form expression for R(0), which is fairly easy using standard
concentration techniques for subgaussian variables. The next result is proved in App. A.1.
Theorem 3 (Regression risk without smoothing.). With probability at least 1− ρ,

R(0) = Rreg.(Σ) +O

(
‖Σ‖ ‖β?‖2 d

√
log(1/ρ)

(λ+ λmin)
√
n

)
(10)

where λmin = λmin(M>ΣM).

As expected, when p = d, M = Id and λ→ 0, we have Rreg.(Σ)→ 0 and the risk is exactly 0 in the
infinite sample limit (recall that we have assumed zero noise on the labels). When p < d however,
the limit risk is generally non-zero. The worst case is obtained when Σβ? is orthogonal to M>,
where the risk reaches its maximum at ‖β?‖2Σ = E |y|2. Since this is the variance of y, this is also
limn→∞R(∞), hence we always haveR(0) 6 R(∞) with high probability for n large enough.

Let us now turn to computing the risk after one step of smoothing k = 1. We define Σ(k) =
(Id + Σ−1)−2kΣ. The main result of this section is the following.
Theorem 4 (Regression risk with one step of smoothing.). With probability at least 1− ρ,

R(1) = Rreg.(Σ
(1)) +O

(
Cε1/5

)
+O

(
C ′ log n

√
d+ log(1/ρ)

(λ+ λmin)
√
n

)
(11)

where C = poly(‖Σ‖ , ed, |Id + Σ|), C ′ = poly(ε−1, ‖Σ‖ , ‖β?‖) and λmin = λmin(M>Σ(1)M).

This theorem gives a limiting expression orR(1) with two additional error terms. The first goes to 0
with ε and is due to the deviation from the kernel (6) to the exact Gaussian kernel Wg. The second
term goes to 0 when n→∞ and is controlled via concentration inequalities. The limit risk when
ε → 0, n → ∞ is R(1) ≈ Rreg.(Σ

(1)), which is strictly lower than Rreg.(Σ) by Assumption 1 and
proves Theorem 3. Note that, to getR(1) < R(0), we generally need ε . e−d and therefore n & ed,
which seems to be an unavoidable artifact in our current proof technique.

Let us try to better understand Assumption 1 by sketching the proof of Thm. 4. The proof relies on an
approximate description of the distribution of the smoothed node features z(1)

i = M>x
(1)
i where we

recall that the x(1)
i are the rows of X(k) = LkX . We define d(x) = |Id + Σ|−

1
2 e
− 1

2‖x‖
2
(Id+Σ)−1 and

ϕreg.(x) =
d(x)

d(x) + ε
(Σ−1 + Id)−1x . (12)

Then, using some chaining concentration inequalities for subgaussian variables (Lemma 7 in the
appendix) and properties of Gaussian distributions (Lemma 5), we can prove the following.
Lemma 1. With probability at least 1− ρ, for all i = 1, . . . , n:∥∥∥x(1)

i − ϕreg.(xi)
∥∥∥

Σ−1∥∥∥Σ−
1
2

(
x

(1)
i (x

(1)
i )> − ϕreg.(xi)ϕreg.(xi)

>
)

Σ−
1
2

∥∥∥
 .

C log n(
√
d+ log(1/ρ))√
n

(13)

where C = poly(ε−1, ‖Σ‖ , |Id + Σ|).

Hence the smoothed latent variables behaves almost like (Id + Σ−1)−1x, up to a deviation ε that is
handled in Lemma 3 in the appendix. The covariance of these data is Σ(1) = (Id + Σ−1)−2Σ, hence
we can adapt the proof of Thm. 3 to obtain Thm. 4. All details are given in App. A.2.

4.2 Intuition and exact computation in dimension d = 2

We proved above that x(1) behaves almost like (Id + Σ−1)−1x, whose covariance is Σ(1). Similarly,
by applying repeated smoothing we can extrapolate that x(k) behaves like (Id + Σ−1)−kx, such
that R(k) ≈ Rreg.(Σ

(k)). The rigorous proof of this fact becomes increasingly complicated and is
skipped here. The matrix Σ(k) has the same eigendecomposition as Σ, but where every eigenvalue λi
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Figure 2: Illustration of mean aggregation smoothing on the regression example described in Sec. 4.2. For both
subfigures: First three figures on the left, top: unobserved latent variables X(k) in dimension d = 2 where
the colors are the Y ; bottom: observed node features Z(k) = X(k)M in dimension p = 1 on the x-axis, labels
Y on the y-axis. From left to right, three order of smoothing k = 0, 1 and 2 are represented. Figure on the
right: comparison of empirical and theoretical MSE given by (14) with respect to order of smoothing k. Subfig.
a: λ1 = 2, λ2 = 1/2 (smoothing does help), Subfig. b: λ1 = 1/2, λ2 = 1 (smoothing does not help).

