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Abstract

Vertical Federated Learning (VFL), that trains federated models over vertically
partitioned data, has emerged as an important learning paradigm. However, existing
VFL methods are facing two challenges: (1) scalability when # participants grows
to even modest scale and (2) diminishing return w.r.t. # participants: not all
participants are equally important and many will not introduce quality improvement
in a large consortium. Inspired by these two challenges, in this paper, we ask: How
can we select l out of m participants, where l ≪ m, that are most important?
We call this problem Vertically Federated Participant Selection, and model it with
a principled mutual information-based view. Our first technical contribution is VF-
MINE—a Vertically Federated Mutual INformation Estimator—that uses one of
the most celebrated algorithms in database theory—Fagin’s algorithm as a building
block. Our second contribution is to further optimize VF-MINE to enable VF-PS,
a group testing-based participant selection framework. We empirically show that
vertically federated participation selection can be orders of magnitude faster than
training a full-fledged VFL model, while being able to identify the most important
subset of participants that often lead to a VFL model of similar quality.

1 Introduction

The quality of machine learning models heavily relies on the quality and volume of available data.
As our understanding of machine learning shifts towards such a data-centric view, mechanisms of
making data available to machine learning have attracted intensive interests [1, 2]. Towards this goal,
Federated Learning [3–5] is an emerging research area that focuses on training a single ML model
using all data available in a federated “data consortium” in a secure and privacy-preserving way.

Vertical Federated Learning. In this paper, we focus on a specific federated learning scenario:
Vertical Federated Learning (VFL) [5]. As illustrated in Figure 1(a), the VFL setting involves a
data consortium that consists of m participants P = {P1, ..., Pm}. Each participant holds a disjoint
subset of features associated with the same entity (e.g., different hospitals holding medical records
of the same patient but for different types of diseases). The goal of vertical federated learning is to
train a single ML model over the joint feature space, in a secure and privacy-preserving way, without
communicating their data to each other [6–10].
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(a) In the Vertical Federated Learning (VFL) setting,
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(b) VFL faces two challenges: (i) Scalability and
(ii) Diminishing Return w.r.t # participants, since
many participants in a large consortium might
not provide significant quality gain. As a result,
(iii) a dominating amount of the computation
cost for a large consortium might not lead to any
quality gain. (LR, Bank dataset)

Figure 1: Vertical federated learning and challenges

Technical Challenges of VFL. Despite many recent efforts that significantly improved the scalability
and efficiency of model training in the VFL setting, two great challenges linger, as illustrated in
Figure 1(b). The first challenge is scalability w.r.t # participants. Because of the requirement on secu-
rity and privacy, many VFL approaches have to resort to expensive methods such as Homomorphic
Encryption [11, 12] and Secure Multi-party Computation [13, 14]. This greatly limits the scalability
of today’s VFL systems. Another challenge is diminishing return, also when # participants grows.
Since not all participants contribute equally informative knowledge, it is not unusual to observe that
adding more participants does not provide significant quality gain on the final ML model. These
two challenges, when put together, form a quite “ironic” picture, as illustrated in Figure 1(b)(iii) —
supporting a large data consortium makes training time significantly longer, however, a dominating
amount of these computations might not be translated into any significant quality gain.

Vertically Federated Participant Selection (VF-PS). Whereas designing more efficient model training
methods in the VFL setting continues to be crucially important, in this paper, we focus on an
orthogonal direction to accommodate these challenges. Given a data consortium with m participants,
instead of trying to speed-up the training of a single ML model over all m participants, we ask: “Can
we identify l ≪ m participants that are most important, and only train expensive VFL models on
them instead?” We call this problem Vertically Federated Participant Selection (VF-PS).

From Feature Selection (FS) to VF-PS: Connections and New Challenges. At first glance, the VF-
PS problem is closely connected to traditional feature selection problems [15, 16]. This is definitely
true and is what, in our opinion, makes VF-PS promising — the last half-century of study on feature
selection provides not only principled theoretical framework but also strong evidence that we should
be able to significantly decrease # participants (# features) involved but still obtain similar quality.
However, VF-PS imposes unique challenges compared to feature selection. VF-PS should (1) provide
no weaker security and privacy guarantees compared with other VFL training systems [9] and (2)
should be much more efficient than training a single VFL model over all participants.

