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Abstract

In sparse linear bandits, a learning agent sequentially selects an action and receive
reward feedback, and the reward function depends linearly on a few coordinates of
the covariates of the actions. This has applications in many real-world sequential
decision making problems. In this paper, we propose a simple and computationally
efficient sparse linear estimation method called POPART that enjoys a tighter ℓ1
recovery guarantee compared to Lasso (Tibshirani, 1996) in many problems. Our
bound naturally motivates an experimental design criterion that is convex and
thus computationally efficient to solve. Based on our novel estimator and design
criterion, we derive sparse linear bandit algorithms that enjoy improved regret
upper bounds upon the state of the art (Hao et al., 2020), especially w.r.t. the
geometry of the given action set. Finally, we prove a matching lower bound for
sparse linear bandits in the data-poor regime, which closes the gap between upper
and lower bounds in prior work.

1 Introduction

In many modern science and engineering applications, high-dimensional data naturally emerges,
where the number of features significantly outnumber the number of samples. In gene microarray
analysis for cancer prediction [30], for example, tens of thousands of genes expression data are
measured per patient, far exceeding the number of patients. Such practical settings motivate the study
of high-dimensional statistics, where certain structures of the data are exploited to make statistical
inference possible. One representative example is sparse linear models [19], where we assume that a
linear regression task’s underlying predictor depends only on a small subset of the input features.

On the other hand, online learning with bandit feedback, due to its practicality in many applications
such as online news recommendations [25] or clinical trials [26, 41], has attracted a surge of research
interests. Of particular interest is linear bandits, where in n rounds, the learner repeatedly takes
an action At (e.g., some feature representation of a product or a medicine) from a set of available
actions A ⊂ Rd and receives a reward rt = ⟨θ∗,At⟩ + ηt as feedback where ηt ∈ R is an independent
zero-mean, σ-sub-Gaussian noise. Sparsity structure is abundant in linear bandit applications: for
example, customers’ interests on a product depend only on a number of its key specs; the effectiveness
of a medicine only depends on a number of key medicinal properties, which means that the unknown
parameter θ∗ sparse; i.e., it has a small number of nonzero entries.

Early studies [2, 8, 24] on sparse linear bandits have revealed that leveraging sparsity assumptions
yields bandit algorithms with lower regret than those provided by full-dimensional linear bandit
algorithms [3, 4, 11, 1]. However, most existing studies either rely on a particular arm set (e.g., a
norm ball), which is unrealistic in many applications, or use computationally intractable algorithms.
If we consider an arbitrary arm set, however, the optimal worst-case regret is Θ(

√
sdn) where s

is the sparsity level of θ∗, which means that as long as n = O(sd), there exists an instance for
which the algorithm suffers a linear regret [23]. This is in stark contrast to supervised learning
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REGRET BOUND DATA-POOR ASSUMPTIONS

HAO ET AL. [18] Õ(s2/3C
−2/3
min n2/3

) ✓ A SPANS Rd

HAO ET AL. [18] Ω(s1/3κ−2/3n2/3
) ✓ A SPANS Rd

ALGORITHM 3 (OURS) Õ(s2/3H
2/3
∗ n2/3

) ✓ A SPANS Rd

THEOREM 5 (OURS) Ω(s2/3κ−2/3n2/3
) ✓ A SPANS Rd

HAO ET AL. [18] Õ(
√

C
−1
minsn) ✗ A SPANS Rd , MIN. SIGNAL

ALGORITHM 4 (OURS) Õ(
√
sn) ✗ A SPANS Rd , MIN. SIGNAL

Table 1: Regret bounds of our work and the prior art where s, d, n are the sparsity level, the feature
dimension, and the number of rounds, respectively. The quantities Cmin and H2

∗ are the constants that
captures the geometry of the action set (see Eq. (6) and (5)), and κ is a parameter for a specific family
of arm sets that satisfies κ−2 = Θ(C−1min) = Θ(H

2
∗). In general, H2

∗ ≤ C
−1
min ≤ C

−2
min (Propositon 2).

where it is possible to enjoy nontrivial prediction error bounds for n = o(d) [16]. This motivates a
natural research question: Can we develop computationally efficient sparse linear bandit algorithms
that allow a generic arm set yet enjoy nonvacuous bounds in the data-poor regime by exploiting
problem-dependent characteristics?

The seminal work of Hao et al. [18] provides a positive answer to this question. They propose
algorithms that enjoy nonvacuous regret bounds with an arbitrary arm set in the data poor regime
using Lasso. Specifically, they have obtained a regret bound of Õ(Cmin

−2/3s2/3n2/3) where Cmin is an
arm-set-dependent quantity. However, their work still left a few open problems. First, their regret
upper bound does not match with their lower bound Ω(Cmin

−1/3s1/3n2/3). Second, it is not clear if
Cmin is the right problem-dependent constant that captures the geometry of the arm set.

