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Abstract

Recently, contrastive learning attracts increasing interests in neural text generation
as a new solution to alleviate the exposure bias problem. It introduces a sequence-
level training signal which is crucial to generation tasks that always rely on auto-
regressive decoding. However, previous methods using contrastive learning in
neural text generation usually lead to inferior performance. In this paper, we analyse
the underlying reasons and propose a new Contrastive Neural Text generation
framework, CONT. CONT addresses bottlenecks that prevent contrastive learning
from being widely adopted in generation tasks from three aspects – the construction
of contrastive examples, the choice of the contrastive loss, and the strategy in
decoding. We validate CONT on five generation tasks with ten benchmarks,
including machine translation, summarization, code comment generation, data-
to-text generation and commonsense generation. Experimental results show that
CONT clearly outperforms the conventional training framework on all the ten
benchmarks with a convincing margin. Especially, CONT surpasses previous the
most competitive contrastive learning method for text generation, by 1.50 BLEU
on machine translation and 1.77 ROUGE-1 on summarization, respectively. It
achieves new state-of-the-art on summarization, code comment generation (without
external data) and data-to-text generation. 2

1 Introduction

Contrastive learning has achieved great success in representation learning [6, 44, 45]. It also attracts
enormous interests in neural text generation recently. By creating positive and negative examples in
response to unseen (or erroneous) inputs [23], contrastive learning offers a new solution to alleviate
the exposure bias problem [3, 35] – an autoregressive model trained only using the ground truths
exhibits inferior generalization performance. Apart from that, contrastive learning also introduces a
sequence-level loss in addition to the conventional token-level language model loss with maximum
likelihood estimation (MLE). This is crucial to most conditional text generation tasks (e.g., machine
translation and summarization) which are evaluated on sequence-level metrics (e.g., BLEU [32]).

However, it is non-trivial to get contrastive learning working on neural text generation. If we simply
use from-batch positive-negative samples following simCLR [6], and adopt the InfoNCE loss [13, 45]
which ignores the difference between negative samples (§2.2; Naive CL), the improvement over
non-contrastive baselines on generation tasks is rather marginal. Previous work attempts to build
better contrastive samples by disturbing the ground truth [10, 23, 30] in the discrete space or the
continuous embedding space, but when it comes to text generation tasks, their performance gains are
still far from satisfactory.

⇤This work was done during Chenxin An’s internship at Shanghai AI Laboratory
2The code is available at https://github.com/Shark-NLP/CoNT

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Figure 1: A case study from IWSLT’14 De-En translation task. The naive setting uses from-batch
samples following SimCLR [6]. Compared with the naive method, CONT both incorporates self-
generated samples and from-batch samples. The border color indicates the acutual distance between
the ground truth and the contrastive example.

In this work, we propose a new contrastive neural text generation framework, CONT. CONT does
three different things from previous frameworks that make suboptimal use of contrastive learning.
First, CONT samples contrastive examples from its own predictions (e.g., through beam search
algorithm). This training procedure exposes the model to its mistakes in the inference stage and
effectively alleviate the exposure bias problem. We show a comparison between negative samples
in CONT and in Naive CL in Figure 1. Second, we use a N-pairs contrastive loss which gives a
fine-grained treatment to the contrastive examples based on their sequence-level scores (e.g., BLEU).
It allows the model to fully leverage the supervision from the ground truth example (and its own
generated examples) to learn a better sequence-level distance function between the source and the
target representation. Third, we directly incorporate the learned sequence similarity score from the
distance function into the inference stage. This helps the model to find a better global configuration,
than merely follows the language model likelihood objective in decoding.

We validate CONT on various important conditional language generation tasks (§4.2), including
machine translation, summarization, code comment generation, data-to-text generation, and common-
sense generation. Extensive experiments demonstrate that CONT greatly improve the conventional
MLE baselines and significantly outperforms all previous contrastive generation models. CONT
establishes new state-of-the-art results on summarization, code comment generation (without external
data), and data-to-text generation. Particularly, on data-to-text generation and commonsense gen-
eration, CONT achieves on-par performance with the powerful large pre-trained models: T5-large,
T5-3B [36] with only the base version of T5 while maintaining the efficiency of lightweight models.