Summary of Technical Contributions. In this paper, we focus on a specific, while one of the most
natural, way of modeling VF-PS: we should select the subset of participants that jointly preserve the
greatest amount of mutual information (MI) between features and labels. Under this view, designing
a VF-PS algorithm involves two technical issues: (1) how to estimate MI for a subset of participants?
and (2) how to search the subset of participants that preserve the greatest amount of MI?

• (C1) Our first contribution is VF-MINE—a Vertically Federated Mutual INformation Estimator.
Given a subset of participants, VF-MINE estimates MI between the features of these participants
and the labels. VF-MINE protects data privacy via homomorphic encryption. The most surprisingly
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technical observation is that one of the most popular MI estimators [17], used by sklearn, can
be made orders of magnitude faster. This is by optimizing data movement between different
participants, with Fagin’s algorithm [18] as a building block.

• (C2) Our second contribution is VF-PS, that uses VF-MINE to search for the subset of participants
that preserves the greatest amount of MI in a group testing-based framework. We provide a set of
optimization techniques to further optimize data movement between different participants.

• (C3) We provide rigorous security analysis for the proposed methods. We then empirically show
that, our VF-PS framework can be up to two orders of magnitude faster than training full-fledged
VFL models. Moreover, VF-PS can often select a much smaller subset of participants but maintain
a similar model quality.

2 Preliminaries

Federated Learning. Federated learning is a category of distributed learning technique that enables
different organizations or users to collaboratively learn machine learning (ML) models, without
exposing their personal data to other parties [19–21]. Assume X denotes instance features, Y denotes
instance labels and I denotes instance IDs, federated learning can be classified into two categories,
i.e., horizontal federated learning and vertical federated learning, according to how (X ,Y, I) are
distributed across different participants.

Privacy Protection Techniques. Preserving the privacy of input data is a crucial requirement of many
deployments of federated learning. Therefore, these systems are often used in conjunction with
privacy protection techniques. In what follows, we briefly summarize key techniques used in this
space. 1) Differential Privacy randomly perturbs the transferred data (e.g., gradient) with noises, such
as Gaussian noise [22], Laplacian noise [23], and Binomial noise [24]. 2) Homomorphic Encryption
encrypts all data before they are transferred [12, 25, 26] and supports arithmetic computation on
encrypted data. 3) Secure Multiparty Computation (MPC) enables multiple parties to collaboratively
compute an agreed-upon function without leaking local input to any other party except for what can
be inferred from the output [13, 14, 27, 28].

3 Vertically Federated Participant Selection via Mutual Information

In this section, we describe our algorithm for Vertically Federated Participant Selection (VF-PS).

3.1 Vertically Federated Participant Selection

We assume a standard data model, following previous efforts in VFL [7, 8] — let there be m
participants and N data instances, and X ∈ RN×F be the joint feature space where F is the
dimension of the joint feature space. In the VFL setting, this joint feature space X is vertically
partitioned over different participants — each participant Pi ∈ P holds a subset of features (columns)
of X , denoted by Xi. Without loss of generality, we have: X = [X1 ...Xi... Xm]. Among all m,
there is a leader participant, which holds the instance labels Y . We assume that all participants agree
on the same identifier (ID) of each data instance.

Security Requirements. Following previous systems, e.g., Pivot [9], VF2Boost [29], we have the
following standard security requirements. 1) Feature Security: FeaturesXi on each participant cannot
be shared with any other party. 2) Aggregation Security: Only the leader participant can obtain an
aggregated result over all participants’ local data. 3) Identity Security: No other party, except the
participants, can obtain the identifiers (IDs) of instances.

