
Organization. Appendix A and Appendix B contain the missing proofs for Section 2, namely:

• Appendix A.1 contains the proofs for the ONESTRIKE algorithm from Section 2.1.

• Appendix A.2 contains the proofs required for Section 2.2.

• Appendix B describes and analyzes the TWOSTRIKESUA algorithm, which is an extension
of the TWOSTRIKES to the case where the ε is not known.

• Appendix B.2 proves the Ω(log(1/ε)) randomized lower bound.

Appendix C presents the missing proofs for Section 3, namely:

• Appendix C.1 contains the proofs of Theorem 3.1 and Theorem 3.2.

• Appendix C.2 contains the proof of Theorem 3.2 for the case where the objective function is
separable.

• Appendix C.3 shows a syntactic characterization of generalized covering problems over
half-spaces, which allows the extension of our results to problems such as facility location,
as mentioned in Section 3.3.

• Appendix C.4 proves the Ω(1/ε) randomized lower bound.

A Missing Proofs from Section 2

First, we prove Lemma 2.1 (Cache Reset Overhead):

Proof of Lemma 2.1. Every page that is being brought into the cache during the cache reset must
have been swapped out in the previous phase after serving its request. The lemma follows.

A.1 Proofs for the ONESTRIKE algorithm

Next, we prove Theorem 2.2, the competitive ratio of the ONESTRIKE algorithm.

First, we introduce some helper lemmas. The first lemma is a standard property of caching that helps
lower bound the cost of any feasible solution:

Lemma A.1 (Lower Bound on the Optimal Cost). The number of page swaps in any feasible solution
(and therefore, in an optimal solution) is at least

∑
i≥2

∆i/2, where ∆i is the number of clean pages
requested in phase i.

Proof. For any i ≥ 2, a total of k +∆i distinct pages are requested across phases i− 1 and i, which
means that any feasible solution must perform at least ∆i page swaps across these two phases. The
lemma follows by summing over all the values of i.

At any time t, recall that a good eviction is one where the evicted page is not requested in the current
phase after time t. Once evicted, such a page does not return to the cache for the rest of the phase.
This allows us to relate good evictions to clean requests:

Lemma A.2 (Good Evictions vs. Clean Requests). The number of good evictions in phase i is at
most ∆i, the number of clean pages requested in the phase.

Proof. Note that a total of k + ∆i pages are requested across phases i − 1 and i. After ∆i good
evictions in phase i, all subsequent requests in phase i are for the remaining k pages. The cache can
hold all these k pages, so there cannot be any further page swaps in phase i.

Finally, we relate good evictions to FIF pages:

Lemma A.3 (Good Evictions vs. FIF Pages). At any time t, if the cache contains k pages and the
FIF page is evicted to serve a request for a page not currently in the cache, then this is necessarily a
good eviction.

14

Proof. Excluding the currently requested page, at most k − 1 other pages can be requested after
time t in the current phase. Now, note that the k − 1 pages in the cache other than the FIF page are
requested before the FIF page after time t. The lemma follows.

Now, we are ready to prove Theorem 2.2:

Proof of Theorem 2.2. By Lemma 2.1 and Lemma A.1, it suffices to prove that the expected number
of page evictions of the algorithm in a given phase is at most ∆/ε, where ∆ is the number of clean
pages requested in the phase. By Lemma A.3 and the ε-accuracy condition, every eviction is a good
eviction with probability at least ε. It follows by Lemma A.2 that the expected number of page
evictions made by the ONESTRIKE algorithm in the current phase is at most ∆/ε.

A.2 Proofs for the TWOSTRIKES algorithm

Now we provide the missing proofs for establishing the competitive ratio of the TWOSTRIKES
algorithm.

Proof of Lemma 2.8. Suppose p1, p2, . . . , pk are the unmarked pages in the cache at the beginning
of the epoch in reverse chronological order of their first requests in this segment. The pages that are
not requested at all are placed at the beginning of this sequence, but can be arbitrarily ordered relative
to each other. As in Lemma 2.7, the number of clean requests for pages is at most ∆̂, else the epoch
ends. So by Corollary 2.6, the expected number of evictions of type (ii) among pages p1, p2, . . . , p2N
is again at most O(∆̂ log(1/ε)), using the same argument as in Lemma 2.7.