2 Background

2.1 Neural Conditional Text Generation

A neural sequence-to-sequence model [43] M = (f, g) generates the target sequence conditioning
on a source sequence, where f and g denote the encoder and decoder, respectively. It is typically
trained using the language model objective with the maximum likelihood estimation (MLE). Given
a source sequence x = {xi}Mi=0 and its target sequence y = {yi}Ni=0, we minimize the following
negative log likelihood (NLL) loss:

LNLL = �
NX

t=1

log p✓(yt|x,y<t). (1)

At training stage, it predict the next word based on previous ground truth input y<t 2 y, but at
inference stage, tokens of y<t are predicted by itself, this introduces the exposure bias.

2.2 Naive Contrastive Learning for Text Generation

Contrastive text generation introduces a contrastive term in addition to the original NLL loss. In
Naive CL, we simply follows SimCLR [6] and use from-batch negative samples B in the InfoNCE
loss [13, 45]:
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Figure 2: An overview of CONT. zx, zy is the representation of source sequence x and its target
sequence y. y0 and y00 with their representations zy0 , zy00 are returned by beam search algorithm.
The feature representations come from pooling the output of the encoder (source sequence) or decoder
(target sequence). Our training objective is obtained by comparing by all contrastive samples in pair.
The decoding objective not only considers the likelihood of each sequence, but also the sequence
similarity score modeled in training.

LNCE = � log
exp(cos(zx, zy)/⌧)P

y02B exp(cos(zx, zy0)/⌧)
, (2)

where zx, zy, zy0 2 Rd denote the vector representation of input x, ground truth y and negative
sample y0 2 B, respectively. ⌧ is the temperature and cos(·, ·) defines the cosine similarity. Intuitively,
the contrastive loss LNCE seeks to learn a similarity function that drives the distance between the
source sequence representation zx and its ground-truth target sequence representation zy closer.

3 Method

In this section, we present our new contrastive neural text generation framework, CONT . CONT ad-
vances the Naive CL (§2.2) in three aspects. First, CONT uses negative examples from its own
predictions (§3.1) to construct the set B. Second, CONT replaces the InfoNCE loss (Eq.2) with a
N-pairs contrastive loss (Eq.3) which leverages a finer-grained supervision given by the the sequence-
level scores of all pairs (§3.2). Third, CONT incorporates the learned similarity function into its
inference score directly (§3.3). An overview of our approach can be found in Figure 2.

3.1 Contrastive Examples from Predictions

Instead of only using contrastive examples from the same batch [6], we propose to add new contrastive
examples from the model’s own predictions. Kalkstein et al. [18] point that using diverse contrastive
samples helps the generalization ability of the model. Therefore, we use the diverse beam search
algorithm [49] to create contrastive examples from the top-K list of the model’s lastest predictions and
then append them to the from-batch samples to form the contrastive examples. A warm-up stage where
the model is only supervised by LNLL is recommended as it guarantees the quality of the examples
from the model’s prediction. These self-generated contrastive examples alleviate the model’s exposure
bias. Besides, with the model’s performance improving gradually, this approach creates high-quality
hard negative examples that is known to be important in contrastive learning [16, 37].

3.2 N-Pairs Contrastive Loss

One major drawback of the InfoNCE loss is that it has the same treatment for all negative samples. In
text generation, this means that the relative difference between the ground truth and the contrastive
examples is ignored, while this can be easily quantified using a sequence level score (e.g. BLEU) and
the quality of these contrastive examples varies. To mitigate this problem, we propose to employ a
pair-wise margin loss. We first rank all the contrastive examples based on an oracle function o(·,y),
which computes a sequence-level score with the ground truth y. Given a input sequence x, the
ground truth y, and a set of K contrastive samples B = {y1,y2, · · · ,yK}, we can create a series
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Algorithm 1 Inference algorithm: Given an input sequence x, a contrastive generation model
M̂ = (f̂ , ĝ); return the output sequence.