Mutual Information-based VF-PS. Similar to the classic feature selection problem, we focus on one
of the most natural ways to model VF-PS — we aim at selecting the subset of participants that jointly
preserve the greatest amount of mutual information with the label. Formally, the computation that we
hope to conduct, under the previous security requirements and vertically partitioned data model, is

max
α1....αl

MI([Xα1 ... Xαl
];Y ); s.t,∀i ∈ [l] : αi ∈ [m] and ∀i, j ∈ [l] : αi ̸= αj . (1)

where MI(-) estimates the mutual information from finite samples, and l < m is a pre-defined
constant specifying the number of participants to select.
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3.2 VF-MINE: A Vertically Federated Mutual Information Estimator

As we see in Equation 1, solving this problem involves two different questions: (1) how to estimate
MI given a fixed subset of participants, i.e., MI([Xα1 ... Xαl

];Y )? and (2) how to efficiently search
for the best subset, i.e., maxα1....αl

, without enumerating exponential many possibilities? We focus
on the first problem in this section, and leave the second question to Section 3.3.

3.2.1 Baseline Method

KNN-based MI Estimator. We focus on a standard family of MI estimators that is widely used
in practice (e.g., in sklearn’s feature selection module), which is based on k-nearest neighbors
(KNN)[17, 30]. Let there beN data pairs D = {(xj , yj)} where yj is a label and xj is a feature vector.
A KNN-based MI estimator enumerates multiple query data pairs. For each query q = (xq, yq):

1. We first compute Nq , the number of examples in D that share the same labels as yq , i.e.,

Nq = |{(x, y) ∈ D : y = yq}|

2. We then construct NNk,yq , containing all k-nearest neighbors among data examples that share the
same label. Let d̄q be the maximal distance between examples in NNK,yq

and xq .
3. We then compute mq , the number of examples in D that has a distance to xq smaller than d̄q .

Given Q as a subset of query data pairs, we estimate the mutual information as fol-
lows: 1

|Q|
∑

q (ψ(N)− ψ(Nq) + ψ(K)− ψ(mq)), where ψ is the digamma function ψ(x) =
d
dx ln(Γ(x)) ∼ lnx− 1

2x .

Baseline Implementation of VF-MINE. We now provide a baseline implementation of this estimator
in the vertically federated setting. We assume that we use Euclidean distance as our distance metric,
but our technique can be naturally applied to other distance metrics. We choose additive homomorphic
encryption (HE) to protect data privacy since it is widely adopted in the literature [8, 11, 25]. We
use HE.Enc(-)/HE.Dec(-) to denote the encryption/decryption function, and [-] an encrypted data
item. Below, we present a single VF-MINE routine. There are three roles in the system — key server,
aggregation server, and participant:

• Key server. The key server generates public and private HE (homomorphic encryption) keys
(pk, sk), allocates sk to the leader participant, and pk to all participants and the aggregation server.
We assume the key server is trusted and does not collude with any party.

• Aggregation server. An aggregation server provides an addition operator that securely aggregates
multiple encrypted data items: [d] = HE.Sum({[di]}; pk).

• Participant. Each participant Pi holds a feature subset of allN data instances. For a query data pair
q = (xq, yq), each participant Pi calculates di = [(xq,i − xj,i)

2 for (xj , yj) ∈ D], the distances
between its local features of xq and data pairs in D. We call di the partial distances. Then, Pi

encrypts partial distances and sends [di] = HE.Enc(di; pk) to the aggregation server via the
addition operator. There is a leader participant that holds the labels. It receives the complete
distances [d] from the aggregation server, decrypts it to d = HE.Dec([d]; sk), and calculates MI,
responding to the procedure of KNN-based estimator.

3.2.2 Fagin-Inspired Method

The baseline method has a potential performance issue, that is, it has to aggregate all the data instances.
Since the operation through homomorphic encryption is often time-consuming, this baseline method
can be inefficient in practice, especially for many large-scale datasets. To decrease the cost, a potential
way is to decrease the number of aggregated instances. Motivated as such, our first question is —
can we aggregate fewer data instances and meanwhile obtain the correct results? We observe that
the vertical KNN task can be seen as aggregating multiple “sub-ranking”s into a “global ranking”.
Based on this interpretation, we propose to leverage a textbook aggregation algorithm, called Fagin,
to efficiently find k-nearest neighbors.

