
Augmenting Online Algorithms
with ε-Accurate Predictions

Anupam Gupta
Carnegie Mellon University
anupamg@cs.cmu.edu

Debmalya Panigrahi
Duke University

debmalya@cs.duke.edu

Bernardo Subercaseaux
Carnegie Mellon University
bsuberca@cs.cmu.edu

Kevin Sun
Duke University

ksun@cs.duke.edu

Abstract

A growing body of work in learning-augmented online algorithms studies how
online algorithms can be improved when given access to ML predictions about the
future. Motivated by ML models that give a confidence parameter for their predic-
tions, we study online algorithms with predictions that are ε-accurate: namely, each
prediction is correct with probability (at least) ε, but can be arbitrarily inaccurate
with the remaining probability. We show that even with predictions that are accurate
with a small probability and arbitrarily inaccurate otherwise, we can dramatically
outperform worst-case bounds for a range of classical online problems including
caching, online set cover, and online facility location. Our main results are an
O(log(1/ε))-competitive algorithm for caching, and a simple O(1/ε)-competitive
algorithm for a large family of covering problems, including set cover, network
design, and facility location, with ε-accurate predictions.

1 Introduction

The study of online algorithms with ML predictions has gained significant traction in the ML and
algorithms research communities in recent years. The basic premise is that by having access to
predictions about the future, one can design online algorithms that significantly outperform worst-case
bounds. In practice, ML models producing such predictions often come with a confidence estimate
which can be roughly interpreted as a probability ε of the prediction being accurate—we call these
ε-accurate predictions. Thus, it is natural to ask: can we design online algorithms whose performance
is a function of the confidence parameter ε of ML predictions? If ε = 1 and all predictions are correct,
we would like the algorithm to approach optimal offline performance (consistency). If ε = 0, then
the predictions have no guarantees and we would like to ensure that the algorithm is not much worse
than an online algorithm without predictions (robustness). Between these two extremes, we would
like the performance of the algorithm to gracefully degrade with the value of ε. In this paper, we
present online algorithms augmented with ε-accurate predictions for fundamental problems such as
caching, online set cover, online facility location, and online network design.

ε-accurate predictions. We consider ML predictions that are (independently) correct with probability
at least ε. Note that ε represents only a minimum guarantee on the probability of a prediction being
accurate; individual predictions are allowed to have higher confidence values. Moreover, we do not
restrict what an incorrect prediction constitutes since this will depend on specific problem settings.
But morally, a correct prediction reveals information about the future while an incorrect prediction
does not. The design of online algorithms augmented with ε-accurate predictions has two main
challenges: (i) that information (correct predictions) is provided to the algorithm at a slow rate, about

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

once every 1/ε steps, and (ii) the algorithm needs to disambiguate information (correct predictions)
from noise (incorrect predictions). We emphasize that we are interested in the “high noise” regime,
i.e., small values of ε, where for every correct prediction, there are many incorrect ones. We will
show that even in this regime, we can obtain online algorithms that are substantially better than the
worst case. We also do not assume that the value of ε is known to the online algorithm; rather, our
algorithms automatically adapt to the (unknown) value of ε in the underlying prediction model. In
some cases, however, it will be easier to describe the algorithm and analysis if we assume that ε is
known. If that is the case, we will first present the simpler algorithm that knows ε and then generalize
it to the one that does not know ε.

Prediction error vs ε-accurate predictions. The trend in the online algorithms with predictions
literature has been to use prediction error rather than prediction confidence to parameterize the
performance of online algorithms. Note the difference in the two measures of prediction quality:
an ML model with high confidence (i.e., that produces ε-accurate predictions for ε close to 1)
can occasionally make highly inaccurate predictions and therefore have very high prediction error;
conversely, an ML model that has a small but consistent bias can have ε = 0 but still have small
prediction error. So, the results obtained in this paper are complementary (and incomparable) to
the existing literature on online algorithms parameterized by prediction error. To the best of our
knowledge, neither caching nor covering problems have been studied in the setting of ε-accurate
predictions.

Prior to our work, variants of ε-accurate predictions that also model confidence estimates of pre-
dictions have been studied in a few different problem settings such as frequency estimation in data
streams [13], k-means [11], secretary problems [10], and page migration [14]. In some cases such
as for ski rental [23] and set cover [6], the confidence parameter λ does not represent a measure of
correctness of the prediction, rather it is simply a hyperparameter that can be used to trade off the
consistency and robustness bounds of the algorithm. In contrast to these, the goal in this paper is to
understand the role of ε-accurate predictions in two central problem domains in online algorithms –
caching and online covering problems.

