A Algorithm

Algorithm 1 Automated Auxiliary Loss Search

1: Initialization: Randomly generate (bootstrapping) P auxiliary loss functions {/:,,}gfage_l and P
parameterized policy {7y, }ge 13
2: fort=1,2,...N do

Optimize policies {7, }fe ; With RL loss Lgy and corresponding Auxiliary loss {£;} e ;-

W

Evaluate performance (AULC scores) of each RL agent {SP}P . and select top T candidates

stage-1
T
5. Apply mutations and loss rejection check (introduced in Section|3.2.2) on top T candidates
{L:}age.i to generate new auxiliary loss candidates {Lp}gage—(i )

6: end for

7: Cross validate (introduced in Section[d.2) top-performing candidates during evolution to get the

optimal auxiliary loss £*.
8: return L*

B Examples of Loss Functions
We show examples of existing Lg;. and La,x below.

RL loss instances. RL losses are the basic objectives for solving RL problems. For example, when
solving discrete control tasks, the Deep Q Networks (DQN) [31] only fit the Q function, where Lgp.
is minimizing the error between @, and @) (target Q network):

Lrr, = ﬁRL,Q(W; 5) = Es,er,awW(Qw(stv at) - (Tt + vmgx Q&)(St+1a at)))2 4)

However, for continuous action space, the agent is always required to optimize a policy function
alongside the Q loss as in eq. (4). For instance, Soft Actor Critic (SAC) [14] additionally optimizes
the policy by policy gradient like:

Lrr, = ERL,Q + ERL,m ERL,W(W§€) = Es,rws,amr(— mir12 Qwi(st, at) + alog Ww(@t|5t)) (5)

=1,

Auxiliary loss instances. Besides L1, adding an auxiliary loss £, helps to learn informative
state representation for the best learning efficiency and final performance. For example, auxiliary loss
of forward dynamics measures the mean squared error of state in the latent space:

Laun(0;8) = [|h(go(s1), ar) = gg(se41)l]2, (6)

where h denotes a predictor network. Another instance, Contrastive Unsupervised RL (CURL) [23]
designs the auxiliary loss by contrasitive similarity relations:

exp(ga(st) " Was(si, )
exp(go(s}) TWg5(s), ) + Yieq exp(ga(st)T Wgs(s))’

where s} and s;+ are states of the same state s; after different random augmentations, and W is a
learned parameter matrix.

‘CAux(e; 5) =

)
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C Implementation Details

C.1 Architecture
C.1.1 State Encoder Architectures

In Figure[§] we demonstrate the overall architecture when auxiliary loss is used. The architecture is
generally identical to architectures adopted in CURL [23]]. “Image-based” and “1-layer DenseMLP”
are the architectures we used in our experiments. “MLP” and “4-layer DenseMLP” are for ablations.
Ablation details are given in Appendix [D.6]
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Figure 8: Network structures of image-based RL and vector-based RL with auxiliary losses.

C.1.2 Siamese Network

For a fair comparison with baseline methods, we follow the same Siamese network structure for
representation learning as CURL [23]]. As shown in Figure [2| when computing targets § for auxiliary
losses, we map states to state embeddings with a target encoder. We stop gradients from target
encoder 6 and update 6 in the exponential moving averaged (EMA) manner where 0 =16+ (1- T)é
This step, i.e., to freeze the gradients of the target encoder, is necessary when the loss is computed
without negative samples. Otherwise, encoders will collapse to generate the same representation for
any input. We have verified this in our early experiments.

C.2 Loss Operators

Instance Discrimination Our implementation is based on InfoNCE loss [33]]:

exp(o(y, 7))
exp(6(y, ) + Xico " exp(d(y, i)

The instance discrimination loss can be interpreted as a log-loss of a K-way softmax classifier whose
label is y. The difference between discrimination-based loss operators lies in the discrimination
objective ¢ used to measure agreement between (y, §) pairs. Inner employs inner product ¢(y, §) =
y "9 while Bilinear employs bilinear product ¢(y, 7)) = yW<, where W is a learnable parameter

L =log ()

>
matrix. Cosine uses cosine distance ¢(y, ) = m for further matrix calculation. As for losses

implemented with cross entropy calculation without negative samples, we only take diagonal elements
of matrix M where M; ; = ¢(y;, y;) for cross entropy calculation.