In this paper, we make significant progress in high-dimensional linear regression and sparse linear
bandits, which resolves or partly answers the aforementioned open problems.

First (Section 3), we propose a novel and computationally efficient estimator called POPART (POPu-
lation covariance regression with hARd Thresholding) that enjoys a tighter ℓ1 norm recovery bound
than the de facto standard sparse linear regression method Lasso in many problems. Motivated by the
ℓ1 norm recovery bound of POPART, we develop a computationally-tractable design of experiment
objective for finding the sampling distribution that minimize the error bound of POPART, which is
useful in settings where we have control on the sampling distribution (such as compressed sensing).
Our design of experiments results in an ℓ1 norm error bound that depends on the measurement set de-
pendent quantity denoted by H2

∗ (see Eq. (5) for precise definition) that is provably better than Cmin
−1

that appears in the ℓ1 norm error bound used in Hao et al. [18], thus leading to an improved planning
method for sparse linear bandits. Second (Section 4), Using POPART, we design new algorithms for
the sparse linear bandit problem, and improve the regret upper bound of prior work [18]; see Table 1
for the summary. Third (Section 5), We prove a matching lower bound in data-poor regime, showing
that the regret rate obtained by our algorithm is optimal. The key insight in our lower bound is a
novel application of the algorithmic symmetrization technique [34]. Unlike the conjecture of Hao
et al. [18, Remark 4.5], the improvable part was not the algorithm but the lower bound for sparsity s.

We empirically verify our theoretical findings in Section 6 where POPART shows a favorable per-
formance over Lasso. Finally, we conclude our paper with future research enabled by POPART in
Section 7. For space constraint, we discuss related work in Appendix A but closely related studies
are discussed in depth throughout the paper.

2 Problem Definition and Preliminaries

Sparse linear bandits. We study the sparse linear bandit learning setting, where the learner is given
access to an action space A ⊂ {a ∈ Rd ∶ ∥a∥∞ ≤ 1}, and repeatedly interacts with the environment
as follows: at each round t = 1, . . . , n, the learner chooses some action At ∈ A, and receives reward
feedback rt = ⟨θ∗,At⟩+ηt, where θ∗ ∈ Rd is the underlying reward predictor, and ηt is an independent
zero-mean σ-subgaussian noise. We assume that θ∗ is s-sparse; that is, it has at most s nonzero
entries. The goal of the learner is to minimize its pseudo-regret defined as

Reg(n) = nmax
a∈A
⟨θ∗, a⟩ −

n

∑
t=1
⟨θ∗,At⟩.
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Experimental design for linear regression. In the experimental design for linear regression problem,
one has a pool of unlabeled examples X , and some underlying predictor θ∗ to be learned. Querying
the label of x, i.e. conducting experiment x, reveals a random label y = ⟨θ∗, x⟩ + η associated with it,
where η is a zero mean noise random variable. The goal is to accurately estimate θ∗, while using as
few queries x as possible.

Definition 1. (Population covariance matrix Q) Let P(X ) be the space of probability measures
over X with the Borel σ-algebra, and define the population covariance matrix for the distribution
µ ∈ P(X ) as follows:

Q(µ) ∶= ∫
a∈X

aa⊺dµ(a) (1)

Classical approaches for experimental design focus on finding a distribution µ such that its induced
population covariance matrix Q(µ) has properties amenable for building a low-error estimator, such
as D-, A-, G-optimality [14].

Compatibility condition for Lasso. For a positive definite matrix Σ ∈ Rd×d and a sparsity level
s ∈ [d] ∶= {1, . . . , d}, we define its compatibility constant ϕ20(Σ, s) as follows:

ϕ20(Σ, s) ∶= min
S⊆[d]∶∣S∣=s

min
v∶∥vS∥1≤3∥v−S∥1

sv⊺Σv

∥vS∥21
, (2)

where vS ∈ Rd denotes the vector that agrees with v in coordinates in S and 0 everywhere else and
v−S ∈ Rd denotes v − vS .

Notation. Let ei be the i-th canonical basis vector. We define [x] = {1,2, . . . , x}. Let supp(θ) be
the set of coordinate indices i where θi ≠ 0. We use a ≲ b to denote that there exists an absolute
constant c such that a ≤ cb.

3 Improved Linear Regression and Experimental Design for Sparse Models

In this section, we discuss our novel sparse linear estimator POPART for the setting where the
population covariance matrix is known and show its strong theoretical properties. We then present a
variation of POPART called WARM-POPART that amends a potential weakness of POPART, followed
by our novel experimental design for POPART and discuss its merit over prior art.