Competitive ratio. As in previous literature in this area, we also use the classical performance
metric of competitive ratio for online algorithms. The competitive ratio of an online algorithm is the
worst-case ratio between the (expected) value of the objective in the algorithm’s solution to that of
the (offline) optimum across all input instances. In the ε-accurate predictions model, this expectation
is taken over both the randomness of the algorithm (if any) and the randomness of the predictions.
Our competitive ratios are expressed as a function of ε, and gracefully degrade as ε goes from 1 to 0.
But, even if ε = 0, we do not lose robustness; using standard techniques (e.g., [4]), we can combine
the best online algorithm without predictions and our algorithm with ε-accurate prediction to match
(up to constants) the better of the two solutions.

1.1 Our contributions

First, we consider the problem of caching with ε-accurate predictions. In this problem, there is an
underlying (slow) main memory of n pages; at any given point of time, some k ≪ n of these can
be stored in a (fast) cache. The online input comprises a sequence of page requests p1, p2, . . . , pT ,
with page pt ∈ [n] being requested at time t. If page pt is not in the cache at this time, the algorithm
must perform a page swap: it must evict some page from the cache, and load page pt. The goal of
the algorithm is the minimize the number of page swaps over the entire sequence of requests.

Lykouris and Vassilvitskii [18] initiated the study of caching with ML predictions and gave determin-
istic and randomized algorithms whose competitive ratio gracefully degrades with prediction error.
(See [7, 15, 24, 27] for subsequent work on this problem.) The general idea in these algorithms is to
evict the page whose next request is predicted to be furthest in the future, but robustify this strategy
by appropriately combining it with a worst-case randomized marking algorithm if the predictions
turn out to be inaccurate.

In our paper, we consider the caching problem with ε-accurate predictions. At each time, the
algorithm is given a prediction for the FIF page in the cache that is correct with probability at least
ε; with the remaining probability, the prediction is just a random page in the cache and hence, does
not reveal any information about the future. A natural algorithm is to simply follow the prediction,

2

namely evict the predicted FIF page if the currently requested page is outside the cache. We call this
the ONE-STRIKE algorithm and show that it achieves a competitive ratio of O(1/ε). 1

Our main result is to obtain an exponential improvement over this baseline. To achieve the better
bound, we give a more nuanced algorithm that we call the TWO-STRIKES algorithm, and show that
it achieves a competitive ratio of O(log(1/ε)). We show this bound is tight by giving a matching
lower bound of Ω(log(1/ε)) on the competitive ratio of any algorithm for caching with ε-accurate
predictions when ε = 1/k log k. (Note that as long as ε > 0, ε-accurate predictions are more accurate
than predictions generated uniformly at random.)

Next, we consider the problem of solving online covering problems given ε-accurate predictions.
Online covering is a general framework for many optimization problems such as set cover and
network design. In this problem, the online algorithm has to maintain a solution on a fixed set of
variables, and is only allowed to monotonically increase the variables over time. In each online step,
the algorithm is presented with a new covering constraint on these variables, and must then augment
its existing solution to satisfy the new constraint. The goal is to minimize a linear cost function
defined on the variables.

The systematic study of online covering with predictions was initiated by Bamas, Maggiori, and
Svensson [6], who used primal dual techniques to leverage a predicted optimal solution given to the
online algorithm (see also [1] for subsequent work on online covering with predictions). We consider
a model where in each online step, the algorithm gets a covering constraint and a predicted optimal
way of satisfying the constraint. (Given an offline predicted solution, these online predictions can be
generated on the fly.) However, these are only ε-accurate predictions. Namely, in each online step,
the predicted solution to the covering constraint is part of an optimal solution with probability at least
ε, and otherwise it is an arbitrary way of satisfying the constraint with the remaining probability.
Note that in the latter case, the prediction does not reveal any information about the future. We give a
simple algorithm for online covering with ε-accurate predictions that obtains a competitive ratio of
O(1/ε), and also a matching lower bound of Ω(1/ε). Our covering framework and algorithm are
very flexible: they can even model and solve problems like facility location that are not covering
problems in a strict sense.

Related work. There has been much recent work on incorporating ML predictions in online algo-
rithms, such as in ad-allocation [19], auction pricing [20], page migration [14], flow allocation [17],
scheduling [16, 22, 23], frequency estimation [13], speed scaling [5], Bloom filters [21], bipartite
and secretary problems [3], and online linear optimization [9]. In particular, the caching problem
was studied by [7, 15, 18, 24, 27], where the prediction model is that at each time t, the algorithm is
given a prediction of when currently requested page pt is next requested, and the prediction error η is
defined as the ℓ1 error between the predicted and actual request times. Antoniadis et al. [2] consider
the more general problem of metrical task systems; their predictor gives a state pt of the optimal
solution, and the error η is the sum of distances between the predictions and actual states. The online
set cover problem with predictions was studied by [5], where the (offline) prediction provides an
entire feasible solution at the outset. Their algorithm uses the online primal-dual framework, and uses
a hyperparameter λ ∈ [0, 1] to obtain a trade off between the consistency and robustness bounds.