Mean Squared Error The implementation of MSE-based loss operators are straightforward. MSE

loss operator = (y — )% while normalized MSE = (Hz—u - ﬁ)g When combined with negative
samples, MSE loss operator (with negative pairs) = (y — §)? — (y — y;)? while normalized MSE
(with negative pairs) = (72 — ¢80)? — (7 — 127)%

17



C.3 Evolution Strategy

Horizon-changing Mutations There are two kinds of mutations that can change horizon length.
One is to decrease horizon length. Specifically, we remove the last time step, i.e., (St4k, Gt+k, Tt+k)
if the target horizon length is k. The other is to increase horizon length, in which we append three
randomly generated bits to the given masks at the end. We do not shorten the horizon when it becomes
too small (less than 1) or lengthen the horizon when it is too long (exceeding 10).

Mutating Source and Target Masks When mutating a candidate, the mutation on the source and
the target are independent except for horizon change mutation where two masks should either both
increase horizon or decrease horizon.

Initialization At each initialization, we randomly generate 75 auxiliary loss functions (every bit of
masks are generated from Bernoulli(p) where p = 0.5.) and generate 25 auxiliary loss functions with
prior probability, which makes the auxiliary loss have some features like forward dynamics prediction
or reward prediction. The prior probability for generating the pattern of forward dynamics prediction
is: (i) every bit of states from rarget is generated from Bernoulli(p) where p = 0.2; (ii) every bit
of actions from source is generated from Bernoulli(p) where p = 0.8; (iii) every bit of states from
target is generated by flipping the states of source; (iv) The other bits are generated from Bernoulli(p)
where p = 0.5. The prior probability for generating the pattern of reward prediction is: (i) every bit
of rewards from farget is generated from Bernoulli(p) where p = 0.8; (ii) Every bit of states and
actions from target is 0; (iii) The other bits are generated from Bernoulli(p) where p = 0.5.

C.4 Training Details
C.4.1 Hyper-parameters in the Image-based Setting

We use the same hyper-parameters for A2LS, SAC-wo-aug, SAC and CURL during the search phase
to ensure a fair comparison. When evaluating the searched auxiliary loss, we use a slightly larger
setting (e.g., larger batch size) to train RL agents sufficiently. A full list is shown in Table[6]

C.4.2 Hyper-parameters in the Vector-based Setting

We use the same hyper-parameters for A2LS, SAC-Identity, SAC-DenseMLP and CURL-DenseMLP,
shown in Table[7. Since training in vector-based environments is substantially faster than in image-
based environments, there is no need to balance training cost and agent performance. We use this
setting for both the search and final evaluation phases.

C.5 Baselines Implementation

Image-based Setting These following baselines are chosen because they are competitive methods
for benchmarking control from pixels. CURL [23]] is the main baseline to compare within the
image-based setting, which is considered to be the state-of-the-art image-based RL algorithm. CURL
learns state representations with a contrastive auxiliary loss. PlaNet [[L6] and Dreamer [15] are
model-based methods that generate synthetic rollouts with a learned world model. SAC+AE [51]]
uses a reconstruction auxiliary loss of images to boost RL training. SLAC [26] leverages forward
dynamics to construct a latent space for RL agents. Note that there are two versions of SLAC with
different gradient Updates per agent step: SLACv1 (1:1) and SLACv2(3:1). We adopt SLACv]1 for
comparison since all methods only make one gradient update per agent step. Image SAC is just
vanilla SAC [14] agents with images as inputs.