POPART (POPulation covariance regression with hARd Thresholding). Unlike typical estimators
for the statistical learning setup, our main estimator POPART described in Algorithm 1 takes the
population covariance matrix denoted by Q as input. We summarize our assumption for POPART.

Assumption 1. (Assumptions on the input of POPART) There exists µ such that the input data points
{(Xt, Yt)}

n
t=1 satisfy that Xt

i.i.d.
∼ µ and Q = Q(µ) ∶= EX∼µ[XX

⊺]. Furthermore, Yt = ⟨θ∗,Xt⟩+ηt
with ηt being zero-mean σ-subgaussian noise. Also, R0 ≥maxa∈A ∣⟨a, θ

∗ − θ0⟩∣.

Algorithm 1 POPART (POPulation covariance regression with hARd Thresholding)

1: Input: Samples {(Xt, Yt)}
n
t=1, the population covariance matrix Q ∈ Rd×d, pilot estimator

θ0 ∈ Rd, an upper bound R0 of maxa∈A ∣⟨a, θ
∗ − θ0⟩∣, failure rate δ.

2: Output: estimator θ̂
3: for t = 1, . . . , n do
4: θ̃t = Q

−1Xt(Yt − ⟨Xt, θ0⟩) + θ0
5: end for
6: ∀i ∈ [d], θ′i = Catoni({θ̃ti ∶= ⟨θ̃t, ei⟩}nt=1, αi,

δ
2d
) where αi ∶=

¿
Á
ÁÀ

2 log 2d
δ

n(R2
0+σ2)(Q−1)ii(1+

2 log 2d
δ

n−2 log 2d
δ

)

7: θ̂ ← clipλ(θ
′) ∶= [θ′i 1(∣θ

′
i∣ > λi)]

d
i=1 where λi is defined in Proposition 1.

8: return θ̂

POPART consists of several stages. In the first stage, for each (Xt, Yt) pair, we create a one-
sample estimator θ̃t (step 4). The estimator, θ̃t, can be viewed as a generalization of doubly-robust
estimator [10, 12] for linear models. Specifically, it is the sum of two parts: one is the pilot estimator
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θ0 that is a hyperparameter of POPART; the other is Q(µ)−1Xt(Yt − ⟨Xt, θ0⟩), an unbiased estimator
of the difference θ∗ − θ0. Thus, it is not hard to see that θ̃t is an unbiased estimator of θ∗. As we
will see in Theorem 1, the variance of θ̃t is smaller when θ0 is closer to θ∗, showing the advantage
of allowing a pilot estimator θ0 as input. If no good pilot estimator is available a priori, one can set
θ0 = 0.

From the discussion above, it is natural to take an average of θ̃t. Indeed, when n is large, the population
covariance matrix Q(π) is close to empirical covariance matrix Q̂ ∶= 1

n ∑
n
t=1XtX

⊺
t , which makes

θ̂avg ∶=
1
n ∑

n
t=1 θ̃t close to the ordinary least squares estimator θ̂OLS = Q̂

−1( 1
n ∑

n
t=1XtYt). However,

for technical reasons, the concentration property of θ̃avg is hard to establish. This motivates POPART’s
second stage (step 6), where, for each coordinate i ∈ [d], we employ Catoni’s estimator [27] (see
Appendix B for a recap) to obtain an intermediate estimate for each θ∗i , namely θ′i.

To use Catoni’s estimator, we need to have an upper bound of the variance of θ′i for its αi parameter.
A direct calculation yields that, for all i ∈ [d] and t ∈ [n],

Var(θ̃ti) ≤ (max
a∈A
⟨θ∗ − θ0, a⟩

2
+ σ2
)max

i
(Q(µ)−1)ii

where θ̃ti ∶= ⟨θ̃t, ei⟩. This implies that (R2
0 + σ

2)maxi(Q(µ)
−1)ii is an upper bound of Var(θ̃ti). By

the standard concentration inequality of Catoni’s estimator (see Lemma 1), we obtain the following
estimation error guarantee for θ′i; the proof can be found in Appendix C.1. Hereafter, all proofs are
deferred to appendix unless noted otherwise.