1.2 Preliminaries

For every positive integer n, let [n] := {1, 2, . . . , n}. Let us formalize the prediction model: at
each time t, the algorithm is given some prediction or suggestion st, whose nature depends on the
problem statement. At each time t, the algorithm is given one of two possible suggestions: a “good”
suggestion yt, or a “bad” suggestion zt. While the precise definitions of yt and zt depend on the
specific problems, we require that the former reveals some information about the optimal solution,
and make no such requirement about the latter. There is a fixed value ε ∈ (0, 1] that is unknown
to the algorithm. Now at each time step t, the ε-accurate prediction st is determined as follows,
independently of the past:

st =

{
yt with probability at least ε
zt otherwise.

1More precisely, we can get O(min(1/ε, log k) by combining ONE-STRIKE with Randomized Marking us-
ing standard techniques (see e.g., [2, 18]). As this applies to all our algorithms, we omit writing O(min(·, log k))
for simplicity.

3

We aim to bound the competitive ratio of the algorithm in terms of the noise parameter ε. Note that
the randomness that determines whether st = yt or st = zt is hidden from both the adversary, who
generates the input sequence, and the algorithm.

2 Caching

In the caching problem there is an underlying (slow) main memory of n pages; at any given point of
time, some k ≪ n of these can be stored in the (fast) cache. The online input comprises a sequence
of page requests p1, p2, . . . , pT , with page pt ∈ [n] being requested at time t. If page pt is already in
the algorithm’s cache at this time, the algorithm does not need to do anything, else it must perform a
page swap: it must evict some page in the cache, and load the page pt. The goal of the algorithm is
the minimize the number of page swaps over the entire sequence of requests.

Given the request sequence up-front, a strategy that minimizes the number of page swaps is Bélády’s
rule [8]: at each time t, if the requested page pt is not in the cache, evict the page that is requested
the furthest in the future (FIF) among the pages in the cache. An online algorithm does not know
the future requests, so this is not implementable; instead policies such as LRU [26] and Randomized
Marking [12] are used to circumvent this lack of foresight by using past requests to predict the future.

In contrast to the recent work which assumes a prediction for the next-arrival time of the page
requested at time t [7, 18, 25, 27], we consider a model where at every time t, the algorithm is
provided with a prediction on the page in its cache that will be requested furthest in the future. The
prediction st is a noisy prediction: with probability ε it is the FIF page, else it is a random page from
the algorithm’s cache. Using the notation from Section 1.2, yt is the FIF page in the algorithm’s
cache, and zt is a page chosen uniformly at random from the the algorithm’s cache. This assumption
of uniformity is only made for simplicity. We can in fact show (see Appendix A.2) that it suffices to
assume that the probability that a page p is incorrectly predicted as the FIF page is at most 1/kεc
where c is a constant.

Note the two extremes: if ε = 1 then we can follow Bélády’s rule and be optimal; if ε = 0 then the
predictions are just random pages in the cache (which can be generated without any knowledge about
the future), and we get back the classic worst-case online setting.

Starting with the first request, we partition the input sequence into phases, where a phase is defined
as a maximal contiguous subsequence of requests containing k distinct pages. (The last phase might
contain fewer than k distinct pages because of the termination of the input sequence.) We note that
our algorithms do not actually require suggestions to be precisely the FIF page; they work unchanged
as long as the correct predictions provide a page that is not requested in the current phase. (The FIF
page is just one such page.)

All our algorithms use the idea of a cache reset at the beginning of each phase (except the first):
replace the contents of the cache with the k pages requested in the previous phase. Since each
page brought back in due to a cache reset must have been evicted after it was last requested in the
just-ended phase, we get the following lemma.

Lemma 2.1 (Cache Reset Overhead). If an algorithm that performs cache resets at the beginning
of each phase, the number of page swaps in any cache reset is at most the number of page swaps
performed in the previous phase.

These cache resets allow us to localize the description and analysis of our algorithms to a single phase,
because the state of the cache at the beginning of the phase only depends on the input sequence, and
is now independent of the algorithm. Furthermore, we partition the (at most) k pages requested in
each phase into two sets: clean pages are the ones that were not requested in the previous phase, and
the rest are called stale. (All the k requested pages in the first phase are considered clean.) Let ∆i

denote the number of clean pages in the ith phase.

2.1 ONESTRIKE: A Deterministic O(1/ε)-Competitive Algorithm

Our first algorithm ONESTRIKE using ε-accurate predictions is simple and deterministic, and obtains
a competitive ratio of O(1/ε). In the first phase, it fetches each requested page into the cache. After
this point in time, the cache always remains full (with k pages). Each subsequent phase starts with a

4

cache reset. Let Ct denote the algorithm’s cache contents at the end of timestep t. During the phase,
the algorithm is the following:

(a) If the requested page pt is already in Ct−1, do nothing (i.e., it sets Ct ← Ct−1).

(b) Else if pt ̸∈ Ct−1, evict the predicted page st, i.e., set Ct ← (Ct−1 \ st) ∪ {pt}.
Theorem 2.2. The ONESTRIKE Algorithm is O(1/ε)-competitive.