But what about evictions of type (ii) among the remaining pages p2N+1, . . . , pk? Suppose at time
t, the first request for page pit causes a type (ii) eviction of a page in p2N+1, . . . , pk. At this point
in time, the cache must be full (else we would not have evicted a page), so the STRIKER algorithm
is active at the end of time t. By Lemma 2.5, the probability that some page pj has been evicted
by MARKER by time t is at most ∆̂/it ≤ ∆̂/2N = ε2/2 for any j ∈ {2N + 1, . . . , k}. By the union
bound, none of the pages pj for j ∈ {2N + 1, . . . , k} satisfying j ∈ [it − 1/ε2, it) have been evicted
by MARKER by time t, with probability at least 1/2.

Supposse this event happens. Since STRIKER is now active, one of the following events must happen
in the next 1/ε2 requests:

Ea: There is a type (i) eviction in these 1/ε2 requests, or
Eb: The STRIKER procedure is active for all these 1/ε2 requests.

In either case, we can charge to the corresponding event. By the first termination condition for the
explore segment, event Ea happens at most 2∆̂ times. By second termination for the explore segment,
event Eb happens at most ∆̂ times. Putting these together, we conclude that the expected number of
type (ii) evictions for pages p2N+1, . . . , pk is O(∆̂), and the total expected type (ii) evictions are at
most O(∆̂ log(1/ε)).

Proof of Lemma 2.9. We show that E[BAD-STRIKES] ≤ ε∆̂, whereupon Markov’s inequality im-
plies the claimed probability bound. Indeed, fix any page p, and consider the expected number of
times that the counter BAD-STRIKES is incremented due to p. For any such increment, p must be
predicted twice when it is not the FIF page in a cache containing k pages. This is because if p is the
FIF page in any of these predictions, then by Lemma A.3, p is a good eviction. By the termination
condition for STRIKER, it is active mode for at most N = ∆̂/ε2 steps. So the expected contribution
of p to BAD-STRIKES is at most

∑
i≥1

i ·
(
N

2i

)
· 1

k2i
≤
∑
i≥1

1

2i
·
(
N

k

)2i

≤
(
N

k

)2

<

(
∆̂

ε2k

)2

since N =
∆̂

ε2
.

By linearity of expectation, the expected value of the counter BAD-STRIKES is at most(
∆̂

ε2k

)2

· k = ∆̂ · 1
ε4
· ∆̂
k

< ε∆̂, since
∆̂

k
< ε5.

15

Relaxing the prediction model. The proof of Lemma 2.9 assumes that the probability that a page p
is predicted when it is not the FIF page in a cache containing k pages is at most 1/k. Now we show
that the lemma still holds assuming this probability is at most 1/kεc for any c > 0. The proof is
essentially the same, but we need to change a few constants. Now, the expected contribution of p to
BAD-STRIKES is at most∑

i≥1

i ·
(
N

2i

)
· 1

(kεc)2i
≤
∑
i≥1

1

2i
·
(

N

kεc

)2i

≤
(

N

kεc

)2

.

By linearity of expectation, it suffices to show that this quantity is at most ε∆̂/k. This holds if we
set N = ∆̂/εd and assume ∆̂ < ε2c+2d+1k. (In the proof of Lemma 2.9, we assumed c = 0 and set
d = 2.) Under these modifications, all of the other proofs still hold; this lemma was the only one
relying on an upper bound on the probability of a page being incorrectly predicted as FIF.

Proof of Lemma 2.10. We call a strike good if it applies to a page that will not be requested in the
rest of the phase. Let S denote the number of pages struck by at least one good strike during the
explore segment. It suffices to show S ≥ ∆̂ with probability 1−O(ε). If this happens, then at the
beginning of the exploit phase, there are at least ∆̂ good pages that have either been struck or evicted,
hence we would not run out of unmarked pages before the epoch ends.

Suppose the explore segment ends due to the first termination condition: STRIKER has made 2∆̂
evictions. By Lemma 2.9, with probability 1− ε, at most ∆̂ of these evictions are bad, so at least ∆̂
of them are good, as desired.