Proposition 1. Suppose Assumption 1 holds. In POPART, for i ∈ [d], if n ≥ 2 ln 2d
δ

, the following
inequality holds with probability 1 − δ

d
:

∣θ′i − θ
∗
i ∣ <

√
4(R2

0 + σ
2)(Q(µ)−1)2ii
n

log
2d

δ
=∶ λi

Proposition 1 shows that, for each coordinate i, (θ′i − λi, θ
′
i + λi) forms a confidence interval for

θ∗i . Therefore, if 0 ∉ (θ′i − λi, θ
′
i + λi), we can infer that θ∗i ≠ 0, i.e., i ∈ supp(θ∗). Based on

the observation above, POPART’s last stage (step 7) performs a hard-thresholding for each of the
coordinates of θ′, using the threshold λi for coordinate i. Thanks to the thresholding step, with
high probability, θ̂’s support is contained in that of θ∗, which means that all coordinates i outside
the support of θ∗ (typically the vast majority of the coordinates when s ≪ d) satisfy θ̂i = θ∗i = 0.
Meanwhile, for coordinate i’s in supp(θ∗), the estimated value θ̂i is not too far from θ∗i .

The following theorem states POPART’s estimation error bound in terms of its output θ̂’s ℓ∞, ℓ0,
and ℓ1 errors, respectively. We remark that replacing hard thresholding in the last stage with soft
thresholding enjoys similar guarantees.

Theorem 1. Take Assumption 1. Let H2(Q) ∶=maxi∈[d](Q
−1)ii. Then, POPART has the following

guarantees with probability at least 1 − δ:

(i) ∀i ∈ [d], ∣θ̂i − θ
∗
i ∣ < 2

√
4(R2

0+σ2)(Q(µ)−1)ii
n

log 2d
δ

so ∥θ̂ − θ∗∥∞ < 2
√

4(R2
0+σ2)H2(Q(µ))

n
log 2d

δ
,

(ii) supp(θ̂) ⊂ supp(θ∗) so ∥θ̂ − θ∗∥0 ≤ s,

(iii) ∥θ̂ − θ∗∥1 ≤ 2s
√

4(R2
0+σ2)H2(Q(µ))

n
log 2d

δ

Interestingly, POPART has no false positive for identifying the sparsity pattern and enjoys an ℓ∞ error
bound, which is not available from Lasso, to our knowledge. Unfortunately, a direct comparison with
Lasso is nontrivial since the largest compatibility constant ϕ20(Σ̂, s) is defined as the solution of the
optimization problem (2), let alone the fact that ϕ20(Σ̂, s) is a function of the empirical covariance
matrix. While we leave further investigation as future work, our experiment results in Section 6
suggest that there might be a case where POPART makes a meaningful improvement over Lasso.

Proof of Theorem 1. Let λ ∶= maxi λi =
√

4(R2
0+σ2)H2(Q(µ))

n
log 2d

δ
From Proposition 1 and the

union bound, one can check that

∥θ′ − θ∗∥∞ < λ (3)
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with probability 1 − δ. Therefore, the coordinates in supp(θ∗)c will be thresholded out because of
∥θ′ − θ∗∥∞ ≤ λ. Therefore, (ii) holds and for all i ∈ supp(θ∗)c, ∣θ̂i − θ∗i ∣ = 0.

By definition, θ̂ = clipλ(θ
′), we can say that ∥θ̂ − θ′∥∞ ≤ λ. Plus, by Eq. (3), ∥θ′ − θ∗∥∞ ≤ λ. By the

triangle inequality, ∥θ∗ − θ̂∥∞ ≤ 2λ. Therefore, (i) holds.

Lastly, (iii) can be argued as follows:

∥θ̂ − θ∗∥1 = ∑
i∈[d]
∣θ̂i − θ

∗
i ∣ ≤ ∑

i∈supp(θ∗)c
0 + ∑

i∈supp(θ∗)
2λ ≤ 2sλ.

WARM-POPART: Improved guarantee by warmup. One drawback of the POPART estimator is
that its estimation error scales with

√
R2

0 + σ
2, which can be very large when R0 is large. One may

attempt to use the fact that POPART allows a pilot estimator θ0 to address this issue since R0 gets
smaller as θ0 is closer to θ∗. However, it is a priori unclear how to obtain a θ0 close to θ∗ as θ∗ is the
unknown parameter that we wanted to estimate in the first place.

To get around this “chicken and egg” problem, we propose to introduce a warmup stage, which we
call WARM-POPART (Algorithm 2). WARM-POPART consists of two stages. For the first warmup
stage, the algorithm runs POPART with the zero vector as the pilot estimator and with the first half of
the samples to obtain a coarse estimator denoted by θ̂0 which guarantees that for large enough n0,
∥θ̂0 − θ

∗∥1 ≤ σ. In the second stage, using θ̂0 as the pilot estimator, it runs POPART on the remaining
half of the samples.