Remark. The ONESTRIKE algorithm and its analysis both apply assuming a weaker prediction
model, in which the zt predictions (i.e., the non-good ones) are chosen adversarially, rather than
uniformly at random among the pages in the algorithm’s cache. Note that in this model, an adversary
still does not know when good predictions are given, but can adapt to the algorithm’s behavior when
specifying the zt predictions.

2.2 TWOSTRIKES: A Randomized O(log 1/ε)-Competitive Algorithm

We now use randomization to improve the competitive ratio to O(log(1/ε)). Before describing the
formal algorithm, we first give some intuition. The ONESTRIKE algorithm uses the prediction every
time it must make a page swap. This places too much faith on the predictions, and incurs a large
loss. Our first change is that the algorithm is more cautious with the predictions, and now views two
predictions for the same page (and not just a single prediction) as a strong-enough signal to evict the
page. We show that the probability that a page that remains the FIF page long enough is predicted
twice far outweighs the probability that any non-FIF page is (erroneously) predicted twice during
the course of the entire phase. As we now need two predictions before evicting a page, we need a
fallback option if the requested page is not in the cache and no page has been predicted twice. We
run a randomized marking algorithm (call it MARKER) for this purpose, and carefully combine these
two algorithms to obtain the final algorithm.

However, this does not suffice: consider a situation where the length of the request sequence for
which a page remains the FIF page in the cache is very short. (An extreme example is when pages
are requested round-robin, in which case every page is the FIF page right after it is requested and
remains so for only a single request.) In this case, none of the FIF pages maintain their FIF status
long enough to be predicted twice, and the algorithm devolves to essentially being MARKER with a
competitive ratio of O(log k). To handle this situation, we stop the algorithm once we are confident
that we have seen at least ∆ FIF pages in the predictions, where ∆ is the number of clean pages
requested in the phase. At this point, we switch to a different algorithm, which is again MARKER but
run only on pages predicted earlier in the phase.

2.2.1 The TWOSTRIKES Algorithm

We now formally describe the TWOSTRIKES algorithm. (In this section we assume that we know
the accuracy parameter ε: we remove this assumption later in the supplementary material.) As in
ONESTRIKE, the first phase in TWOSTRIKES brings the first k requested pages into the cache and
does no evictions. Every subsequent phase begins with a cache reset to ensure that the pages in
the cache are precisely those requested in the previous phase. We now describe the behavior of the
TWOSTRIKES algorithm for a single phase.

Epochs and Segments. Since the algorithm does not know ∆ (the number of clean requests in this
phase), it maintains a guess ∆̂, which starts at 1 and is periodically updated. These updates break
the phase into epochs: the first epoch starts at the beginning of the phase; each time we observe that
the number of clean requests in the phase exceeds our guess ∆̂, we double the value of ∆̂, thereby
ending the current epoch and starting a new one.

When an epoch starts, TWOSTRIKES first performs a cache reset, and then checks if ε ≤ (∆̂/k)1/5;
if so, it simply runs randomized marking in the rest of the current epoch. Else if ε > (∆̂/k)1/5, the
epoch now is partitioned into an explore segment followed by an exploit segment. In the explore
segment, the algorithm makes ∆̂∗ good evictions of pages that have been predicted twice (for some
∆̂∗ ≤ ∆̂), and also learns a small candidate set of pages that contains at least ∆̂− ∆̂∗ pages which
make for good evictions. In the following exploit segment, the algorithm then runs randomized
marking on these candidate pages to actually make ∆̂− ∆̂∗ good evictions.

5

Before we give details about these two segments, let us give two procedures: MARKER and STRIKER.
The MARKER procedure maintains a binary flag called MARK for every page; we say that page p is
marked if MARK(p) = 1, else it is unmarked. We mark and unmark pages by changing the flag to 1
or 0 respectively. All pages are unmarked at the beginning of the epoch. The MARKER algorithm
essentially runs the RANDOM MARKING algorithm, but since we may run it starting with only a few
unmarked pages, we allow for the possibility of running out of unmarked pages—in which case we
declare failure. The details of MARKER appear in Algorithm 1.

Algorithm 1: MARKER

1.1 let C be the set of pages in the cache
1.2 if page pt is requested at the current time t do
1.3 case pt ∈ C do do nothing
1.4 case pt ̸∈ C and |C| < k do C ← C ∪ {pt}
1.5 case pt ̸∈ C and |C| = k and C has at least one unmarked page do
1.6 let qt be a uniformly random unmarked page in C, and set C ← (C \ {qt}) ∪ {pt}
1.7 otherwise do declare FAIL

1.8 mark page pt

The second procedure is STRIKER: it maintains a counter called STRIKE for every page, which takes
on values in {0, 1, 2}. we say that page p is striked if STRIKE(p) ∈ {1, 2}, otherwise STRIKE(p) = 0
and page p is unstriked. If STRIKE(p) = 2, we say page p is strike-evicted. At the beginning of the
epoch, all pages are unstriked. The STRIKER procedure operates in two modes: active and passive.
The procedure is in the active mode when the cache contains k pages (i.e., it is full), and it is in the
passive mode (and does nothing) otherwise. Like MARKER, STRIKER is not a stand-alone caching
algorithm; instead, it is active when the cache is full to acknowledge the prediction, and possibly
performs a preemptive eviction. The details appear in Algorithm 2.