1: procedure BEAMSEARCH(g, Hx, b) . beam search algorithm
2: return Text, likelihood, logits of the b hypotheses
1: procedure INFERENCE(Ĝ, x)
2: Hx  f̂ (x), b beam size, ↵ balance factor 2 (0, 1)
3: y1:b

,P
1:b
y ,H

1:b
y = BEAMSEARCH(ĝ,Hx, b) . Get b candidates with beam search

4: zx, z
1:b
y  Avg(Hx),Avg(H1:b

y ) . Avg(·) is an average pooling function
5: D

1:b
y  Cosine distance between zx and representation of hypotheses z1:by

6: P
1:b
y  Likelihood of hypotheses returned by beam search

7: k = argmaxi=1..b{↵ ⇤Di
y + (1� ↵) ⇤Pi

y}
8: return yk

of example pairs (y+
,y�) 2 P , where + and � are determined by their ranks.3 The contrastive

learning objective is formulated as a margin loss according to their cosine similarity to the source
representation zx:

LN-Pairs =
X

(y+,y�)2P

L(y+
,y�) =

X

(y+,y�)2P

max{0, cos(zx, zy�)� cos(zx, zy+) + ⇠}. (3)

We further set ⇠ = � ⇤ (rank(y�) � rank(y+)) following Zhong et al. [57] to reflect the quality
difference in these pairs, where � is a hyperparameter controlling the the strength. Full details of the
training algorithm can be found in Algorithm 2, Appendix B.

3.3 Inference with Learned Similarity Function

Previous inference algorithm for contrastive text generation method [23] usually remains the same
with non-contrastive approaches. In CONT, we incorporate the similarity function learned in the
N-pairs contrastive loss into the decoding stage. Despite such a inference objective can be generalized
to other contrastive learning methods as long as the vector representations for source and target
sequence pair exist, the design of CONT can better make use of the learned similarity function (§4.3).
The decoding objective in CoNT is to find the sequence y⇤ that maximizes both the learned similarity
score and the conventional language model likelihood:

y⇤ = argmax
ŷ

{↵ · cos(zx, zŷ) + (1� ↵)
nY

t=0

p(ŷt|x, ŷ<t)}, (4)

where zx, zŷ 2 Rd is the vector representation of x, ŷ, and ↵ is the hyperparameter that balances the
contribution of each term. In most cases, ↵ can be directly set to 0.5, tuning ↵ on the validation set
will usually get better results. Algorithm 1 illustrates the inference stage in CoNT in details.

The relationship between different modules of CONT is summarized in Figure 3.

src-trg similarityself-generated
samples performance pairwise loss

contribute to

inference

src-trg similarity
self-generated

samples performance pairwise loss

contribute to

global scoring

inference

 

Figure 3: Relationship between different modules in CONT. Both the design of the pairwise loss
function and self-generated samples could contribute the source-target similarity function that com-
putes the sequence-level score at inference stage. With the performance improved, self-generated
contrastive samples tend to be more indistinguishable.

3P contains C2
K pairs constructed from B, ground truth y, and from-batch examples.
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4 Experiments

We experiment CONT on 5 downstream tasks with 10 different benchmarks. Our contrastive learning
framework supports most sequence-to-sequence models at multiple scales. Concretely, we experiment
CONT on 4 kinds of base models: (a) Transformer-samll (60M) [47] and transformer-base (220M),
(b) T5-small (60M) and T5-base (220M) [36], (c) CodeT5-base (220M) [51] , (d) PEGASUS-large
(560M) [55]. Details of our experimental setup for each benchmarks can be found in Appendix C.