Algorithm 2 WARM-POPART

1: Input: Samples {(Xt, Yt)}
n0

t=1, the population covariance matrix Q ∈ Rd×d, an upper bound
Rmax of maxa∈A ∣⟨θ

∗, a⟩∣, number of samples n0, failure rate δ.
2: Output: θ̂, an estimate of θ∗

3: Run POPART({(Xi, Yi)}
⌊n0/2⌋
i=1 ,Q, 0⃗, δ,Rmax) to obtain θ̂0, a coarse estimate of θ∗ for the next

step.
4: Run POPART({(Xi, Yi)}

n0

i=⌊n0/2⌋+1,Q, θ̂0, δ, σ) to obtain θ̂, an estimate of θ∗.

The following corollary states the estimation error bound of the output estimator θ̂. Compared with
POPART’s ℓ1 recovery guarantee, WARM-POPART’s ℓ1 recovery guarantee (Equation (4)) has no
dependence on Rmax; its dependence on Rmax only appears in the lower bound requirement for n0.

Corollary 1. Take Assumption 1 without the condition onR0. Assume thatRmax ≥maxa∈A ∣⟨a, θ
∗⟩∣,

and n0 >
32s2(R2

max+σ
2)H2(Q(µ))

σ2 log 2d
δ

. Then, WARM-POPART has, with probability at least 1 − 2δ,

∥θ̂ − θ∗∥1 ≤ 8sσ

¿
Á
ÁÀH2(Q(µ)) ln 2d

δ

n0
. (4)

Remark 1. In Algorithm 2, we choose POPART as our coarse estimator, but we can freely change
the coarse estimation step (step 3) to other principled estimation methods (such as Lasso) without
affecting the main estimation error bound (4); the only change will be the lower bound requirement
of n0 to another problem-dependent constant.

Remark 2. WARM-POPART requires the knowledge of Rmax, an upper bound of maxa∈A ∣⟨θ
∗, a⟩∣;

this requirement can be relaxed by changing the last argument of the coarse estimation step (step 3)
from Rmax, to some function f(n0) such that f(n0) = ω(1) and f(n0) = o(

√
n0) (say, σn

1
4

0 ); with
this change, a result analogous to Corollary 1 can be proved with a different lower bound requirement
of n0.

A novel and efficient experimental design for sparse linear estimation. In the experimental
design setting where the learner has freedom to design the underlying sampling distribution µ, the
ℓ1 error bound of POPART and WARM-POPART naturally motivates a design criterion. Specifically,
we can choose µ that minimizes H2(Q(µ)), which gives the lowest estimation error guarantee. We
denote the optimal value of H2(Q(µ)) by

H2
∗ ∶= min

µ∈P(A)
max
i∈[d]
(Q(µ)−1)ii . (5)
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The minimization of H2(Q(µ)) is a convex optimization problem, which admits efficient methods
for finding the solution. Intuitively, H2

∗ captures the geometry of the action set A.

To compare with previous studies that design a sampling distribution for Lasso, we first review the
standard ℓ1 error bound of Lasso.

Theorem 2. (Buhlmann and van de Geer [6, Theorem 6.1]) With probability at least 1 − 2δ, the
ℓ1-estimation error of the optimal Lasso solution θ̂Lasso [6, Eq. (2.2)] with λ =

√
2 log(2d/δ)/n

satisfies

∥θ̂Lasso − θ
∗
∥1 ≤

sσ

ϕ20(Σ̂, s)

√
2 log(2d/δ)

n
,

where ϕ0(Σ̂, s)2 is the compatibility constant with respect to the empirical covariance matrix Σ̂ =
1
n ∑

n
t=1XtX

⊺
t and the sparsity s in Eq. (2).

Ideally, for Lasso, experiment design which minimizes the compatibility constant will guarantee the
best estimation error bound within a fixed number of samples n. However, naively, the computation
of the compatibility constant is intractable since Eq. (2) is a combinatorial optimization problem
which is usually difficult to compute. One simple approach taken by Hao et al. [18] is to use the
following computationally tractable surrogate of ϕ20(Σ̂, s):

Cmin ∶= max
µ∈P(A)

λmin(Q(µ)) (6)

where λmin(A) denotes the minimum eigenvalue of a matrix A. With the choice of sampling
distribution µ = argmax

µ∈P(A)
λmin(Q(µ)), and n ≥ Ω̃( s⋅polylog(d)Cmin

2 ), with high probability, ϕ20(Σ̂, s) ≥

Cmin/2 holds [33, Theorem 1.8], and one can replace ϕ0(Σ̂, s) to Cmin/2 in Theorem 2 to get the
following corollary:

Corollary 2. With probability at least 1 − exp(−cn) − 2δ for some universal constant c, the ℓ1-
estimation error of the optimal Lasso solution θ̂Lasso satisfies

∥θ̂Lasso − θ
∗
∥1 ≤

2sσ

Cmin

√
2 log(2d/δ)

n
, (7)

The following proposition shows that our estimator has a better error bound compared to the surrogate
experimental design for Lasso of Hao et al. [18].