Algorithm 2: STRIKER

2.1 let C be the set of pages in the cache
2.2 if |C| < k then do nothing (we are in the passive mode)
2.3 else if page st ∈ C is the predicted page at the current time t then
2.4 STRIKE(st)++
2.5 if STRIKE(st) = 2 then evict st, so C ← C \ {st} (so that st is strike-evicted)

Switching to ONESTRIKE. In both the explore and exploit segments, it is possible for the algorithm
to switch to the ONESTRIKE algorithm. When this happens, all marks and strikes are forgotten,
and the algorithm simply evicts the predicted page whenever an eviction is required. The only state
that remains is the count on the number of clean pages in the phase so far: whenever it exceeds ∆̂,
regardless of the state of the algorithm, we double the value of ∆̂ and start a new epoch.

The Explore Segment. We now describe our algorithm for the explore segment. It uses a global
counter called BAD-STRIKES, initialized to 0 at the beginning of each epoch, that counts the number
of bad evictions made by the STRIKER procedure. Recall that an eviction at time t is good if the
evicted page is not requested in the current phase after time t, and it is bad otherwise. Before serving
each request, the algorithm first increments BAD-STRIKES as necessary, and then calls STRIKER and
MARKER in that order. The formal description is in Algorithm 3. The explore segment ends if either
(a) STRIKER makes at least 2∆̂ evictions in the segment, or (b) STRIKER has been in active mode for
N := ∆̂/ε2 requests.
Lemma 2.3. In the explore segment, the MARKER procedure never declares FAIL.

Proof. Pages are marked only when they are requested in the current epoch. So, if pt ̸∈ C and C has
k marked pages, then k + 1 distinct pages have been requested in the current epoch, and therefore
also in the current phase. This contradicts the definition of a phase.

The Exploit Segment. The exploit segment ignores all predictions. Instead it relies on the fact
(proved in Lemma 2.10) that the set of striked pages at the end of the explore segment contains ∆̂

6

Algorithm 3: Explore Segment
3.1 foreach time t do
3.2 let pt be the requested page and st the predicted page at time t
3.3 if pt is strike-evicted (i.e., STRIKE(pt) = 2) then increment BAD-STRIKES
3.4 if BAD-STRIKES = ∆̂ then run ONESTRIKE for rest of epoch else set STRIKE(pt)← 0
3.5 call STRIKER
3.6 call MARKER
3.7 terminate explore segment if STRIKER evicts pages ≥ 2∆̂ times, or STRIKER in active

mode for N := ∆̂/ε2 requests

pages that would be good evictions (with good probability). The exploit segment now runs MARKER
on these striked pages. Formally, see Algorithm 4.

Algorithm 4: Exploit Segment
4.1 mark all pages in the cache with no strikes; striked pages are left unmarked
4.2 foreach time t do
4.3 let pt be page requested at time t
4.4 if pt is strike-evicted (i.e., STRIKE(pt) = 2) then increment BAD-STRIKES
4.5 if BAD-STRIKES = ∆̂ then run ONESTRIKE for rest of epoch else set STRIKE(pt)← 0
4.6 call MARKER
4.7 if MARKER returns FAIL then run ONESTRIKE for the rest of the epoch

Since the exploit segment handles the possibility that MARKER may fail (and reverts to ONESTRIKE
in that case), the algorithm is well-defined; it only remains to bound the expected number of evictions
per epoch, and hence per phase. This is what we do next.

2.2.2 Competitive Ratio of the TWOSTRIKES Algorithm

Theorem 2.4. The algorithm performs O(∆̂ log 1/ε) evictions in expectation in an epoch.

Proof. There are four types of evictions that happen during an epoch:

(i) evictions performed by STRIKER in the explore segment,
(ii) evictions performed by MARKER in the explore segment,

(iii) evictions performed by MARKER in the exploit segment, and
(iv) evictions due to the ONESTRIKE algorithm,

We show that the expected number of each of type of eviction is at most O(∆̂ log 1/ε). The type (i)
evictions are the easiest: there are at most 2∆̂ of these, by the termination condition of the explore
segment.