is replaced by λ(k)
i = (1 + 1/λi)

−2kλi. This can be interpreted as follows: when λi � 1 is large,
λ

(1)
i ∼ λi, while if λi � 1 is small, λ(1)

i ∼ λ2k+1
i (note that the constant “1” here is due to our

kernel (6), it is not inherently significant). Hence smoothing shrinks the directions of the small
eigenvalues faster than that of the large ones. Thus, if β? is mostly aligned with the eigenvectors
of large eigenvalues, shrinking the small eigenvalues may reduce unwanted noise that emerges when
projecting the node features z = M>x. On the other hand, if all eigenvalues of Σ are equal, then
Σ(k) ∝ Σ, and smoothing does not help, since in the limit λ = 0, the risk is invariant to scaling
Rreg.(aS) = Rreg.(S). Worse, we will see on an example below that smoothing can actually degrade
the performance when β? is unpropery aligned.

We illustrate this in dimension d = 2. Consider the following settings: d = 2, p = 1, Σ has two
eigenvalues λ1 � 1 and λ2 � 1, with respective eigenvectors u1 = [1, 1]/

√
2 and u2 = [−1, 1]/

√
2,

and β? is fully correlated with the first eigenvector: β? = bu1. Finally, M> = [1, 0] is the projection
on the first coordinate. This situation is represented in Fig. 2. In this case, we can compute explicitely:

R(k) ≈ Rreg.(Σ
(k)) = λ1b

2 (2λ+ λ
(k)
2 )2 + λ

(k)
2 λ

(k)
1

(2λ+ λ
(k)
1 + λ

(k)
2 )2

(14)

So, if λ(k)
2 decreases faster than λ(k)

1 , this function will first decrease to a minimum of approximately

λ1b
2

(
2λ

2λ+λ
(k?)
1

)2

(when λ(k)
2 ≈ 0), before increasing again to λ1b

2 = ‖β?‖2Σ = limn→∞R(∞).

This is illustrated in Fig. 2, for λ1 = 2 and λ2 = 1/2, where we empirically observes a minimum k?

that matches rather well the one predicted by (14).

Homophily vs. Heterophily and a failure case In graph theory, homophily refers to the concept
that linked nodes tend to display similar properties: for instance, friends on social networks have
similar preferences, and so on. In graph machine learning, it generally means that linked nodes tend
to have similar node features and labels. This concept is at the core of many graph signal processing
and graph machine learning methods: for instance, spectral clustering is akin to a low-pass filter on
the graph structure. However, it has been observed that real graphs may sometimes exhibit a low
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level of homophily [51, 5]. They are rather said to be heterophilic, a somewhat less “well-defined”
concept: in heterophilic graphs, linked nodes can be similar or dissimilar, some attributes can be
homophilic and others heterophilic, and so on.

In our settings, at first glance it seems that our very regular random graph model always results
in homophilic graphs, as the Gaussian kernel decreases with the distance between latent variables,
and the latter are strongly linked with the node features. This is partly true, however is it also
possible that nodes linked by a “strong” edge (with a high weight) have very different labels, which
can be said to be a (toy) example of heterophily. For instance, consider the 2D linear regression
example above given by (14). We have seen that when the regression vector is in the direction of the
eigenvector corresponding to a high eigenvalue, then beneficial smoothing appears, as it reduces the
noise in the observed node features (Fig. 2a). However, when the regression vector is instead in the
low-eigenvalue direction, then close-by latent variables have very different labels, and the graph is
more heterophilic. In this case, beneficial smoothing does not appear, and any smoothing strictly
degrades the MSE! (Fig. 2b) This is due to the fact that in this case the “information” in node features
vanishes faster than the noise. Of course, this is an exceedingly simple model of heterophily, and a
better understanding and modelization of this phenomenon remains an outstanding open question.

Discussion Recent literature on GNNs have adressed both oversmoothing and heterophily by clever
normalization techniques [50, 17, 5, 37], combined with quantitative metrics of these phenomena
[49, 51]. However, these tend to indiscriminately combat oversmoothing, without taking into account
potential beneficial smoothing. In future work, our analysis could help designing more detailed
normalization methods, e.g. after some estimation step that would identify which directions in the
data are squeezed by smoothing, and which of them are relevant or not for learning.