Now suppose the explore segment ends due to the second termination condition: STRIKER has been
in active mode for N = ∆̂/ε2 requests. Whenever STRIKER is in active mode, it strikes the predicted
page (and possibly evicts it). Conditioned on the past, each strike is good with probability at least ε,
so the expected number of good strikes is at least εN = ∆̂/ε. Some of these good strikes apply to
the same page, but STRIKER evicts any page with two strikes, so among the good strikes, at most ∆̂
of them apply to pages that already have a good strike. Thus, we have E[S] ≥ ∆̂/ε− ∆̂.

We now finish with a concentration bound; we want to show that S < ∆̂ with probability O(ε).
Letting δ = 1− 1/(1/ε− 1) and µ = ∆̂/ε− ∆̂, by a standard Chernoff bound, we have

Pr(S < ∆̂) = Pr(S < (1− δ)µ) ≤ exp(−δ2µ/2) ≤ exp((4− 1/ε)/2) = O(ε),

assuming ε is sufficiently small.

B Caching with ε-Accurate Predictions for Unknown ε

In this section, we formally describe the TWOSTRIKESUA algorithm for unknown accuracy ε. At a
high level, the algorithm is similar to the one described for known ε: each phase begins with a cache
reset to ensure that the pages in the cache are precisely those requested in the previous phase. Within
a phase, there is an outer loop that iterates over epochs, and an inner loop that iterates over blocks.
Each epoch has a fixed value of ∆̂, which is initialized to 1 at the beginning of the phase. When
the number of clean pages requested in an epoch exceeds ∆̂, we end the epoch, perform a cache
reset, and start a new epoch after doubling the value of ∆̂. Each block fixes the value of ε̂, which is
initialized to 1/2 (or any constant strictly less than 1) at the beginning of an epoch. The condition for
ending a block and starting a new one is more complicated than that for an epoch because there is no
direct way for the algorithm to detect if ε < ε̂. We will describe this condition later as part of the
internals of a block.

Within a block starts, TWOSTRIKESUA first checks if ε̂ ≤ (∆̂/k)1/5; if so, it simply runs randomized
marking in the rest of the current epoch. Else if ε̂ > (∆̂/k)1/5, the block now is partitioned into
an explore segment followed by an exploit segment. In the explore segment, the algorithm makes
∆̂∗ good evictions of pages that have been predicted twice (for some ∆̂∗ ≤ ∆̂), and also learns an
additional candidate set of pages that contains at least ∆̂− ∆̂∗ pages which would be good evictions.
In the following exploit segment, the algorithm runs randomized marking on these candidate pages to
actually make ∆̂− ∆̂∗ good evictions.

The algorithm requires the procedures MARKER and STRIKER. Both are identical to their respective
counterparts from Section 2, where ε was known. The explore and exploit segments are largely
identical to their counterparts as well, with minor changes that we now describe.

16

The Explore Segment. The explore segment is almost identical to its counterpart from Section 2.
The only difference is the following: If BAD-STRIKES (initially 0 at the beginning of each block)
reaches ∆̂, then we end the current block, perform a cache reset, and start a new block after squaring
the value of ε̂. The details are in Algorithm 5.

Algorithm 5: Explore Segment
5.1 foreach time t do
5.2 let pt be the requested page and st the predicted page at time t
5.3 if pt is strike-evicted (i.e., STRIKE(pt) = 2) then increment BAD-STRIKES
5.4 if BAD-STRIKES = ∆̂ then square ε̂ and start a new block else set STRIKE(pt)← 0
5.5 call STRIKER
5.6 call MARKER
5.7 terminate explore segment if STRIKER evicts pages ≥ 2∆̂ times, or STRIKER in active

mode for N := ∆̂/ε̂2 requests

The Exploit Segment. The exploit segment is also almost identical to its counterpart from Section 2.
As was the case for the explore segment, the only difference is that if BAD-STRIKES reaches ∆̂, then
we end the current block, perform a cache reset, and start a new block after squaring the value of ε̂.
The details are in Algorithm 6.