On WMT’16 Ro-En (machine translation) and XSum (summarization) which are also used in previous
contrastive text generation frameworks [23], results show that CONT is able to substantially improve
the MLE baseline and clearly outperform all previous contrastive baselines by a large margin. We
also build CONT on state-of-the-art (SOTA) baselines: PEGASUS-large (summarization), CodeT5-
base (code comment generation) and achieve new SOTA. Moreover, on data-to-text generation and
commonsense generation, CONT also shows its superior performance over strong MLE baselines.

4.1 Baselines

1. Naïve CL [6]: Naive CL denotes the naive contrastive learning approach that treats the ground
truth as the positive sample and the target sequences from the same mini-batch as the negative
examples. The training object of naive CL takes the form of Eq. 2. We also implement Naive CL
with N-Pairs contrastive loss, it can be viewed as an ablation study when setting beam size of
CONT to 0 during training.

2. SSMBA CL [30]: Compared with naive CL, SSMBA builds more positive samples via disturbing
the ground truth in the discrete space. Concretely, SSMBA first randomly masks 25% tokens in
the target sequence and then reconstructs the ground truth with a masked language model BERT.

3. Dropout CL [10]: Dropout CL enhances the positive samples by using dropout mechanism on the
target sequence. We use the default dropout rate of standard transformer decoder [47] and input
the ground truth to the decoder twice.

4. CLAPS [23]: CLAPS is previous the best contrastive learning framework for conditional text
generation task. In order to provide more challenging contrastive examples, CLAPS propose to
simultaneously create extra positive and negative pairs by adding perturbations to the ground truth
sequence in the continuous embedding space.

5. CONT (this work): CONT is the contrastive neural text generation framework proposed in
this work. We implement its InfoNCE version by treating ground truth as positive sample and
self-generated samples are also treated as negative samples.

4.2 Quantitative Results

Machine Translation For machine translation, we evaluate CONT on WMT 2016 Romanian-to-
English translation task (WMT’16 Ro-En), WMT 2014 English-to-German translation task (WMT’14
En-De) and IWSLT 2014 German-to-English translation task (IWSLT’14 De-En). We use BLEU
as the evaluation metric. Results in Table 1 (rows with gray background) indicates our model
CONT significantly improves the traditional maximum likelihood estimation training and inference
framework. On WMT’16 Ro-En, CONT outperforms previous the best contrastive learning approach
CLAPS by 1.50 BLEU and exceeds the MLE baseline by 2.70 BLEU with the same base model
T5-small. We also compare the infoNCE loss used in previous methods with the N-Pairs margin loss
described in Eq. 3. Results show that the N-pairs contrasting samples generally works better than
dividing all samples into predefined positive-negative categories. Similar to CLAPS and Naive CL,
only incorporating contrastive learning into training improves the performance of T5-small baseline
on WMT’16 Ro-En to 30.55 (+2.34) BLEU. If we further add learned target-source similarity as
decoding target as Eq. 4, the result is further boosted to 30.91 BLEU. We observe that the benefits of
introducing sequence similarity into inference is more obvious on IWSLT’14 De-En – the additional
decoding target improves the vanilla beam search algorithm up to 0.86 BLEU.

Summarization For summarization, we use the XSum [28] dataset collected from BBC News
whose reference summaries are provided by human writers. We also evaluate CONT on a multi-
document summarzation dataset multi-news [9] consisting of news articles from the site newser.com.
Compared with the common summarization task, multi-document is more challenging where the
model need to automatically summarize several articles and usually has to handle long input sequence
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Table 1: BLEU on WMT’16 Ro-En, IWSLT’14 De-En and WMT’14 En-De translation tasks. For
IWSLT’14 De-En and WMT’14 En-De, we use Transformer-small (Tr-small) and Transformer-base
(Tr-base) as baselines. For WMT’16 Ro-En, we add a pre-trained baseline T5-small. w/o seq sim
means we use the origin beam search without target-source representation similarity. The best results
in each block are underlined and the best results are in bold. Rows in gray denotes the contrastive
learning based model strongly outperforms its MLE version. Results with † are token from [23].