Proposition 2. We have H2
∗ ≤ C

−1
min ≤ dH

2
∗ . Furthermore, there exist arm sets for which either of the

inequalities is tight up to a constant factor.

Therefore, our new estimator has ℓ1 error guarantees at least a factor C−1/2min better than that provided
by [18], as follows: when we choose the µ as the solution of the Eq. (5), then

(RHS of (4)) ≲ sσH∗

√
ln(2d/δ)

n
≲ sσCmin

−1/2
√

ln(2d/δ)

n
≲ sσCmin

−1
√

ln(2d/δ)

n
≲ (RHS of (7))

In addition, we also prove that there exists a case where our estimator has an d/s-order better error
bound compared to the traditional lasso bound in Theorem 2, although this is not in terms of the
compatibility constant of the empirical covariance matrix Σ̂.

Proposition 3. There exists an action set A and an absolute constant C1 > 0 such that

H∗ < C1
s

d
×

1

ϕ20(Σ, s)

For the detailed proof about Proposition 2 and Proposition 3, see Section D in Appendix.
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4 Improved Sparse Linear Bandits using WARM-POPART

We now apply our new WARM-POPART sparse estimation algorithm to design new sparse linear
bandit algorithms. Following prior work [18], we adopt the classical Explore-then-Commit (ETC)
framework for algorithm design, and use POPART with experimental design to perform exploration.
As we will see, the tighter ℓ1 estimation error bound of our POPART-based estimators helps us obtain
an improved regret bound.

Algorithm 3 Explore then commit with WARM-POPART

1: Input: time horizon n, action set A, warm-up exploration length n0, failure rate δ, reward
threshold parameter Rmax, an upper bound of maxa∈A ∣⟨θ

∗, a⟩∣.
2: Solve the optimization problem in Eq. (5) and denote the solution as µ∗
3: for t = 1, . . . , n0 do
4: Independently pull the arm At according to µ∗ and receives the reward rt
5: end for
6: Run WARM-POPART({At}

n0

t=1,{rt}
n0

t=1,Q(µ∗), δ,Rmax) to obtain θ̂, an estimate of θ∗.
7: for t = n0 + 1, . . . , n do
8: Take action At = arg maxa∈A ⟨θ̂, a⟩, receive reward rt = ⟨θ∗,At⟩ + ηt
9: end for

Sparse linear bandit with WARM-POPART. Our first new algorithm, Explore then Commit with
WARM-POPART (Algorithm 3), proceeds as follows. For the exploration stage, which consists of the
first n0 rounds, it solves the optimization problem (5) to find µ∗, the optimal sampling distribution
for POPART and samples from it to collect a dataset for the estimation of θ∗. Then, we use this
dataset to compute the WARM-POPART estimator θ̂. Finally, in the commit stage, which consists of
the remaining n − n0 rounds, we take the greedy action with respect to θ̂. We prove the following
regret guarantee of Algorithm 3:

Theorem 3. If Algorithm 3 has input time horizon n > 16
√
2
Rmax(R2

max+σ
2)3/2H2

∗
s2

σ4 log 2d
δ

, action

set A ⊂ [−1,+1]d, and exploration length n0 = 4(s2σ2H2
∗n

2 log 2d
δ
R−2max)

1
3 , λ1 = 4σ

√
H2
∗

n0
log 2d

δ
,

then with probability at least 1 − 2δ, Reg(n) ≤ 8R1/3
max(s

2σ2H2
∗n

2 log 2d
δ
)

1
3 .

Proof. From Corollary 1, ∥θ̂−θ∗∥1 ≤ 2sλ1 with probability at least 1−2δ. Therefore, with probability
1 − 2δ,

Reg(n) ≤ Rmaxn0 + (n − n0)∥θ̂ − θ
∗
∥1 ≤ Rmaxn0 + 2snλ1 = Rmaxn0 + 8snσ

√
H2
∗

n0
log

2d

δ

and optimizing the right hand side with respect to n0 leads to the desired upper bound.

Compared with Hao et al. [18]’s regret bound Õ((Rmaxs
2σ2Cmin

−2n2)1/3)1 , Algorithm 3’s regret
bound Õ((Rmaxs

2σ2H2
∗n

2)1/3) is at most Õ((Rmaxs
2σ2Cmin

−1n2)1/3), which is at least a factor
Cmin

1
3 smaller. As we will see in Section 5, we show that the regret upper bound provided by

Theorem 3 is unimprovable in general, answering an open question of [18].