Algorithm 6: Exploit Segment
6.1 let S ← striked pages from the explore segment
6.2 mark all pages in the cache not in S; pages in S are unmarked
6.3 if pt requested at time t then
6.4 if pt is strike-evicted (i.e., STRIKE(pt) = 2) then increment BAD-STRIKES
6.5 if BAD-STRIKES = ∆̂ then square ε̂ and start a new block else set STRIKE(pt)← 0
6.6 call MARKER if MARKER returns FAIL then square ε̂ and start a new block

Note that the TWOSTRIKESUA algorithm, unlike TWOSTRIKES from Section 2, does not call
ONESTRIKE at any point. Instead, whenever BAD-STRIKES reaches ∆̂, it squares ε̂ and starts a new
block.

B.1 Competitive ratio of the TWOSTRIKESUA algorithm

In any block, there are three types of page evictions in the randomized algorithm:

(i) evictions performed by STRIKER in the explore segment,
(ii) evictions performed by MARKER in the explore segment, and

(iii) evictions performed by MARKER in the exploit segment

We can bound all three types using the same proofs from from Section 2, except we replace ε with ε̂.
Furthermore, the page swaps during the cache reset at the beginning of a block can be charged to the
page evictions in the previous block. So, we have arrived at the following bound:

Lemma B.1. The expected number of evictions in a block is O(∆̂ · log(1/ε̂)).

Now we address the main difference between TWOSTRIKESUA and TWOSTRIKES, which is the
block structure due to our guess ε̂ of ε. At a high level, Lemma B.1 allows us to bound the cost
incurred in blocks where ε̂ > ε, because squaring ε̂ creates a geometric series over these blocks. For
blocks where ε̂ < ε, we now show that the probability of starting a new block is at most 2ε̂. This will
in fact allow us to bound the total cost over these blocks by O(∆̂).

Lemma B.2. Pr[BAD-STRIKES ≥ ∆̂] ≤ ε̂.

Proof. The proof is identical to that of Lemma 2.9, except with ε̂ instead of ε.

Lemma B.3. In any block where ε̂ ≤ ε, the probability that MARKER declares FAIL is O(ε̂).

17

Proof. The proof is identical to that of Lemma 2.10, except with ε̂ instead of ε. More specifically,
suppose the explore segment ends due to the first termination condition (i.e., STRIKER has made 2∆̂
evictions). Then by Lemma B.2, with probability 1− ε̂, at most ∆̂ of these evictions are bad so at
least ∆̂ of them are good, as desired.

Now suppose the explore segment ends due to the second termination condition: STRIKER has been
in active mode for N = ∆̂/ε̂2 requests. Whenever STRIKER is in active mode, it strikes the predicted
page (and possibly evicts it). Conditioned on the past, each strike is good with probability at least
ε, so the expected number of good strikes is at least εN = ε∆̂/ε̂2 ≥ ∆̂/ε̂. The rest of the proof is
identical to that of Lemma 2.10, except with ε̂ instead of ε.

Lemma B.4. If ε̂ ≤ ε, then the probability that the algorithm starts a new block is at most O(ε̂).

Proof. There are two ways for the algorithm to start a new block: if BAD-STRIKES = ∆̂, or
MARKER returns FAIL due to a request to a page not in the cache when the cache has k marked pages.
By Lemma B.2 the former occurs with probability at most ε̂, and by Lemma B.3, the latter occurs
with probability O(ε̂). The lemma follows by a union bound.

Finally, we are ready to prove the competitive ratio of the algorithm.
Lemma B.5. The competitive ratio of TWOSTRIKESUA is O(log(1/ε)).

Proof. We need to show that the expected number of evictions in a phase is O(∆ log(1/ε)). Since
∆̂ ≤ 2∆ in each epoch and doubles between consecutive epochs in the same phase, it suffices to show
that the expected number of page swaps in an epoch is O(∆̂ log(1/ε)). By Lemma B.1, the expected
number of evictions in all blocks of a single epoch satisfying ε̂ ≥ ε2 is bounded by O(∆̂ log(1/ε)).
By Lemma B.4, for any block with ε̂ < ε, the probability that the algorithm starts a new block is
O(ε̂). Thus, the expected number of swaps due to all blocks satisfying ε̂ < ε2 is at most

O(∆̂) ·
∞∑
i=1

ε2
i

· log 1

ε2i−1 ≤ O(∆̂) ·
∞∑
i=1

(2ε2)i log
1

ε
= O(∆̂).