Fagin Algorithm. The problem of top-k query aims at finding k instances with the highest (or lowest)
scores from multiple lists of instances. Assume there are m parties and N instances, each party i has
a score for each instance j, denoted by sij . On each party, the instances are sorted by their scores.
Globally, each instance is assigned an overall score by combining the scores on all parties using an
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Figure 2: Fagin-inspired method for estimating MI

aggregate function. This problem has been extensively studied by a series of algorithms [31]. In this
work, we choose Fagin as it is widely used [18]. Fagin requires that the aggregation function aggr is
monotone: aggr(s1, s2, ..., sm) ≤ aggr(s′1, s

′
2, ..., s

′
m) if si < s′i for every i.

Figure 2(a) shows an example of Fagin algorithm that selects top-2 instances from three parties with
the addition aggregation function. The processing of Fagin algorithm contains three major steps:
1) sequentially scan the sorted lists from all parties until there are k instances that have been seen in
all lists, 2) obtain the scores of all the instances seen so far (including those have not yet occurred in
all lists), and 3) use the aggregation function to compute global scores for candidate instances found
in the previous step and select top-k instances therein. In the example of Figure 2(a), Fagin scans
three rows and finds that s1 and s3 are in three lists. Afterwards, the scores of all instances in three
rows (i.e., s1, s2, s3, s4) are aggregated. We denote math.Fagin(-) the standard Fagin algorithm in
this paper, that takes multiple lists of instance IDs as input and outputs candidate IDs.

Fagin-inspired Optimization for VF-MINE. We now implement the Fagin-inspired method. The key
allocation (step ①) is the same as the baseline method. The key is to aggregate “sub-ranking”s with
Fagin algorithm while preserving their privacy. The implementation of the secure Fagin operator is
shown in Figure 2(b) (step ②-⑤). We propose a shuffle strategy — each participant uses the same seed
to randomly shuffle local data instances (step ②). Then, we generate a “pseudo ID” for each instance
that is equal to the index after shuffling. Each participant Pi sends the sub-ranking of pseudo IDs,
denoted by I ′i , to the aggregation server, instead of sending the real IDs (step ③-④). The aggregation
server runs the standard Fagin algorithm to find k-nearest candidates from all sub-rankings. Since the
estimation of MI depends on the label, the leader participant is responsible for stopping Fagin. The
aggregation server sends the pseudo IDs of Fagin candidates, denoted by I ′k, to each participant (step
⑤). After the Fagin operator, the participants re-index these pseudo IDs to their original IDs (step
⑥). The following steps are similar to the baseline method (step ⑦-⑩).

3.3 VF-PS: Group Testing-based Participant Selection

The second component in our framework is to search for the subset of participants that maximizes
MI. We adopt a standard group testing-based search procedure.

Group-testing Framework. The VF-PS problem under the group testing framework runs as follows:

1. We select a collection of T tests, each of which corresponds to a subset of participants St ⊆ P;
2. For each St, we estimate its mutual information and use it as the score;
3. For each participant, we compute its importance as the average score in all tests it participated in.
4. We pick the top-k most important participants.

Formally, let U(S) be the score of group S ⊆ P defined as the mutual information overNv validation
data pairs: V = {(xvj , yvj )}, and let A of dimension T × m be the participating matrix, where
At,i = 1 if participant i belongs to the t-th test group. Corresponding to each row of A is a “score”
U(A[t]) = U({i|At,i = 1}). Consider A as the test design, the total score of participant Pi is
ui = A[:][i] · [U(A[0]), ..., U(A[T − 1])]. The participant selection is conducted using these scores.
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Algorithm 1 Fagin-inspired Participant Selection with Communication Batching
Key Server:
(pk, sk) = HE.KeyGen() //generate homomorphic public and private keys
Send pk to aggregation server, send (pk, sk) to participants
Participants:
(Leader) Generate groups G = {S1, ..., ST } and send them to aggregation server
. . . . . . //find Fagin candidate instances, whose IDs are Ik