Improved upper bound with minimum signal condition. Our second new algorithm, Algorithm 4,
similarly uses WARM-POPART under an additional minimum signal condition.

Assumption 2 (Minimum signal). There exists a known lower bound m > 0 such that
minj∈supp(θ∗) ∣θ

∗
j ∣ >m.

At a high level, Algorithm 4 uses the first n2 rounds for identifying the support of θ∗; the ℓ∞ recovery
guarantee of WARM-POPART makes it suitable for this task. Under the minimal signal condition and
a large enough n2, it is guaranteed that θ̂2’s support equals exactly the support of θ∗. After identifying
the support of θ∗, Algorithm 4 treats this as a s-dimensional linear bandit problem by discarding

1This is implicit in [18] – they assume that σ = 1 and do not keep track of the dependence on σ.
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the remaining d − s coordinates of the arm covariates, and perform phase elimination algorithm [23,
Section 22.1] therein. The following theorem provides a regret upper bound of Algorithm 4.

Algorithm 4 Restricted phase elimination with WARM-POPART

1: Input: time horizon n, finite action set A, minimum signal m, failure rate δ, reward threshold
parameter Rmax, an upper bound of maxa∈A ∣⟨θ

∗, a⟩∣
2: Solve the optimization problem in Eq. 5 and denote the solutions as Q and µ∗, respectively.
3: Let n2 =max(

256σ2H2
∗

m2 log 2d
δ
,
32s2(R2

max+σ
2)H2

∗

σ2 log 2d
δ
)

4: for t = 1, . . . , n2 do
5: Independently pull the arm At according to µ∗ and receives the reward rt
6: end for
7: θ̂2 =WARM-POPART({At}

n
t=1,{Rt}

n
t=1,Q, δ,Rmax)

8: Identify the support Ŝ = supp(θ̂2)
9: for t = n2 + 1, . . . , n do

10: Invoke phased elimination algorithm for linear bandits on Ŝ
11: end for

Theorem 4. If Algorithm 4 has input time horizon n > max(
28σ2H2

∗

m2 ,
25s2(R2

max+σ
2)H2

∗

σ2 ) log 2d
δ

,
action set A ⊂ [−1,1]d, upper bound of the reward Rmax, then with probability at least 1 − 2δ, the
following regret upper bound of the Algorithm 4 holds: for universal constant C > 0,

Reg(n) ≤max(
28σ2H2

∗
m2

log
2d

δ
,
25s2(R2

max + σ
2)H2

∗
σ2

log
2d

δ
) +Cσ

√
sn log(∣A∣n)

For sufficiently large n, the second term dominates, and we obtain an O(
√
sn) regret upper bound.

Theorem 4 provides two major improvements compared to Hao et al. [18, Algorithm 2]. First,
when m is moderately small (so that the first subterm in the first term dominates), it shortens the
length of the exploration phase n2 by a factor of s ⋅ Cmin

H2
∗

. Second, compared with the regret bound

Õ(

√
9λmax(∑n2

i=1 AiA
⊺

i /n2)
Cmin

√
sn) provided by [18], our main regret term Õ(

√
sn) is more interpretable

and can be much lower.

5 Matching lower bound

We show the following theorem that establishes the optimality of Algorithm 3. This solves the open
problem of Hao et al. [18, Remark 4.5] on the optimal order of regret in terms of sparsity and action
set geometry in sparse linear bandits.

Theorem 5. For any algorithm, any s, d, κ that satisfies d ≥ max(n1/3s4/3κ−4/3, (s + 1)2) and
n > 8κs2, there exists a linear bandit environment an action set A and a s-sparse θ ∈ Rd, such that
C−1min ≤ κ

−2, Rmax ≤ 2, σ = 1, and

Regn ≥ Ω(κ
−2/3s2/3n2/3) .

We give an overview of our lower bound proof techniques, and defer the details to Appendix F.

Change of measure technique. Generally, researchers prove the lower bound by comparing two
instances based on the information theory inequalities, such as Pinsker’s inequality, or Bregtanolle-
Huber inequality. In this proof, we also use two instances θ and θ′, but we use the change of measure
technique, to help lower bound the probability of events more freely. Specifically, for any event A,

Pθ(A) = Eθ[1A] = Eθ′

⎡
⎢
⎢
⎢
⎣
1A

n

∏
t=1

pθ(rt∣at)

pθ′(rt∣at)

⎤
⎥
⎥
⎥
⎦
≳ Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1A exp
⎛

⎝
−

n

∑
t=1
⟨At, θ − θ

′
⟩
2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Symmetrization. We utilize the algorithmic symmetrization technique of Simchowitz et al. [34],
Stoltz et al. [37], which makes it suffice to focus on proving lower bounds against symmetric
algorithms.
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Definition 2 (Symmetric Algorithm). An algorithm Alg is symmetric if for any permutation π ∈
Sym(d), θ ∈ Rd, {at}nt=1 ∈ A

n,

Pθ,Alg(A1 = a1,⋯,An = an) = Pπ(θ),Alg(A1 = π(a1),⋯,An = π(an))

where for vector v, π(v) ∈ Rd denotes its permuted version that moves vi to the π(i)-th position.