Vector-based Setting As for the vector-based setting, we compare A2LS with SAC-Identity, SAC
and CURL. SAC-Identity is the vanilla vector-based SAC where states are directly fed to actor/critic
networks. SAC and CURL use the same architecture of 1-layer densely connected MLP as a state
encoder. Note that both A2LS and baseline methods use the same hyper-parameter reported in
Table[/|without additional hyper-parameter tuning.
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Table 6: Hyper-parameters used in image-based environments.

Hyper-parameter

During Evolution

Final Evaluation of A2-winner

Random crop False for SAC-wo-aug; True
True for others
Observation rendering (84, 84) for SAC-wo-aug; (100, 100)
(100, 100) for others
Observation downsampling (84, 84) (84, 84)
Replay buffer size 100000 100000
Initial steps 1000 1000
Stacked frames 3 3
Actoin repeat 4 (Cheetah-Run, Reacher-Easy) 8 (Cartpole-Swingup);
2 (Walker-Walk); 4 (Others)
2 (Walker-Walk, Finger-Spin)
Hidden units (MLP) 1024 1024
Hidden units (Predictor MLP) 256 256
Evaluation episodes 10 10
Optimizer Adam Adam
(1, B2) for actor/critic/encoder (.9, .999) (.9, .999)
(1, B2) for entropy « (.5,.999) (.5,.999)
Learning rate for actor/critic le-3 2e-4 (Cheetah-Run);
le-3 (Others)
Learning rate for encoder le-3 3e-3 (Cheetah-Run, Finger-Spin, Walker-Walk);
le-3 (Others)
Learning for « le-4 le-4
Batch size for RL loss 128 512
Batch size for auxiliary loss 128 128 (Walker-Walk)
256 (Cheetah-Run, Finger-Spin)
512 (Others);
Auxiliary Loss multipilier A 1 1
Q function EMA 7 0.01 0.01
Critic target update freq 2 2
Convolutional layers 4 4
Number of filters 32 32
Non-linearity ReLU ReLU
Encoder EMA 7 0.05 0.05
Latent dimension 50 50
Discount ~y .99 99
Initial temperature 0.1 0.1

Table 7: Hyper-parameters used in vector-based environments.

Replay buffer size 100000
Initial steps 1000
Action repeat 4
Hidden units (MLP) 1024
Hidden units (Predictor MLP) 256
Evaluation episodes 10
Optimizer Adam
(81, B2) for actor/critic/encoder (.9, .999)
(1, B2) for entropy « (.5, .999)

Learning rate for actor/critic/encoder

Learning for o
Batch size

Auxiliary Loss multipilier A

Latent dimension of DenseMLP

Q function EMA 7

Critic target update freq

DenseMLP Layers
Non-linearity
Encoder EMA 7

Discount «
Initial temperature

2e-4 (Cheetah-Run);
1e-3 (Others)
le-4
512
1
0.01
2
1
ReLU
0.05
40
99
0.1
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D Additional Experiment Results

D.1 Search Space Pruning

Results of Search Space Pruning Considering that the loss space is huge, an effective optimization
strategy is required. Directly grid-searching over the whole space is infeasible because of unacceptable
computational costs. Thus some advanced techniques such as space pruning and an elaborate search
strategy are necessary. Our search space can be seen as a combination of the space for the input Z and
the space for the operator f. Inspired by AutoML works [5}52] that search for hyper-parameters first
and then neural architectures, we approximate the joint search of input and operator in Equation (I}
in a two-step manner. The optimal auxiliary loss {Z*, f*} can be optimized as:

max R(My-(r); €) = II%%CXR(MW*(IJ); &) ~ m%xR(Mw*(I,f*); €)

where [ ~ argmaxEz[R(My-(z f);E)] ©)
f

To decide the best loss operator, for every f in the operator space, we estimate Ez[R (M« (7, 5); E)]
with a random sampling strategy. We run 15 trials for each loss operator to estimate performance
expectation. For each of 10 possible f in the search space (5 operators with optional negative
samples), we run 5 trials on each of the 3 image-based environments (used in evolution) with the same
input elements {s¢, a;} — {s1+1}, as we found that forward dynamics is a reasonable representative
of our search space with highly competitive performance. Surprisingly, as summarized in Table ] the
simplest MSE without negative samples outperforms all other loss operators with complex designs.
Therefore, this loss operator is chosen for the rest of this paper.