Next we bound the number of evictions of type (iii): consider running MARKER with some cache C0,
where some k − r pages are pre-marked. Consider the r unmarked pages of C0, and order them as
p1, p2, . . . , pr in reverse chronological order of their first request in this segment. The pages that are
not requested at all are placed at the beginning of this sequence, but can be arbitrarily ordered relative
to each other. Let D be the number of requests for pages outside the set C0 received by the algorithm.
The following property holds by induction, since only D pages are evicted, and each unmarked page
is equally likely to be evicted at any time:

Lemma 2.5. At any time t, suppose pages pit+1, pit+2, . . . , pr have already been requested and
pages p1, p2, . . . , pit have not been requested yet. Then, for any i ≤ it, the probability that page pi
is not in the cache of the MARKER procedure at time t is at most min(D/it, 1).

Note that the property of this lemma is unconditional, in the sense that it does not depend on the set
of pages among pit+1, pit+2, . . . , pr that were evicted before time t. The following corollary follows
by applying this lemma at the time of the first request for page pi:

7

Corollary 2.6. The probability that the cache of the MARKER procedure does not contain page pi at
the time of its first request is at most min(D/i, 1).

The next lemma is proved using the above corollary:

Lemma 2.7. The expected number of evictions of type (iii) in an epoch is O(∆̂ log(1/ε)).

Proof. The explore segment terminates after it sees at most N = ∆̂/ε2 requests for which STRIKER
is in active mode. Let S denote the set of striked pages; clearly, |S| ≤ N . Moreover, the number of
distinct clean page requests is at most ∆̂, else the epoch ends. By Corollary 2.6, the expected number
of evictions in S is at most

|S|∑
i=1

min
(∆̂
i
, 1
)
≤ ∆̂ +

N∑
i=∆̂

∆̂

i
= ∆̂ + ∆̂(HN −H∆̂) = O(∆̂ log(1/ε)).

Bounding evictions of type (ii) is a bit more involved, because we start off with k unmarked pages
(so the naive application of Corollary 2.6 would give us O(∆̂ log k)); we need to use the interplay
between MARKER and STRIKER to get our bound.

Lemma 2.8. The expected number of evictions of type (ii) in an epoch is O(∆̂ log(1/ε)).

Finally, to bound the number of type (iv) evictions, observe that we run ONESTRIKE if the counter
BAD-STRIKES reaches ∆̂, or if MARKER returns FAIL in the exploit segment. We claim that both of
these events happen with probability at most ε. Now since ONESTRIKE makes O(∆̂/ε) evictions in
expectation the expected number of such evictions is at most ε ·O(∆̂/ε) = O(∆̂).

Lemma 2.9. Pr[BAD-STRIKES ≥ ∆̂] ≤ ε.

Lemma 2.10. The probability that MARKER declares FAIL in the exploit segment is at most O(ε).

We now summarize the bounds on the four types of evictions. In the explore segment, STRIKER
performs at most 2∆̂ evictions by design of the algorithm, and MARKER performs O(∆̂ log(1/ε))
evictions by Lemma 2.8. In the exploit segment, MARKER performs O(∆̂ log(1/ε)) evictions by
Lemma 2.7. Finally, Lemmas 2.9 and 2.10 show that ONESTRIKE is called with probability O(ε),
and its cost is O(∆̂/ε), so its expected contribution is O(∆̂) evictions. Combining everything
together, the total expected number of evictions in any epoch is at most O(∆̂ log 1/ε), which proves
Theorem 2.4.

Since we double our guess for ∆̂ each time, the total expected cost of a phase is O(∆ log 1/ε), thereby
proving the claimed competitive ratio for the known-ε case. The algorithm (and analysis) when we
do not know the value of ε in advance are conceptually similar to the one above, but there are more
details to consider. In particular, we maintain a guess ε̂ for ε, and each time we square this guess. The
real problem is that unlike the value of ∆, we do not get a clear signal that we have overestimated
the value of ε. Our algorithm therefore needs to infer failure from our algorithm not performing as
claimed; we defer this to the supplementary materials.

Comparison with [27]. We now show that under our prediction model, the algorithm given by
Wei [27] performs poorly. That algorithm combines RANDOM MARKING and BlindOracle (which
in our terminology is called ONESTRIKE). Since the BlindOracle algorithm just evicts the page
suggested by the oracle, we take n = k + 1 pages and construct a sequence of phases. In phase i
we request all pages except page i round-robin, and do this k times. The optimal strategy is to evict
page i at the start of this phase. But the algorithm follows the oracle blindly, so it will evict random
pages due to bad suggestions 1/ε times in expectation before getting a good suggestion and evicting
page i. This happens in each phase, giving an expected cost Ω(1/ε) times the optimum. Since this is
combined with RANDOM MARKING which has an Ω(log k) lower bound, by setting ε = 1/ log k and
interleaving phases of the above lower bound sequence with phases of the lower bound for RANDOM
MARKING, we get a sequence that causes Wei’s algorithm to pay Ω(log k) times the optimal cost,
whereas our algorithm pays O(log(1/ε)) = O(log log k) times the optimal cost.

8

3 Set Cover and Generalized Covering Problems

We now show that for a large class of online covering problems, which includes set cover (and its
multiset multicover variants), facility location, and network design problems such as Steiner tree and
Steiner forest, we can obtain an O(1/ε)-competitive algorithm with ε-accurate predictions. We first
present it for the case of online set cover, and then extend the ideas to more general settings.