Model
WMT’16 Ro-En IWSLT’14 De-En WMT’14 En-De

Tr-small T5-small Tr-small Tr-base
MLE 25.78 28.21 34.18 27.30

Contrastive loss: InfoNCE loss

Naive CL 25.49 27.79 34.45 27.28
SSMBA CL 25.98 28.48 34.32 27.16
Dropout CL 26.01 29.10 34.41 27.34
CLAPS† 23.59 29.41 – –
CONT 25.74 29.64 34.46 27.35

Contrastive loss: N-Pairs loss

Naive CL 26.15 29.86 34.47 27.41
w/o seq sim 26.27 29.74 34.26 27.45

CONT 27.70 30.91 35.55 28.04
w/o seq sim 27.42 30.54 34.69 27.77

Table 2: ROUGE score on Summarization datasets. Results with † are token from [23] and results
with ⇤ are from [55]. Current state-of-the-art models and the best results are in bold. Previous SOTA
means the best results before CoNT.

Model
XSum Multi-News

R-1 R-2 R-L R-1 R-2 R-L

T5-small 36.10 14.72 29.16 42.36 15.34 21.91
T5-SSMBA CL 36.58 14.81 29.68 42.06 14.98 21.73
T5-Dropout CL 36.82 14.93 29.26 42.43 15.32 21.95
T5-CLAPS† 37.89 15.78 30.59 – – –
T5-Naive CL 36.34 14.81 29.41 42.20 15.18 21.78
T5-Naive CL (N-Pairs) 37.76 15.48 30.15 43.04 15.83 22.03
T5-CONT 39.66 16.96 31.86 44.08 16.39 22.58

Previous SOTA⇤ 47.61 24.57 39.44 47.52 18.72 24.91
PEGASUS (base)⇤ 39.79 16.58 31.70 42.24 13.27 21.44
PEGASUS (large)⇤ 47.21 24.56 39.25 47.52 18.72 24.91
PEGA-CONT 47.76 24.69 39.46 48.68 19.29 24.58

and target sequence. Experimental results are in Table 2. The first block includes the performance of
different contrastive frameworks with T5-small. On XSum, it shows that our proposed model strongly
outperform previous contrastive frameworks by about 2.0 ROUGE-1 score. We also illustrate our
method is not restricted to the small model. By employing CONT on state-of-the-art base model
PEGASUS, it is able to establish new state-of-the-art on the two summarization benchmarks.

Code Comment Generation Code comment generation aims to generate an English description
for a function-level code snippet. We test our method on two widely used datasets Java and Python
from the CodeXGLUE benchmark [27]. Results are shown in Table 3. Our model is built upon state-
of-the-art pre-trained model on program language model CodeT5-base. CodeT5-Dual-Gen means
they further involve a comment-to-code task which is the best model on Python and Java without
using external data. We also include the results of earlier strong pre-trained baselines: PLBART
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Table 3: BLEU on two code comment generation
datasets Java and Python. Results with † and ⇤

are from [51]

Model Python Java

CodeBERT † 19.06 17.65
PLBART † 19.30 18.45
CodeT5 † 20.01 20.31
CodeT5-Dual-Gen† 20.11 20.41

With N-Pairs CL
CodeT5-Naive CL 20.26 20.31
CodeT5-CONT 20.43 20.56

With External Training Data
CodeT5-Multi-Task† 20.36 20.46
REDCODER⇤ 21.01 22.94

Table 4: BLEU on data-to-text generation dataset
WikiBio. We run our model three times and
report the mean and variance of the BLEU metric.
Results with † are token from [25] and results
with ⇤ are from [2].

Model BLEU

Table NLM † 34.70 ±0.36
vanilla Seq2Seq † 42.06 ±0.32
StructureAware † 44.89±0.33
R2D2 ⇤ 46.23±0.15
T5-small † 46.02±0.36

With N-Pairs CL
T5-small-Naive CL 46.50±0.24
T5-small-CONT 47.17±0.19

Table 5: Results on the dev set and test set Totto. PAR is short for PARENT score. Dev Set (Non)
means the non-overlap subset of the dev set. results with † are reported in [17].