B.2 Caching Lower Bound

Theorem B.6. Any (randomized) algorithm for caching with ε-accurate suggestions is Ω(log(1/ε))-
competitive.

In our lower bound construction, we will consider the following prediction model: at each time t,
with probability ε (independently of the past), the algorithm receives a good prediction (i.e., it is told
the FIF page in its cache). With probability 1 − ε, it does not receive any prediction at all. This
prediction model is stronger than ε-accurate suggestions, because any algorithm, given the former,
can generate the latter by choosing a page uniformly at random from its cache in the 1− ε case. Thus,
a lower bound in this model also holds for the ε-accurate prediction model.

Proof. Let n = k + 1 and consider the sequence that generates each request uniformly at random
among the k + 1 pages. Set ε = 1

k ln k . A phase is defined as a maximal contiguous subsequence of
requests that contains exactly k distinct pages. Consider an arbitrary phase and let X be the random
variable denoting its length. Note that E[X] is the expected number of times we would need to sample
from a uniform random variable over a space of size k + 1 until we obtain k distinct outcomes. By a
slight modification of the coupon collector analysis, we can show that X = Θ(k log k) with constant
probability.

Now partition the input into groups of 3 consecutive phases (starting at the beginning), and consider
any such group. Notice that every phase contains all but one of the k+1 pages, and that missing page
is the first page requested in the subsequent phase. So for each page p suggested to the algorithm
during the first phase, p is either requested in the second phase, or p is the first request of the third
phase.

Furthermore, the probability that the algorithm does not receive any good suggestions during the
second or third phase is (1− ε)Θ(k log k) = Θ(1). So overall in this group, with constant probability,
the algorithm only receives good suggestions in the first phase, and these suggestions do not reveal

18

anything about the third phase (except for possibly the first request). So when serving the third phase
of the group, the algorithm incurs a miss at every step with probability 1/(k + 1), for an expected
cost of Ω(log k) to serve the group. On the other hand, the optimal solution can serve each phase by
evicting the single page that does not appear in that phase, thereby incurring O(1) cost per group.

C Missing Proofs from Section 3

C.1 Analysis of SET-HEDGE and COVER-HEDGE

Proof of Theorem 3.1. Fix any instance of online set cover and an optimal solution OPT for it. Let
ALGt be the solution of the SET-HEDGE algorithm after covering et. Consider the potential function

Φt := (2/ε) ·
∑

S∈OPT\ALGt c(S),

the cost of optimal sets not already picked by the algorithm by time t (and scaled by 2/ε). If ∆Φt

and ∆c(ALGt) denote the change in potential and the algorithm’s cost due to sets picked at time t,
we claim

E[∆Φt +∆c(ALGt)] ≤ 0; (1)

and because Φt is always non-negative, this shows that the total expected cost of sets picked by the
algorithm is at most Φ0 = (2/ε) · c(OPT).

To prove (1), condition onHt−1: if et is already covered by ALGt−1 we have ∆Φt = ∆c(ALGt) = 0.
Else if et is not previously covered, ∆c(ALGt) = c(gt)

c(st) · c(s
t) + (1− c(gt)

c(st)) · c(g
t) ≤ 2 c(gt). The

potential change is

E[∆Φt | Ht−1] = −(2/ε) ·
∑

S∈OPT\ALGt−1:et∈S

c(S) · Pr[st = S | Ht−1] · c(g
t)

c(S)
.

By the ε-accuracy condition, the probability values sum to at least ε. Hence E[∆Φt | Ht−1] ≤
−(2/ε) · c(gt) · ε. So (1) holds irrespective ofHt−1 (and hence unconditionally).

Proof of Theorem 3.2. The proof closely mimics that of Theorem 3.1; the potential is now

Φt := (2/ε) ·
[
c(x∗ ∨ xt)− c(xt)

]
.