1: [dFi ] = HE.Enc(di(Ik); pk) //encrypt partial distances of Fagin candidates
2: Server.addition([dFi ]) //send encrypted partial distances to aggregation server
3: {[dS ]} = Server.scheduler() //receive aggregated distances from aggregation server
4: {I ′S} = {math.argsort(HE.Dec([dS ]; sk)} //decrypt and sort aggregated distances
5: {IS} = Server.scheduler callback({I ′S}) //send local sorted indices to aggregation server
6: (Leader) scores = group testing({IS},G, Y ) //leader calculates MI scores

Aggregation Server:
function Server.addition({[dFi ]}):

{[dS∈G ]} = {HE.Sum({[dFi ]; pi ∈ S}; pk);S ∈ G}
function Server.scheduler():

randomly assign {[dS∈G ]} to participants
function Server.scheduler callback({I ′S}):

return {IS} = reindex({I ′S};S ∈ G) to leader participant

Implementation of Group Testing. The implementation of group testing for Fagin-inspired method
is quite natural. Specifically, we run Fagin-inspired MI estimation over each test group (subset of
participants). The counterpart using the baseline method can be obtained by skipping the Fagin stage.

1. Generate testing groups. The leader participant randomly generates T groups (e.g., the first group
S1 = {P1} and the second group S2 = {P1, P2}), which are sent to other participants.

2. Run Fagin-inspired method. The proposed framework handles each test group t independently.
Specifically, for each validation instance, the participants in test group A[t] jointly run Fagin-
inspired KNN and calculate the mutual information. The score of the group, U(A[t]), is averaged
over all the validation instances.

3. Participant selection. Once running all the groups, the leader participant calculates the MI-based
score of each participant, with which most valuable participants are selected.

3.3.1 Group Testing with Communication Batching

The naive implementation of the group testing routine has a critical drawback. The Fagin candidates
generated by different groups may contain overlapping instances, causing significant amount of
redundant overheads. As we will show, by leveraging what we call the Inclusion Property of the
Fagin algorithm, we can batch the communication and computation of all test groups.

Inclusion Property of Fagin. The principle of the Fagin algorithm is to scan the sub-rankings from
multiple participants until k distinct instances are found in all the sub-rankings. Given two subsets of
participants, S1 and S2, what we can say about their data access pattern?

Theorem 1. (Fagin’s Inclusion Property) Given two groups of participants S1 ⊆ P and S2 ⊆ P ,
their k-nearest candidates generated by Fagin algorithm satisfy F1 ⊆ F2 if S1 ⊆ S2.

Proof. For the group S2, assume the Fagin algorithm scans F rows of sub-rankings {Ri,∀pi ∈ S2}
before finding instances D = {x1, x2, ..., xk} occurring in ∀p ∈ S2. The ranking of each instance in
D should satisfy:

I(xi, pj) ≤ F, for ∀xi ∈ D and pj ∈ S2

Since S1 is a subset of S2, we can directly infer:

I(xi, pk) ≤ F, for ∀xi ∈ D and pk ∈ S1

The above implies that we can find D in each participant p ∈ S1 before scanning F rows The Fagin
candidate set of S2 contains all the unique instances within F rows:

F2 = Set(∪pi∈S2
Ri[: F ])

6



Datasets Synthesis G2-4 G2-128 Bank Unbalance Letter Birch1 Birch2
# instances 1000 2048 2048 3200 6500 20K 100K 100K
# features 50 4 128 8 2 16 2 2
# classes 2 2 2 2 8 26 100 100

# partitions 5 4 4 4 2 4 2 2

Table 1: Evaluated datasets.

Similarly, the Fagin candidate set of S1 is a subset of all unique samples within F rows:

F1 ⊆ Set(∪pi∈S1
Ri[: F ])

Since S1 is a subset of S2, all the samples appear within F rows of S1 also appear in S2:

Set(∪pi∈S1Ri[: F ]) ⊆ Set(∪pi∈S2Ri[: F ])

Therefore, we can conclude: F1 ⊆ F2.

Theorem 1 indicates that the Fagin candidates of all groups can be found in those of the “complete
group” that consists of all the participants. Based on this observation, we propose to batch the Fagin
tasks of different groups in a single execution.