Model
Dev Set (All) Dev Set (Non) Test Set (All)

BLEU PAR BLEU PAR BLEU PAR BLEURT

BERT-to-BERT† 44.0 52.6 34.8 46.7 44.0 52.6 0.121
T5-large† 48.1 57.3 39.8 52.8 – – –
T5-3B† 48.4 57.8 40.4 53.3 49.5 58.4 0.230
T5-base† 47.7 57.1 39.6 52.6 – – –
T5-base-CONT 49.2 59.4 41.5 55.0 49.1 58.9 0.238

and CodeBERT. We also report some data augmentation methods in the third block of Table 3.
CodeT5-Multi-Task makes use of training datasets of other program languages. REDCODER [34]
uses retrieval to enhance the task with open-source code base and achieve the bset results on this task.
Our model is orthogonal to these methods and clearly outperforms all baselines without external data.

Data-to-text Generation Data-to-text generation aims to produce text from non-linguistic input.
The first benchmark we use is WikiBio [22] consisting of biography pairs from English Wikipedia
where the infobox is treated as input sequence, and the target sequence is the first sentence of the
biography. Totto [33] is also collected from Wikipedia whose input is a table with its highlighted
cells and target sequences are professionally annotated by human. Results on WikiBio is shown
in Table 4, the performance of some popular baselines (first block) are token from [25]. R2D2 [2],
using XLNet [53]-large as base model, is previous state-of-the-art model on WikiBio. We experiment
CONT on T5-small, and results show that we exceed R2D2 by about 0.94 BLEU. The test set and
dev set of Totto are both split into two parts - overlap and non-overlap. The non-overlap part contains
out-of-domain samples from the training set. The test set of Totto is invisible and we report the
results on dev set and test set by the feedback of the Totto authors. We also add PARENT [8] and
BLEURT [40] as evaluation metrics. PARENT is a word-overlap based metric that designed to
evaluate the factual accuracy of generation results. BLEURT is trained under human supervision and
correlates well with human judgement. As we can see from Table 5, by comparing our model with
different T5 variants, we show that CONT is able to greatly outperform the large version of T5 even
built on a T5-base model. Compared with previous state-of-the-art model T5-3B, our model still
show advantage in PARENT and BLEURT.

Commonsense Generation The task of commonsense generation aims to explicitly test the ability
of machines on commonsense reasoning. The source sequence consists of a set of concepts and
the target sequence is a fluent sentence mentioning all the input concepts. We evaluate CONT
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Table 6: Results on CommonGen. Results with † are reported in [24]. The metrics used in the official
leaderboard are in bold. Human performance is also reported as an upper bound.

Model ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

GPT-2† 16.85 39.01 33.92 23.73 26.83 12.19 23.57 79.09
BART† 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35
T5-large† 21.74 42.75 43.01 31.96 31.12 15.13 28.86 92.29
T5-base† 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67
T5-base-CONT 20.96 43.15 42.60 31.42 32.05 15.96 28.95 96.55

Human 36.72 54.45 52.55 46.49 38.79 37.64 52.43 99.33

Table 7: BLEURT and BERTScore on the test set of 4 translation and summarization datasets. The
first column of each dataset represents BLURT and the second column is BERTScore.

Model IWSLT’14 De-En WMT’16 Ro-En XSum Multi-News

MLE 0.137 62.28 0.272 69.09 -0.552 44.10 -0.568 17.21
CONT 0.167 63.38 0.281 69.33 -0.462 46.78 -0.505 17.47

on the CommonGen [24] benchmark with a hidden test set and the final results is obtained with
the help of the authors of CommonGen. In addition to the mostly used metrics, CIDEr [48] and
SPICE [1], concerning to evaluating semantic faithfulness, are highlighted by the leaderboard of
commonGen. In Table 6, we demonstrate that the lightweight T5-base model is able to greatly benefit
from our contrastive learning framework. Moreover, CONT not only surprisingly outperforms its
MLE baseline but also surpass the large version of T5 in terms of CIDEr and SPICE metrics.