Table 8: Normalized episodic rewards (mean & standard deviation for 5 seeds) of 3 environments
used in evolution on image-based DMControl500K with different loss operators.

Loss operator and discrimination Inner Bilinear Cosine MSE N-MSE
w/ negative samples 0.979£0.344 0.953+0.329 0.8724+0.412 0.124+£0.125 0.933 & 0.360
w/o negative samples 0.669 £0.311  0.707+£0.299 0.959 4 0.225 1.000 +0.223  0.993 & 0.229

Ablation Study on Search Space Pruning As introduced in Appendix |D.1| we decompose the full
search space into operator and input elements. Here we try to directly apply the evolution strategy to
the whole space without the pruning step. The comparison results are shown in Figure[9] We can see
that pruning improves the evolution process, making it easier to find good candidates.

D.2 Learning Curves for A2LS on Image-based DM Control

We benchmark the performance of A2LS to the best-performing image-based baseline (CURL). As
shown in Figure[T0] the sample efficiency of A2LS outperforms CURL in 10 out of 12 environments.
Note that the learning curves of CURL may not match the data in Table[2l This is because we use
the data reported in the CURL paper for tabular while we rerun CURL for learning curves plotting,
where we find the performance of our rerunning CURL is sightly below the CURL paper.

w/o pruning w/o pruning w/o pruning
w/ pruning w/ pruning w/ pruning

Percent
~
< [
)
Percent

o latr
400 600 200 400 600 80 400 600 800
Score Score Score
Stage 1 Stage 2 Stage 3

Figure 9: Comparison of evolution with and without pruning by performance histogram.
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Figure 10: Learning curves of A2-winner and CURL on 12 DMC environments. Shadow represents
the standard deviation over five random seeds. The curves are uniformly smoothed for visual display.
The y-axis represents episodic reward and x-axis represents interaction steps.

D.3 Effectiveness of AULC scores

To illustrate why we use the area under learning curve (AULC) instead of other metrics, we select
top-10 candidates with different evolution metrics. In practice, AULC is calculated as the sum of
scores of all checkpoints during training. Figure[TT|demonstrates the usage of AULC score could well
balance both sample efficiency and final performance. The learning curves of the top-10 candidates
selected by AULC score look better than the other two metrics (that select top candidates simply with
100k step score or S00k step score).
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Figure 11: Learning curves of top-10 loss candidates selected with different metrics.

D.4 Comparing Auxiliary Loss with Data Augmentation

Besides auxiliary losses, data augmentation has been shown to be a strong technique for data-efficient
RL, especially in image-based environments[25}22]. RAD [25] can be seen as a version of CURL
without contrastive loss but with a better image transformation function for data augmentation. We
compare A2-winner with RAD in both image-based and vector-based DMControl environments.
The learning curves in image-based environments are shown in Figure [I2, where no statistically
significant difference is observed. As readers may notice, the scores on RAD paper [25]] are higher
than the RAD and A2-winner learning curves reported. To avoid a misleading conclusion that
RAD is much stronger than A2-winner , we would like to emphasize some key differences between
RAD and our implementationt: 1) Large Conv encoder output dim (RAD: 47, A2LS/CURL: 25);
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2) Larger image size (RAD: 108, A2LS/CURL: 100); 3) Larger encoder feature dim (RAD: 64,
A2LS/CURL: 50). We use the hyper-parameters used in CURL for consistency of scores reported
in our paper. However, in vector-based environments, as shown in Figure[I3] A2-winner greatly
outperforms RAD. Due to the huge difference between images and proprioceptive features, RAD
could not transfer augmentation techniques like random crop and transforms used for images to
vectors. Though RAD designs noise and random scaling for proprioceptive features, A2-winner
shows much better performance on vector-based settings. These results show that recent progress in
using data augmentation for RL is still limited to image-based RL while using auxiliary loss functions
for RL is able to boost RL across environments with totally different data types of observation.
Besides comparing auxiliary losses with data augmentation in DMC, we also provide experimental
results in Atari [1]]. As shown in Table[3} A2-winner significantly outperforms DrQ [22].
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Figure 12: Comparison of learning curves of A2LS and RAD in image-based DMC environments.
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Figure 13: Comparison of learning curves of A2LS and RAD in vector-based DMControl environ-
ments.