5 Finite smoothing: classification

In this section, we examine a simple classification problem for two balanced classes with Gaussian
distribution with identity covariance. The distribution of the labels and latent variables is:

(x, y) ∼ (1/2)(Nµ ⊗ {1}+N−µ ⊗ {−1}) (15)

That is, with equal probability x is drawn from Nµ and y = 1, or x ∼ N−µ and y = −1. As ‖µ‖
increases, the problem become simpler, there is an extensive literature on this problem [12, 40, 3].
Note that in this case zi are also Gaussian, with mean ν def.

= M>µ or −ν and identity covariance.

We note that this is not a difficult problem per se, and that linear regression with the MSE is certainly
not the method of choice to solve it: there are plethora of losses better adapted to binary classification
such as the binary cross-entropy (left for future investigations), or even other dedicated methods: a
Spectral Clustering algorithm on the graph alone would be able to perform the classification task
under some mild hypotheses [40, 1] (without using the node features!). Nevertheless, let us recall
that our main goal is to illustrate the smoothing phenomenon, and as we will see, the interpretation
here will be quite different from the previous section. Our main result is the following.

Theorem 5 (Existence of optimal smoothing for classification.). Take any ρ > 0. If ε is sufficiently
small, and ‖µ‖ , n are sufficiently large, and

∥∥M>µ∥∥ > 0, then with probability 1 − ρ, there is
k? > 0 such thatR(k?) < min(R(0),R(∞)).

Note that we have assumed ‖µ‖ to be sufficiently large here. However, we do not assume that∥∥M>µ∥∥ is large (just non-zero), and the classification problem on the zi alone may be very difficult.
The rest of this section presents a sketch of proof and intuitions behind this theorem.

5.1 Sketch of proof and intuition

As in the previous section, it will be easy to show thatR(0) < R(∞) with high probability, and we
will prove that R(1) < R(0) with high probability. Again, we start by providing an expression for
R(0). For s ∈ R+, we define the following function

Rcl.(s) =
(s+ λ)2 + s ‖ν‖2

(s+ λ+ ‖ν‖2)2
(16)
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The next result is proved in App. B.1. Recall that ν = M>µ.
Theorem 6 (Classification risk without smoothing.). With probability at least 1− ρ,

R(0) = Rcl.(1) +O

(
‖ν‖4 p

√
log(1/ρ)√
n

)
(17)

When ‖ν‖ → ∞, the risk goes to 0, as expected, since the Gaussians get further and further
away. However, when ‖ν‖ → 0, which can happen either when ‖µ‖ is small or when M becomes
orthogonal to µ, the risk goes to 1, its worst value, for random guesses. Since it is also the variance
of y, we have indeedR(0) 6 1 ≈ R(∞) with high probability for n large enough.

Let us now turn to computing the risk after one step of smoothing k = 1. The main result of this
section is the following.
Theorem 7 (Classification risk with one step of smoothing.). With probability at least 1− ρ,

R(1) = Rcl.(1/4) +O
(
C

(
ε

1
4 +

1

ε3
e−
‖µ‖2

4

))
+O

(
C ′(log n)(

√
d+ log(1/ρ))√
n

)
(18)

where C = poly(‖µ‖ , ed) and C ′ = poly(ε−1, ‖µ‖).

This theorem show that R(1) ≈ Rcl.(1/4) with two additional error terms. First of all, a quick
function study shows that Rcl.(1/4) < Rcl.(1) when ‖ν‖ > 0, which shows Thm. 5 when the errors
are small enough. The last error term goes to 0 when n → ∞ and is controlled via concentration
inequalities. The first one is small when ε is small and ‖µ‖ is large enough. We remark that, unlike
the previous section where the error terms vanished in the limit ε → 0, n → ∞, here there is a
non-zero error term due to ‖µ‖ whose explicit expression is still open. Hence, for instance, the
discrepancy between the empirical observations and the theory in Fig. 3 compared to Fig. 2. Note
that, as in the previous section, we need at least ε . e−d and n & ed. However, here we also need
‖µ‖ &

√
d. This rate is similar to early analyses of Gaussian Mixture learning [12], although they

have been greatly improved since [3].