Advanced Evaluation Metrics Considering the training efficiency of CONT, we mainly select the
lexical matching metrics as oracle measurement function. To verify that the improvement brought by
CONT is not due to the over-fitting of lexical matching metrics, we further evaluate generated text
with advanced metrics based on neural models: BERTScore [56] and BLEURT [40]. For BERTScore,
we use their roberta-large_L17_no-idf_version and for BLEURT we use the default setting provided
on their github4. Results are shown in Table 7. The base model used on IWSLT’14 De-En is
transformer small and on the other datasets we select T5 as the base model. For all datasets CONT
also make non-trivial improvements in terms of the two neural metrics. Particularly, CONT improve
the results of MLE model on IWSLT’14 De-En by 0.03 BLEURT and improve the results of MLE
model on XSum by 2.68 BERTScore.

To get more accurate and convincing results, we also conduct a ranking based human evaluation on
two mainstream tasks: machine translation (IWSLT’14 De-En) and text summarization (XSum) with
60 samples for each tasks. Following Cheng and Lapata [7], we hired 2 annotators asking them to
rank the given candidate output based on fluency, coherence, and their personal preference ( rank
these systems 1st, 2nd, and so on) and we calculate the average ranking. For each sample, there are
four candidates consist of a human-written reference, a sequence from MLE model, a sequence from
Naive CL, and a sequence from CONT. Table 8 shows the results of our human evaluation. Generally
CONT outperform all baseline systems according to the average ranking.

4.3 Discussion

Discrimination of Hard Negative Samples To deeply look into the learnt representations, we
visualize target sequences, that is trained by MLE, naive CL and CONT on IWSLT’14 De-En, with
the t-SNE algorithm [46]. The visualized sequences consist of three groups of target sequence: a)
batch targets that is mostly unrelated to ground -truth target; b) beam search hypothesis that could be
of high/low quality; c) ground truth target. As can be seen in Figure 4a, the representations trained by
MLE are distributed almost uniformly in the vector space, and there are no clear boundary between
one group to another. With naive CL, we find there is clear boundary between batch tokens and

4https://github.com/google-research/bleurt
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Table 8: Results of human evaluation on the test sets of translation and summarization.

Model
Machine translation Summarization

1st 2nd 3rd 4th avg rank 1st 2nd 3rd 4th avg rank

Ground truth 0.88 0.08 0.0 0.04 1.2 0.52 0.25 0.12 0.12 1.86
CONT 0.07 0.5 0.31 0.12 2.48 0.27 0.4 0.2 0.13 2.2
Naive CL 0.02 0.25 0.4 0.33 3.04 0.12 0.22 0.38 0.28 2.82
MLE 0.03 0.17 0.28 0.52 3.29 0.1 0.13 0.3 0.47 3.13

Batch Targets

Beam Search

Ground Truth

(a) MLE

Batch Targets

Beam Search

Ground Truth

(b) Naive CL

Batch Targets

Beam Search

Ground Truth

(c) CONT
Figure 4: T-SNE experiments on IWSLT’14 De-En. Each point represents a target sequence. Batch
target is blue; beam search hypothesis is orange; ground-truth sequence is green. Darker points
indicate sequences with higher BLEU.

others. Naive CL does contribute to discriminating related sequences with unrelated ones, but it still
cannot distinguish hypothesis of high quality from the others. Even without contrastive learning, the
generation model trained has already pulled from-batch samples away from the ground truth and the
naive contrastive learning procedure is only to make the margin more obvious. As for CONT , a set
of hypotheses of low quality are excluded from the neighborhoods of the ground-truth targets. The
experimental results verifies that CONT enables better representations in sequence generation.