Implementation of Batch Optimization. The batching optimization is illustrated in Algorithm 1. The
leader participant generates groups G = {S1, ...ST } and sends G to the aggregation server. The
following shows the steps after getting the Fagin candidates, Ik, for the complete group P .

1. Each participant Pi encrypts partial distances with homomorphic encryption. (line 1)
2. Each participant sends encrypted partial distances of Fagin candidates, i.e., [dF

i ], to the aggregation
server through Server.addition (line 2). For each group S ∈ G, the aggregation server calculates
the sum of all partial distances in S.

3. A random scheduler, Server.scheduler, on the aggregation server sends the aggregated distances
of each group (denoted by [dS ]) to a participant randomly (line 3).

4. For each received [dS ], the participant performs decryption and gets the sorted index I ′S (line 4).
5. The sorted indices are sent to the aggregation server through Server.scheduler callback (line 5).

The aggregation server lets the random scheduler associate them with the corresponding groups.
Then, the aggregation server sends the sorted IDs of all the groups, {IS}, to the leader participant.

6. The leader participant calculates the MI-based scores using the method of group testing and
performs participant selection (line 6).

3.4 Security Analysis

In this work, we assume that the key server is honest and does not collude with any involved party. The
aggregation server and all the participants are honest-but-curious, a common knowledge threat model
used in the federated learning literature [28, 32]. The security properties of our proposed methods are
summarized as follows (recall security requirements in Section 3.1). Feature security is protected
against any curious party since the participants do not share their local features. Aggregation security
is assured against curious aggregation server by homomorphic encryption. Regarding curious
or colluding participants, aggregation security is also assured if the leader participant is benign.
Identity security is achieved against a curious server if there is no server-participant collusion, because
the proposed methods do not share instance identifiers I with the server.

4 Evaluation

We conducted experiments to validate the efficiency and effectiveness of the proposed methods.

4.1 Experimental Setting

Implementation. Numpy and PyTorch libraries are used to perform data loading and tensor manipula-
tions. We implement RPC communication with proto2 and gRPC. TenSEAL [33] is a homomorphic
library built on top of Microsoft SEAL [34]. We run all experiments in a cluster, in which each
machine is equipped with 24 GB memory, 8 cores and 10 Gbps bandwidth.
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Figure 3: Selection performance (Pivot, 50% participants). “All-Train” refers to training on all participants.
The other datasets are not reported because each training task costs more than one day.

Figure 4: Selection performance (LR, 50% participants).

Figure 5: Selection performance (KNN, 50% participants).

Datasets. Table 1 illustrates all datasets that we used. Synthesis is a synthesis dataset by randomly
generating a separation hyperplane, based on which data instances are sampled. The other datasets
are collected from online repository [35, 36] and prior work [37–39]. Each dataset is split into a
training set (80%), a validation set (10%), and a test set (10%). We randomly partition the training
set into several vertical partitions and put each partition on one machine.

ML Models. We choose Pivot [9], a vertically federated tree training engine, as the downstream ML
model. Additionally, we also implement logistic regression (LR), and k-nearest neighbor (KNN).

Participant Selection Baselines. We compare the following baselines on participant selection. 1)
RANDOM: We randomly choose l participants and run ML model. The result is averaged over ten
runs to assure the robustness. 2) LASSO. Lasso regression is a standard feature selection method
in scikit-learn. We train a Lasso model and choose high-importance participants according to the
absolute sum of coefficients on each participant. 3) VF-PS is our proposed method.

Protocols. We implement Adam [40] and vanilla SGD as the optimization algorithm for LR and
Lasso. We grid search the optimal learning rate in {0.001, 0.01, 0.1} and the regularization term
in {10−4, 10−3, 10−2}, and set batch size to 256. We terminate the task after 50 epochs or the
validation loss does not decrease within 5 epochs. For Pivot, we choose GBDT tree, and tune tree
depth in {2, 3, 4} and tree number in {1, 2, 3}. The number of groups T is set to 10. The other
hyper-parameters are set as default.