As previously, we define here dµ(x)
def.
= 2−d/2e−

‖x−µ‖2
4 , and

ϕcl.(x) =
dµ(x)

(
x+µ

2

)
+ d−µ(x)

(
x−µ

2

)
2ε+ dµ(x) + d−µ(x)

(19)

The following result is similar to Lemma 1 and is shown in App. B.2.
Lemma 2. With probability at least 1− ρ,

sup
i=1,...,n

∥∥∥x(1)
i − ϕcl.(xi)

∥∥∥
sup

i=1,...,n

∥∥∥x(1)
i (x

(1)
i )> − ϕcl.(xi)ϕcl.(xi)

>
∥∥∥
 .

poly(ε−1) log n(
√
d+

√
log(1/ρ))√

n
(20)

Let us now examine ϕcl.(x) closer. In the limit ε→ 0, ϕcl.(x) is a convex combination of (x+ µ)/2
and (x− µ)/2. Hence, when x ∼ Nµ, with high probability x is close to µ and dµ(x)� d−µ(x),
and in this case, ϕcl.(x) ≈ x+µ

2 , whose distribution is Nµ,Id/4. The same reasoning applies to the

other community. Hence, up to some error O
(
e−‖µ‖

2/4
)

due to the communities getting closer
to each other, the smoothed features in each community have the same mean but a reduced
variance Id/4, thus the limit risk Rcl.(1/4) in our limit expression for R(1). In other words, the
communities shrink faster than they collapses together, and this reflects on the projected node
features. An illustration of this phenomenon is given in Fig. 3. All proof details are in App. B.2.

5.2 Numerical illustration

In light of the proof of the theorem above, when xi belongs to the first community and x(1)
i ≈

ϕcl.(xi) ≈ xi+µ
2 , applying a second smoothing would transform it to ϕcl.(xi)+µ

2 ≈ xi+3µ
4 , that
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Figure 3: Illustration of mean aggregation smoothing on a classification task with two Gaussians with dimensions
d = 2, p = 1, where M projects on the first coordinate. First three figures on the left, top: density of
unobserved latent variables X(k) in dimension d = 2; bottom: density of observed node features Z(k) =

X(k)M in dimension p = 1. From left to right, three order of smoothing k = 0, 1 and 2 are represented (recall
that the smoothing is agnostic to the labels, we cannot perform in-community smoothing). Figure on the right:
comparison of empirical and theoretical MSE given by (21) with respect to order of smoothing k. For low k, the
node features communities are indeed more and more separated, and learning improves.

is, it keeps the same mean but now has variance Id/16. If we look at the proof, the error term

O
(
e−‖µ‖

2/4
)

would become in this case e−
‖µ‖2

2(1+1/4) . While this expression is far from being exact
and we do not a rigorous proof here (which seems far more complex than the case k = 1), we can
infer some approximate expression:

R(k) ≈ Rcl.(4
−k) +O

(
k−1∑
`=0

e
− ‖µ‖2

2(1+4−`)

)
(21)

Unlike the expression (14), the termRcl.(4
−k) is strictly decreasing when k increases. Oversmoothing

is modelled by the error term, for which we do not have an exact expression, and for which we
suspect that the quality of approximation degrades as k increases. Nevertheless, we evaluate this
expression on an example in Fig. 3 (with an adjusted multiplicative constant for the error term in
(21)) and find that it is a reasonably good approximation, at least for small k.

6 Conclusion and outlooks

While the oversmoothing phenomenon k → ∞ has been well characterized, until now there has
been no theoretical studies that rigorously modelled both the benefits of finite smoothing before
oversmoothing kicks in. In this paper, we adopted a simplified context of linear GNNs with mean
aggregation and random graphs with partially observed latent variables, and proved on two rep-
resentative examples the co-existence of both phenomena. We identified two mechanisms for the
benefits of mean aggregation: it tends to shrink noisy principal components faster than meaningful
ones, and it tends to gather nodes of the same community faster than they collapses together. We
obtained theoretical expressions up to some error terms that matched the numerics quite well on
simple synthetic data.

There are many outlooks to this work. First and foremost, deriving inspiration from our theoretical
observations to design better methods of setting the order of smoothing in practical application is a
major challenge. As seen in Fig. 1 in the introduction, both mechanisms that we identified seem to
come into play on real data. However, many quantities appearing in the risks (14) and (21) need to be
estimated. Second, extending our theory to more complex loss functions (especially for classification)
and non-linear GNNs is crucial. Finally, our work is a step towards a better understanding of the
relationship between node features and graph structure, which is at the heart of (over)smoothing,
heterophily, and all graph machine learning methods. A more general theory, and more realistic
models of random graphs to analyze it, is still an open question.
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