3.1 The Set Cover Problem

In the SET COVER problem we are given a collection of m subsets S := {S1, . . . , Sm} of a universe
U containing |U | = n elements. Each set has a cost c(S) ≥ 0, and we want to pick a subcollection of
least cost covering the universe. In the online version of the problem, we do not know the set system
in advance: an element et ∈ U is revealted at each time t, along with the names of the sets containing
et. If none of these sets have already been chosen by the algorithm, one must be chosen at this time.
Sets once chosen cannot be dropped (so the solutions are monotonically increasing), and the goal is
to minimize the total cost of the chosen sets.

Our model of ε-accurate suggestions is the following: at each time, we are given an element et, along
with a suggested set st ∈ S, with the guarantee that Pr[st ∈ OPT | Ht−1] ≥ ε, whereHt−1 is the
history of all requests, predictions, and actions taken in previous steps, and OPT is the optimal offline
solution.

SET-HEDGE: If et is already covered, do nothing. Else let gt be the minimum-cost
set that covers et. Choose st with probability c(gt)/c(st), and choose gt otherwise.

Since gt is the cheapest set covering et, we have c(gt)/c(st) ≤ 1 and hence a valid probability.
Theorem 3.1. Given ε-accurate predictions, the SET-HEDGE algorithm is 2/ε-competitive.

This result is tight up to constant factors: we show in the supplementary material that no algorithm
for set cover can have competitive ratio better than O(1/ε) in general. Moreover, we can run this
algorithm in parallel with any other online set cover algorithm, say one that is αSC-competitive, to
get an algorithm that is O(min(1/ε, αSC))-competitive.

3.2 Extension to Generalized Covering Problems

The simplicity of the algorithm allows us to extend to very general set of objective functions and
constraints, which we call generalized submodular-cost coverage (GSCC). Consider the following:

1. The algorithm controls a point x ∈ Rd
≥0. The initial point is x0 = 0, the all-zeros vector.

We require that x is monotone over time; i.e., xt−1 ≤ xt.

2. (Covering.) At each time t, a set Kt ⊆ Rd
≥0 is revealed, and we want that x ∈ ∩s≤tKs.

We restrict ourselves to sets that are closed under taking component-wise maximums—i.e.,
x, y ∈ Kt =⇒ (x ∨ y) ∈ Kt, where (x ∨ y)i = max(xi, yi).

3. (Monotonicity and Submodularity.) The objective function c : Rd → R≥0 is monotone: if
x ≤ y then c(x) ≤ c(y). Moreover, it is submodular: c(x∨y∨z)−c(x∨z) ≤ c(x∨y)−c(x).

The ε-accurate suggestion model now says: at each time t, the suggestion st ∈ Kt, and moreover
Pr[st ≤ x∗ | Ht−1] ≥ ε, where x∗ is the optimal offline solution. The COVER-HEDGE algorithm
now extends the SET-HEDGE algorithm as follows:

Let gt be the minimum-cost increment—i.e., gt ← argmin{c(xt−1∨g) | g ∈ Kt}.
Then set xt ← xt−1 ∨ st with probability c(xt−1∨gt)−c(xt−1)

c(xt−1∨st)−c(xt−1) , and xt ← xt−1 ∨ gt
otherwise.

In general, finding this miminum-cost increment may be computationally hard; we focus on the
information-theoretic considerations for now, and defer the computational issues for later.
Theorem 3.2. Given ε-accurate suggestions, the COVER-HEDGE algorithm is 2/ε-competitive for
any generalized covering problem.

9

3.3 Applications

Beyond set cover, the general covering formulation above captures several interesting problems:

Network Design: In the Survivable Network Design problem (which generalizes Steiner Tree and
Steiner Forest) we are given a set V of n points together with the distances dij between them i, j ∈ V .
The goal is to connect k pairs of points {(sℓ, tℓ) ∈ V × V | ℓ ∈ [k]} at minimum cost, where each
pair (sℓ, tℓ) comes with a connectivity requirement of rℓ disjoint paths between them. This problem
can be written as

min

{ ∑
i,j∈V

dijxij |
∑

i∈S,j /∈S

xij ≥ rℓ ∀S, ℓ ∈ [k] : sℓ ∈ S, tℓ /∈ S; x ∈ Rn2

≥0

}
.

This formulation satisfy the Covering, Monotonicity, and Submodularity properties. Moreover, the
least-cost augmentation gt can be obtained in polynomial time by a minimum cost flow algorithm.

Facility Location: This is not a covering program, yet it can be modeled using our framework. Given
a point set V on n points and distances dij between points i, j ∈ V , and opening costs fi ≥ 0 for
each i ∈ V , the goal is to designate some subset F of points as facilities, so that the total cost of∑

i∈F fi +
∑

j∈V mini∈F dij is minimized. We can write this using Balinski’s MILP formulation:

min

{∑
i∈V

fiyi +
∑
j∈V

dijxij |
∑
i

xij = 1 ∀j ∈ V, xij ≤ yi ∀i, j ∈ V, y ∈ Zn
≥0, x ∈ Rn2

≥0

}
.