Sequence Likelihood and Sequence Similarity We also perform ablation study on our ranking
objective and self-generated negative samples on IWSLT’14 De-En with Transformer-small as base
model. For the ranking objective, we compare our N-pairs contrastive objective with InfoNCE
with increasing ↵. Figure 5a that N-pairs contrastive loss consistently outperform InfoNCE. With
↵ 2 [0.3, 0.7], N-pairs contrastive loss can benefit target-source representation similarity, a sequence-
level score in inference process, while InfoNCE cannot. For the sampling strategy, we compare
CONT with naive CL and vanilla MLE. CONT use self-generated hypotheses as negatives while
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(a) Relationship between ↵ and BLEU with dif-
ferent contrastive loss.
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Figure 5: Ablation study on the balance factor ↵ on the test set of IWSLT’14 De-En where ↵ = 0.0
means selecting output only relying on likelihood and ↵ = 1.0 means choosing output with only
sequence similarity.
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naive CL only use samples within the same mini-batch. Figure 5b shows that contrastive learning
with self-generated hypotheses is more effective than using batch samples. With ↵ 2 [0.3, 0.7],
CONT gains about 1.0 BLEU improvements, while naive CL is only improved with less than 0.5
BLEU.

5 Related Work

Contrastive Learning Contrastive learning [6, 13, 39] aims to learn a better representation via
contrasting positive and negative samples. It also has been widely used in the field of natural
language processing [10, 14, 20, 21, 59]. Jiang et al. [15] show that contrastive learning helps
learn a robust pre-trained model and Lee et al. [23] first introduce contrastive learning into text
generation to mitigate the exposure bias problem. They propose an adversarial method to build more
challenging positive-negative samples in additional to the from-batch samples. SimCTG [42] is also
a contrastive framework on text generation. Our work differs from SimCTG from motivation and
method. They introduce contrastive leanrning mainly to encourage diversity which is important in
dialogue systems. And they perform token-level contrastive learning while our method focus on
sequence-level contrastive examples.

Adopting binary supervision in contrastive loss is originally proposed in FaceNet [39] which helps
learn the face recognition of the same person in various positions and angles. Given an anchor face
image x, a positive sample x+ (usually the same person) and a negative sample x� from other people,
the triplet loss makes x

+ become close to x and maximize the distance between x and x
�. The

pair-wise contrastive loss has also been widely used in metric learning Chen and Deng [5], Kim et al.
[19], Wang et al. [50]. Sohn [41] extend the triplet loss to multi-class and multi-pair. Recent work
thinks the margin value between samples should not be fixed. Zhou et al. [58] divide the sample set
into multiple subsets and assign different margin value to different subsets. Ha and Blanz [12], Zhong
et al. [57] suggests dynamically adjust the margin value via a determination metric.

Post-generation Re-ranking Models Post-generation re-ranking re-score the multiple output
sequences via training another re-ranking module. Noisy Channel Modeling (NCM) [29, 54] is a
widely-used re-ranking scheme for neural machine translation. NCM parameterizes the noisy channel
probability with a sequence-to-sequence model. There also various structures to instantiate the
re-ranking module: Gulcehre et al. [11] select the candidate with a language model, Bhattacharyya
et al. [4] leverage an energy-based model in NMT and Liu and Liu [26], Salazar et al. [38] re-score
candidates with masked language models such as BERT. Despite this paradigm achieves impressive
results while having a large size of candidate sequences, most of post-generation re-ranking systems
trade efficiency and simplicity for accuracy.

6 Conclusion

We introduce a new contrastive neural text generation framework called CONT. It models an addi-
tional contrastive learning objective to provide a sequence-level supervision for auto-regressive neural
text generation models. We explore three shortcomings that limit the development of contrastive
learning on text generation tasks. Results on five generation tasks with ten different benchmarks
show that CONT not only clearly beats all previous contrastive generation models, but also boosts
the performance of state-of-the-art large models to a new level. CONT practically does not have a
negative impact on decoding speed. Nevertheless, CONT suffers from the training inefficiency prob-
lem. In general, the total training time of CONT is about 2⇠4 times more than that of a MLE based
model. A detailed discussion and some speed-accuracy trade-off tricks can be found in Appendix B.
Speeding up the training stage without losing accuracy is the next important step to improve CONT.
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