4.2 Evaluation of Participant Selection

Selection Performance. We first study the following question: can our proposed method outperform
baselines regarding the selection of high-importance participants? We compare RANDOM, LASSO
and VF-PS in terms of their performance of participant selection. When the downstream classification
model is Pivot, Figure 3 shows the performance of all methods for selecting 50% participants.
RANDOM is the fastest by instantly choosing participants; however, its selection accuracy can be
much worse on many datasets. LASSO is the slowest since it needs to run multiple epochs until
convergence and tunes the hyper-parameters. VF-PS is only slightly slower than RANDOM and
significantly faster than LASSO. Meanwhile, VF-PS selects comparable, and often better, subsets
of participants, indicated by the accuracy of training Pivot only on selected subsets. When the
classification model becomes LR and KNN, we observe similar phenomena, as shown in Figure 4-5.

Comparison to Full-fledged Training. We then turn to another question: does participant selection
provide benefits compared to training with all the participants? To answer this question, we also
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Synthesis G2-4 G2-128 Bank Unbalance Letter Birch1 Birch2
VF-PS/50% 0.60 0.68 1.0 0.89 0.93 0.89 0.1 0.99
VF-PS/25% 0.59 0.61 1.0 0.8 - 0.83 - -

Brute-force/50% 0.60 0.68 1.0 0.93 0.93 0.94 0.1 0.99
Brute-force/25% 0.59 0.63 1.0 0.93 - 0.86 - -

Table 2: Comparison to the brute-force strategy on KNN. The metric is the test accuracy.

Figure 6: Ablation study of our proposed method.

show the result of training using all participants (“All-Train”) in Figure 3-5. As we can see, the
selection time of VF-PS is orders of magnitude faster than the training time using all the participants;
meanwhile, if we were to train a model only on the selected subset, we can achieve similar test
accuracy on most datasets. On some datasets, e.g., Synthesis, G2-128, and Letter, we even observe
higher accuracy after participant selection compared to the full-fledged training. This shows that
some participants may have negative impacts on the model quality, and it is beneficial to choose
high-importance participants. These experimental results verify the effectiveness and efficiency of
participant selection.

Comparison to Brute-force Strategy. Intuitively, the brute-force solution for participant selection is
to enumerate all the possible groups and choose the best one. Although this method is too time-
consuming (up to two orders of magnitude slower according to our results), it provides the best
possible selection strategy that can be used to understand — how big is the gap between our selection
strategy and the optimal (brute-force strategy)? Table 2 shows the results of VF-PS and brute-force
on KNN (other models are too slow to run the brute-force strategy). When the selection ratio is 50%,
VF-PS gets the same selection quality on six datasets out of eight. Overall, the gap of selection
quality is moderate on most datasets. It is an interesting future direction to come up with better
participant selection criteria, going beyond mutual information.

Ablation Study. We now validate that both system optimizations (Fagin and Batching) significantly
improve the system performance. We compare VF-PS with three variants—w/o Fagin, w/o batching,
and w/o both—as illustrated in Figure 6. We see that both optimizations are crucial to the performance
— disabling either of them significantly slows down the runtime on all datasets.

5 Related Work

Federated Learning. Federated Learning (FL) is a category of distributed machine learning approach
that lets multiple clients jointly train machine learning models over their personal data without data
leakage [3–5]. Since the feature space and sample space of participating parties may not be identical,
federated learning can be classified into horizontally federated learning and vertically federated
learning. Horizontally federated learning is a scenario in which different parties share the same
feature space but different sample space. In contrast, in vertically federated learning, different parties
have the same sample space but different feature space.

Vertically Federated Learning. Hardy et al. [8] proposed a three-party vertically federated logistic
regression solution by entity resolution and additively homomorphic encryption. Yang et al. [41] from
WeBank and Yang et al. [42] from Baidu further extended vertically federated logistic regression
to Quasi-Newton optimization and non-coordinator scenario. Feng and Yu [6] designed a multi-
participant and multi-class federated learning framework for vertical training data. VAFL [7] was
a vertically federated learning framework that allows each client to asynchronously run stochastic
gradient algorithms without coordination with other clients. Pyvertical [43] was proposed to train
multi-headed SplitNNs in the context of vertically federated learning using private set intersection.
Liu et al. [44] proposed an asymmetrical vertically federated learning framework that protects sample
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IDs with the private set intersection protocol. Pivot [9] was proposed to train privacy-preserving
vertical decision tree using MPC protocol.