D.5 Evolution on Vector-based RL

State Embedding

MLP Encoder

Experiment Settings As for vector-based RL, we use a 1-layer densely
connected MLP as the state encoder as shown in Figure [T4] due to the low-
dimensional state space. So, for this setting, we focus on this simple encoder
structure. Additional ablations on state encoder architectures are given in
Appendix [D.6] In the search phase, we compare A2LS to SAC-Identity,
SAC-DenseMLP, CURL-DenseMLP. To ensure a fair comparison, all SAC
related hyper-parameters are the same as those reported in the CURL paper.
Details can be found in Appendix [C.4.2] SAC-Identity is vanilla SAC with no
state encoder, while the other three methods (A2LS, SAC-DenseMLP, CURL- Figure 14: Network
DenseMLP) use the same encoder architecture. Different from the image-based ~ architecture of 1-layer
setting, there is no data augmentation in the vector-based setting. Note that DenseMLP state en-
many environments that are challenging in image-based settings become easy coder.

to tackle with vector-based inputs. Therefore we apply our search framework to more challenging
environments for vector-based RL, including Cheetah-Run, Hopper-Hop and Quadruped-Run.
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Figure 15: Evolution process in in the three training (vector-based) environments. Every white dot
represents a loss candidate, and the score of y-axis shows its corresponding approximated AULC
score. The horizontal lines show the scores of baselines. The AULC score is approximated with the
average evaluation score at 300k, 600k, 900k, 1200k, 1500k time steps (Cheetah-Run at 100k, 200k,
300k, 400K).

Search Results Similar to image-based settings, we approximate AULC with the average score
agents achieved at 300k, 600k, 900k, 1200k, and 1500k time step For each environment, we early
stop the experiment when the budget of 1,500 GPU hours is exhausted. The evolution process is
shown in Figure [I5, where we find a large portion of candidates outperform baselines (horizontal
dashed lines). The performance improvement is especially significant on Cheetah-Run, where almost
all candidates in the population greatly outperform all baselines by the end of the first stage. Similar
to image-based settings, we also use cross-validation to select the best loss function, which we call
“A2-winner-v” here (all the top candidates during evolution are reported in Appendix

D.6 Encoder Architecture Ablation for Vector-based RL

Table 9: Normalized episodic rewards of A2LS (mean & standard deviation for 5 seeds of 6
environments) on v DMControl 100K with different encoder architectures.

A2LS-MLP (1-layer) A2LS-MLP (4-layer) A2LS-DenseMLP (1-layer) A2LS-DenseMLP (4-layer)
0.919 £ 0.217 0.544 £ 0.360 1.000 £ 0.129 0.813 +0.218

As shown in Figure[T4] we choose a 1-layer densely connected MLP as the state encoder for vector-
based RL. We conduct an ablation study on different encoder architectures in the vector-based setting.
The results are summarized in Table [0, where A2LS with 4-layer encoders consistently perform
worse than 1-layer encoders. We also note that dense connection is helpful in the vector-based setting
compared with naive MLP encoders.