This approach can help us to exploit the symmetry of θ′ to lower bound the right hand side of (8);
below, Π ∶= {π′ ∶ π(θ′) = θ′} is the set of permutations that keep θ′ invariant, and A is an event
invariant under Π:

(8) ≥
1

∣Π∣
∑
π∈Π

Eθ′

⎡
⎢
⎢
⎢
⎣
1A exp(−

n

∑
t=1
⟨π−1(At), θ − θ

′
⟩
2
)
⎤
⎥
⎥
⎥
⎦
≥ Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1A exp
⎛

⎝
−

n

∑
t=1

1

∣Π∣
∑
π∈Π
⟨π−1(At), θ − θ

′
⟩
2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

which helps us use combinatorial tools over the actions for the lower bound proof.

6 Experimental results

We evaluate the empirical performance of POPART and our proposed experimental design, along
with its impact on sparse linear bandits. One can check our code from here: https://github.com/
jajajang/sparse.

Case 1 Case 2

Figure 1: Experiment results on ℓ1 estimation error cumulative regret.

For sparse linear regression and experimental design, we compare our algorithm POPART with
µ being the solution of (5) with two baselines. The first baseline denoted by Cmin-Lasso is the
method proposed by Hao et al. [18] that uses Lasso with sampling distribution µ defined by (6).
The second baseline is H2-Lasso, uses Lasso with sampling distribution µ defined by (5), which is
meant to observe if Lasso can perform better with our experimental design and to see how POPART is
compared with Lasso as an estimator since they are given the same data. Of course, this experimental
design is favored towards POPART as we have optimized the design for it, so our intention is to
observe if there ever exists a case where POPART works better than Lasso.

For sparse linear bandits, we run a variant of our Algorithm 3 that uses WARM-POPART in place of
POPART for simplicity. As a baseline, we use ESTC [18]. For both methods, we use the exploration
length prescribed by theory. We consider two cases:
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• Case 1: Hard instance where H2
∗ ≪ C

−1
min. We use the action set constructed in Appendix D.1

where H2
∗ and Cmin shows a gap of Θ(d). We choose d = 10, s = 2, σ = 0.1.

• Case 2. General unit vectors. In this case, we choose d = 30, s = 2, σ = 0.1 and the action set
A consists of ∣A∣ = 3d = 90 uniformly random vectors on the unit sphere.

We run each method 30 times and report the average and standard deviation of the ℓ1 estimation error
and the cumulative regret in Figure 1.

Observation. As we expected from the theoretical analysis, our estimator and bandit algorithm
outperform the baselines. In terms of the ℓ1 error, for both cases, we see that POPART converges
much faster than Cmin-Lasso for large enough n. Interestingly, H2-Lasso also improves by just using
the design computed for POPART in case 1. At the same time, H2-Lasso is inferior than POPART
even if they are given the same data points. While the design was optimized for POPART and POPART
has the benefit of using the population covariance, which is unfair, it is still interesting to observe
a significant gap between POPART and Lasso. For sparse linear bandit experiments, while ESTC
requires exploration time almost the total length of the time horizon, ours requires a significantly
shorter exploration phase in both cases and thus suffers much lower regret.

7 Conclusion
We have proposed a novel estimator POPART and experimental design for high-dimensional linear
regression. POPART has not only enabled accurate estimation with computational efficiency but also
led to improved sparse linear bandit algorithms. Furthermore, we have closed the gap between the
lower and upper regret bound on an important family of instances in the data-poor regime.

Our work opens up numerous future directions. For POPART, we speculate that (Q(µ)−1)ii is the
statistical limit for testing whether θ∗i = 0 or not – it would be a valuable investigation to prove
or disprove this. We believe this will also help investigate whether the dependence on H2

∗ in our
regret upper bound is unimprovable (note our matching lower bound is only for a particular family of
instances). Furthermore, it would be interesting to investigate whether we can use POPART without
relying on the population covariance; e.g., use estimated covariance from an extra set of unlabeled
data or find ways to use the empirical covariance directly. For sparse linear bandits, it would be
interesting to develop an algorithm that achieves the data-poor regime optimal regret and data-rich
regime optimal regret

√
sdn simultaneously. Furthermore, it would be interesting to extend our result

to changing arm set, which poses a great challenge in planning.
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