Federated Participant Selection. In the horizontally federated scenario, FedCS [45] tried to solve
the resource heterogeneity in federated setting and conducted client selection to accelerate system
performance. FedMCCS [46] further introduced a multicriteria approach for client selection, con-
sidering clients resources including CPU, memory, energy, and time. To address limited bandwidth
in the presence of many clients, Huang et al. [47] proposed a selection policy to improve training
efficiency while assuring client fairness. Different from these works that studied participant selection
for system heterogeneity [48], our work focuses on selection regarding the contribution of each
individual participant for the trained model. A few early, seminal works studied contribution-based
participant selection in horizontally federated learning [49].

6 Limitation

Although VF-PS works well on a range of workloads, it still has several limitations:

• Multiple training stages. In this paper, we treat VF-PS as a task that is similar to feature selection,
which is a pre-processing step that is often “once-and-for-all”. However, there are use cases in
which the importance of each participant changes during different training stages, then VF-PS may
not find the optimal result.

• Reward assessment. The goal of this work is to measure the mutual information of each participant.
To come up with a “reward”, it needs to be carefully “normalized” over the “importance” of each
participant — directly using the mutual information provided by VF-PS as “reward” could cause
problems on fairness. This problem definitely requires careful further studies.

• Generalization of MI estimator. KNN-based MI estimator can be biased towards smaller local
feature subsets with Euclidean distance. Our technique can also go beyond Euclidean distance —
as long as local scores can be aggregated using a monotonic aggregation function, most, if not all,
of our optimizations can still be applied. But still, whatever limitations that MI-based method has
for feature selection, our methods will probably also inherit. We will study other distance metrics
in future work.

• Large-scale federated network. It is an interesting future research direction to understand real-
world VFL scenarios where the federated network consists of an even larger number of partic-
ipants/organizations. When this number becomes very large, we do expect that VF-PS could
encounter performance degradation due to the limitation of the Fagin strategy. We will study this
challenging problem in future work.

7 Conclusion

In this work, we study participant selection in the context of vertically federated learning. We model
this problem as a mutual information-based view. We first propose a novel mutual information
estimator, called VF-MINE, that uses Fagin’s algorithm. To perform participant selection, we propose
a group testing-base framework VF-PS on top of VF-MINE. We implement our proposed method
using homomorphic encryption and design a batching optimization. We analyze the security properties
of the proposed methods and show that our methods achieve orders of magnitude improvements.
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Geißelsöder, Philipp M Grulich, Michael Hildebrand, Kevin Innerebner, Volker Markl, Claus
Neubauer, et al. Exdra: Exploratory data science on federated raw data. In Proceedings of
the 2021 ACM SIGMOD International Conference on Management of Data, pages 2450–2463,
2021.

[22] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 308–318, 2016.

[23] Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient private statistics with
succinct sketches. arXiv preprint arXiv:1508.06110, 2015.

[24] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H Brendan Mcmahan.
cpsgd: Communication-efficient and differentially-private distributed sgd. arXiv preprint
arXiv:1805.10559, 2018.

[25] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft.
Privacy-preserving ridge regression on hundreds of millions of records. In 2013 IEEE Sympo-
sium on Security and Privacy, pages 334–348, 2013.

[26] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of Secure Computation, 4(11):169–180, 1978.

[27] Wenliang Du, Yunghsiang S Han, and Shigang Chen. Privacy-preserving multivariate statistical
analysis: Linear regression and classification. In Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 222–233, 2004.

[28] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–1191, 2017.

[29] Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang, Huanran Xue, Yangyu Tao, and Bin
Cui. Vf2boost: Very fast vertical federated gradient boosting for cross-enterprise learning. In
Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data,
pages 563–576, 2021.
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