This is clearly non-negative (by monotonicity), and starts off at Φ0 ≤ (2/ε) · c(x∗). Again it suffices
to show that E[∆Φt +∆c(ALGt)] ≤ 0. First, a direct calculation shows

E[∆ c(ALGt)] ≤ 2 · (c(xt−1 ∨ gt)− c(xt−1)).

To bound the expected potential decrease, for any vector v, setting xt ← xt−1 ∨ v decreases the
potential by

(2/ε) ·
[
c(x∗ ∨ xt−1)− c(xt−1)− (c(x∗ ∨ xt−1 ∨ v)− c(xt−1 ∨ v))

]
,

which is non-negative by submodularity. Let Et be the event that pt ≤ x∗, and let F t be the event that
we make the choice of setting xt ← xt−1 ∨ pt. If both events happen, we have c(x∗ ∨ (xt−1 ∨ pt)) =
c(x∗ ∨ xt−1), and the expression above becomes

(2/ε) · (c(xt−1 ∨ pt)− c(xt−1)).

Hence
E[∆Φt | Ht−1] ≤ −(2/ε) · (c(xt−1 ∨ pt)− c(xt−1)) · Pr[Et ∩ F t | Ht−1].

Moreover, the two events are independent. By the ε-accuracy property, we know that Pr[Et |
Ht−1] ≥ ε. Finally, substituting the probability of F t from the algorithm description, we get
E[∆Φt +∆c(ALGt) | Ht−1] ≤ 0, which proves the claim.

19

C.2 Separable Objective Functions

We consider the same setting as Section 3.2, with the only difference being that instead of requiring
that the objective function c : Rd → R≥0 is submodular, in this section, we require it to be separable.
In particular, we assume there exist functions c1, . . . , cd : R→ R≥0 such that every ci is monotone,
and for all x ∈ Rd, c(x) =

∑
i ci(xi). Note that this implies c itself is monotone.

Recall the COVER-HEDGE algorithm, given a subset Kt and suggestion pt:

Let gt be the minimum-cost increment—i.e., gt ← argmin{c(xt−1∨g) | g ∈ Kt}.
Then set xt ← xt−1 ∨ pt with probability c(xt−1∨gt)−c(xt−1)

c(xt−1∨pt)−c(xt−1) , and xt ← xt−1 ∨ gt
otherwise.

We claim that it is still 2/ε-competitive in this setting. Note that when c is separable, for any vectors
x, v ∈ Rd, we have c(x ∨ v) =

∑
i ci(xi ∨ vi).

Theorem C.1. Given ε-accurate suggestions, the COVER-HEDGE algorithm is 2/ε-competitive for
any generalized covering problem where the objective is separable.

Proof. Like that of Theorem 3.2, this proof closely mimics that of Theorem 3.1. The potential is the
same as the one used to prove Theorem 3.2:

Φt :=

(
2

ε

)
·
[
c(x∗ ∨ xt)− c(xt)

]
=

(
2

ε

)
·

[
d∑

i=1

ci(x
∗
i ∨ xt

i)− ci(x
t
i)

]

=

(
2

ε

)
·

 ∑
i:x∗

i ≥xt
i

ci(x
∗
i)− ci(x

t
i)

 .

This is non-negative (by monotonicity) and starts off at Φ0 ≤ (2/ε) · c(x∗). Again it suffices to show
that E[∆Φt +∆c(ALGt)] ≤ 0. To bound the expected potential decrease, for any vector v, setting
xt ← xt−1 ∨ v decreases the potential by

(2/ε) ·
[
c(x∗ ∨ xt−1)− c(xt−1)− (c(x∗ ∨ xt−1 ∨ v)− c(xt−1 ∨ v))

]
= (2/ε) ·

 ∑
i:x∗

i ≥xt−1
i

ci(x
∗
i)− ci(x

t−1
i)−

 ∑
i:x∗

i ≥xt−1
i ∨vi

ci(x
∗
i)− ci(x

t−1
i ∨ vi)

 ,

which is non-negative since x∗
i ≥ xt−1

i ∨ vi implies x∗
i ≥ xt−1

i , and every ci is monotone. The
remainder of the proof is identical to that of Theorem 3.2.