It can be verified that this formulation also satisfies the Covering, Monotonicity, and Submodularity
properties, despite the non-covering constraints of the form xij ≤ yi. (Indeed, in the supplementary
material, we show that the coordinate-wise maximum covering property allows us to go beyond
standard covering programs.) Moreover, the least-cost augmentation gt can be obtained in polynomial
time using a simple greedy algorithm.

Covering Mixed-Integer Linear Programs (MILPs): given non-negative A ∈ Rm×n, b ∈ Rm and
c, u ∈ Rn, and a subset I ⊆ [n], we want to solve

min{c⊺x | Ax ≥ b, 0 ≤ x ≤ u, xi ∈ Z∀i ∈ I, xi ∈ R∀i ̸∈ I}.
Each constraint is a half-space, and it can be verified that this formulation satisfies the Covering,
Monotonicity, and Submodularity properties. However, since this problem is NP-hard in general, the
least-cost augmentation gt can be computed efficiently only in some cases such as the network design
problems described above.

4 Conclusions

In this paper, we presented online algorithms augmented with ε-accurate predictions for several
classic problems such as caching, set cover, facility location, Steiner tree, and generalizations. Can
we show a a poly log(1/ε) competitiveness, or even f(ε) competitiveness for the k-server problem,
which is an extension of our results for caching? Another direction would be to combine the
ε-accuracy prediction model studied in this paper with some measure η of total prediction error
namely, design online algorithms augmented by probabilistically approximately correct (or PAC)
predictions. Finally, a third direction of future work would be a thorough experimental analysis of
our framework and algorithms, to empirically compare the performance of our work with that of
other learning-augmented algorithms.

Acknowledgments

AG and BS were supported in part by NSF awards CCF-1955785, CCF-2006953, and CCF-2224718.
DP and KS were supported in part by NSF grants CCF-1750140 (CAREER) and CCF-1955703 and
ARO grant W911NF2110230.

References
[1] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with multiple

predictions. In International Conference on Machine Learning. PMLR, 2022.

10

[2] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. In International Conference on Machine Learning,
pages 345–355. PMLR, 2020.

[3] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS 2020, 2020.

[4] Yossi Azar, Andrei Z. Broder, and Mark S. Manasse. On-line choice of on-line algorithms. In Vi-
jaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 432–440. ACM/SIAM,
1993.

[5] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS 2020, 2020.

[6] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, NeurIPS 2020, 2020.

[7] Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-
augmented weighted paging. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9 - 12, 2022, pages 67–89. SIAM, 2022.

[8] Laszlo A. Belady. A study of replacement algorithms for virtual-storage computer. IBM Syst. J.,
5(2):78–101, 1966.

[9] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with
imperfect hints. In International Conference on Machine Learning, pages 822–831. PMLR,
2020.

[10] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In Péter Biró, Shuchi Chawla, and Federico Echenique, editors, EC ’21: The 22nd
ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages
409–429. ACM, 2021.

[11] Jon Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. CoRR, abs/2110.14094, 2021.

[12] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and
Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.

[13] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

[14] Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrović, and Ronitt Rubinfeld. Online page
migration with ml advice. arXiv preprint arXiv:2006.05028, 2020.

[15] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging
with predictions. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[16] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1859–1877. SIAM, 2020.

[17] Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing, 2020.

[18] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3296–3305. PMLR, 2018.

11

[19] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online advertisement
space with unreliable estimates. In Jeffrey K. MacKie-Mason, David C. Parkes, and Paul
Resnick, editors, Proceedings 8th ACM Conference on Electronic Commerce (EC-2007), San
Diego, California, USA, June 11-15, 2007, pages 288–294. ACM, 2007.

[20] Andrés Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate
bid predictions. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 1856–1864, 2017.

[21] Michael Mitzenmacher. A model for learned bloom filters, and optimizing by sandwiching. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 462–471, 2018.

[22] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[23] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predic-
tions. In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

[24] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1834–1845. SIAM, 2020.

[25] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1834–1845. SIAM, 2020.

[26] Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[27] Alexander Wei. Better and simpler learning-augmented online caching. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 4, where we list the

problems we consider and directions for future work.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Most proofs are in the

supplementary material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

12

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Our contributions
	Preliminaries

	Caching
	OneStrike: A Deterministic O(1)-Competitive Algorithm
	TwoStrikes: A Randomized O(log1)-Competitive Algorithm
	The TwoStrikes Algorithm
	Competitive Ratio of the TwoStrikes Algorithm

	Set Cover and Generalized Covering Problems
	The Set Cover Problem
	Extension to Generalized Covering Problems
	Applications

	Conclusions