D.7 Visualization of Loss Landscape

In an effort to reveal why auxiliary losses are helpful to RL, we draw the loss landscape of critic loss
of both A2-winner and SAC using the technique in [34]. We choose Humanoid-Stand as the
testing environment since we observe the most significant advantage of A2-winner over SAC on
complex robotics tasks like Humanoid. Note that the only difference between A2-winner and SAC
is whether using auxiliary loss or not. As shown in Figure|16}| the critic loss landscape of A2-winner
appears to be convex during training, while the loss landscape of SAC becomes more non-convex as
training proceeds. The auxiliary loss of A2-winner is able to efficiently boost Q learning (gaining
near 300 reward at 500k steps), while SAC suffers from the poor results of critic learning (gaining
near 0 reward even at 1000k time steps). This result shows that such an auxiliary loss might make
learning easier from an optimization perspective.

D.8 Histogram of Auxiliary Loss Analysis

The histogram of each pattern analysis is shown in Figure[T7]

3 As for Cheetah-Run, we still use average score agents achieved at 100k, 200k, 300k, 400K and 500k time
steps since agents converge close to optimal score within 500k time steps.
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Figure 16: Left: Learning curves of A2-winner and SAC on vector-based Humanoid-Stand. Right:
Critic Loss Landscape of A2-winner (upper right ) and SAC (lower right) at 250k, 500k, 750k and
1000k time steps, trained on vector-based Humanoid-Stand. The first row shows 3D surface plots,
and the second row shows heatmap plots of loss landscapes.

Table 10: Mean and Median scores (normalized by human score and random score) achieved by
A2LS and baselines on 26 Atari games benchmarked at 100k time-steps (Atari100k).

Metric \ A2-winner CURL Eff. Rainbow DrQ [22]1 SimPLe DER OTRainbow SPR \ Random Human
Mean Human-Norm’d 0.568 0.381 0.285 0.357 0.443  0.285 0.264 0.704 0.000 1.000
Median Human-Norm’d 0.317 0.175 0.161 0.268 0.144  0.161 0.204 0.415 0.000 1.000

D.9 Comparing A2-winner with Advanced Human-designed Auxiliary Losses

Besides CURL, many recent works (e.g., SPR [39] and ATC [42])) also proposed advanced auxiliary
losses that achieve strong performance. Surprisingly, we find that both SPR and ATC designed similar
patterns as we conclude in Section E, like forward dynamics and 7arget > Tisource- Particularly, in
ATC, they train the encoder only with ATC loss, and we find the performance of A2-winner has
better performances than the results reported in their paper: we are 2 x more sample efficient to reach
800 scores on Cartpole-Swingup, 2x more sample efficient to reach 100 scores on Hopper-Hop, and
3x more sample efficient to reach 600 scores on Cartpole-Swingup sparse (see Figure 2 of [42])). As
for SPR, we find they have superior performance on Atari games benchmark, as shown in Table [T0}
where A2-winner outperform all baselines except SPR. However, note that, our A2-winner is only
searched on a small set of DMC benchmarks and can still generalize well to discrete-control tasks
of Atari, while SPR is designed and only evaluated on Atari environments. In addition, we believe
such a gap can arise from different base RL algorithm implementation (A2LS is based on Efficient
Rainbow DQN while SPR adopts Categorical DQN) and different hyper-parameters.

D.10 The Trend of Increasing Performance during Evolution

Table 11: Average AULC scores of populations of each stage.

\stage—l stage-2 stage-3 stage-4 stage-5 stage-6 stage-7 \ SAC (baseline)

Cheetah-Run | 191.75 25251 258.09 284.53 349.52 351.51 352.57 285.82
Reacher-Easy | 674.87 78275 812.61 823.04 810.15 811.88 827.19 637.60
Walker-Walk | 599.38 633.75 716.18 702.49 N/A N/A N/A 675.84

To illustrate the trend of increasing performance during evolution, we provide the average AULC
score of populations of each stage in Table[TT} As for comparing evoluationary search with random
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Figure 17: Histogram of statistical analysis of auxiliary loss candidates in six evolution processes.
The x-axis represents approximated AULC score while the y-axis represents the percentage of the
corresponding bin of population. Best viewed in color.