C.3 Properties of Generalized Covering Problems

The component-wise maximum property is satisfied for covering programs (i.e., where the constraints
are a⊺x ≥ b, and all entries of a, b are non-negative). However, we now show that the property is
also satisfied when a has one negative coordinate.
Fact C.2. Suppose a ∈ Rn, b ∈ R, and consider the set K = {x : a⊺x ≥ b, x ≥ 0}. Assume K
contains at least one non-zero vector. Then K is closed under max if and only if a has at most one
negative coordinate.

Proof. We first prove the backward direction. Let x, y ∈ Rn satisfy a⊺x ≥ b and a⊺y ≥ b, let
z = x ∨ y. If a has no negative coordinates, then clearly a⊺z ≥ b. Now suppose there exists i such
that ai < 0. Then we have

−aizi + b ≤ max

∑
j ̸=i

ajxj ,
∑
j ̸=i

ajyj

 ≤∑
j ̸=i

ajzj ,

20

which implies a⊺z ≥ b, as desired.

For the forward direction, if n = 1, the statement is trivial. So for contradiction, without loss of
generality, we assume a1, a2 < 0. Let αi = −ai, N = {i : ai < 0}, and P = {i : ai > 0}. Now the
condition a⊺x ≥ b is equivalent to

α1x1 + α2x2 +
∑

i∈N\{1,2}

αixi + b ≤
∑
i∈P

aixi. (2)

Consider the following cases:

1. P = ∅: In this case, if b ≥ 0, then the zero vector is the only one that could possibly satisfy
(2), contradicting the assumption that K contains at least one non-zero vector. If b < 0, then
consider u, v ∈ Rn with all zeroes except u1 = −b/α1 and v2 = −b/α2. Then w = u ∨ v
does not satisfy (2), since the left-hand side is −b− b+ b = −b > 0 while the right-hand
side is 0.

2. P ̸= ∅: Define u, v ∈ Rn such that the following conditions hold: ui = vi = 0 for all
i ∈ N \ {1, 2}, ui = vi for all i ∈ P , (u1, u2) = (ε/α1, 0), (v1, v2) = (0, ε/α2), and∑

i∈P aiui =
∑

i∈P aivi = b+ε for some arbitrary ε > |b| (so b+ε > 0). Then w = u∨v
does not satisfy (2), since the left-hand side is ε+ ε+ b = b+ 2ε while the right-hand side
is b+ ε and ε > 0.

C.4 Lower Bound for Set Covering

Theorem C.3. Any algorithm for online set cover with ε-accurate suggestions is Ω(1/ε)-competitive,
even for the fractional case (or allowing randomization).

As we did for the proof of Theorem B.6, we will consider the following prediction model: at each
time t (independently of the past), the algorithm receives a good prediction (i.e., a set included in the
optimal solution) with probability ε. With probability 1− ε, it does not receive any prediction at all.
Again, the algorithm can generate predictions on its own in the 1− ε case.

Proof. Within 1/ε steps, there is a constant probability that the algorithm receives no suggestion. So
we define a sequence of 1/ε requested elements as follows: the first element e1 is contained in 21/ε

sets. Each subsequent element et is contained in exactly half of the sets that contain et−1, chosen
uniformly at random. In expectation, the algorithm spends a total of 1/2 on sets that contain et and
do not contain et′ for any t′ > t. Since these spent amounts are disjoint, over 1/ε steps, the algorithm
spends log(21/ε)/2 = ε/2 in expectation, while an optimal solution spends 1 by picking the single
set containing 1/ε elements.

We can scale this construction by making disjoint copies of this instance, and in each copy, there is a
constant probability that the algorithm spends Ω(1/ε) while the optimal solution spends 1.

21

	Missing Proofs from Section 2
	Proofs for the OneStrike algorithm
	Proofs for the TwoStrikes algorithm

	Caching with -Accurate Predictions for Unknown
	Competitive ratio of the TwoStrikesUA algorithm
	Caching Lower Bound

	Missing Proofs from Section 3
	Analysis of Set-Hedge and Cover-Hedge
	Separable Objective Functions
	Properties of Generalized Covering Problems
	Lower Bound for Set Covering