25



Table 12: Average AULC scores of Top-5 candidates of each stage.

\ stage-1 stage-2 stage-3 stage-4 stage-5 stage-6 stage-7 \ SAC (baseline)
Cheetah-Run | 398.18 424.27 428.08 485.54 48794 482.65 498.46 285.82
Reacher-Easy | 931.27 950.61 943.83 93891 954.77 955.02 969.43 637.60
Walker-Walk | 834.09 883.77 896.52 880.73 N/A N/A N/A 675.84

sampling, we can take the stage-1 of each evolution procedure as random sampling. As shown in
Table|[IT] the average performance of the stage-1 population (i.e., random sampling) is even worse
than SAC in Cheetah-Run and Walker-Walk. Nevertheless, as evolution continues, the performance
of the evolved population in the following stages improves significantly, surpassing the score of SAC.

To illustrate the trend of increasing performance of best individuals during evolution, we provide the
average AULC score of the top 5 candidates of the population at each stage in Table[I2. As shown
in Table[I2, there is an obvious trend that the performance of the best individuals in the population
at each stage continues to improve and also outperformed the baseline by a large margin during the
evolution across all the three training environments.
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E Search Space Complexity Analysis

The search space size is calculated by the size of input element space multiplying by the size of the
loss operator space.

For input elements, the search space for input elements is a pair of binary masks (m, 1), each of
which is up to length (3% + 3) if the length of an interaction data sequence, i.e., horizon, is limited to
k steps. In our case, we set the maximum horizon length ky,x = 10. we calculate separately for each
possible horizon length k. When length is &, the interaction sequence length (s¢, ag, r¢, -+ , Stik)
has length (3% + 3). For binary mask 77, there are 23**3 different options. There are also 23%+3
distinct binary mask m to select targets. Therefore, there are 2676 combinations when horizon
length is fixed to k. As our maximum horizon is 10, we enumerate k¥ from 1 to 10, resulting in
le 2 ) 96i+6

For operator, we can learn intuitively from Table([8]that there are 5 different similarity measures with
or without negative samples, resulting in 5 x 2 = 10 different loss operators.

In total, the size of the entire space is
10

10 x 226”6 ~ 7.5 x 1020,

i=1
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F Top-performing Auxiliary Losses

F.1 A2-winner and A2-winner-v

We introduce all the top-performing auxiliary losses during evolution in this section. Note that MSE
is chosen (details are given Appendix [D.I)) as the loss operator for all the auxliary losses reported
below. The source seqy,,,,.. and target seq, ..., of auxiliary loss of A2-winner are:

{8415 @11, arg2, arp3} — {re, o1, Sev2, Se43 ), (10)
where A2-winner is the third-best candidate of stage 4 in Cheetah-Run (Image).

The source seq,,,,... and target seq,,,.,.; of auxiliary loss of A2-winner-v are:

{Sm Aty Q415 St+42, Q425 At4+3, Tt43, At 44, Tt 44, At 45, At47, St+8, A48, 7”t+8} (11)

— {8141, 543, Qita, St465 5149}
where A2-winner-v is the fourth-best candidate of stage 4 in Cheetah-Run (Vector).

These two losses are chosen because they are the best-performing loss functions during cross-
validation.

F.2 During Evolution

We report all the top-5 auxiliary loss candidates during evolution in this section.

Table 13: Top-5 candidates of each stage in Cheetah-Run (Image) evolution process

Cheetah-Run (Image)
{TL:SL+1-,H'L+17TL+1-, At42, Tt+2; GL+377‘L+3} - {SL,GL, St+25 St+35 Sz+4}
{st;ae,me} = {5141}
Stage-1 {8t @ty a1, Tev2} = {8050, 8041, Qg1 Tea1, Sea2, Tea2, S143)
{SmTt-, At41, Qt+2, At4+3, Tt+3; Tt+4, At+5, Tt+575t+6-,5t+7} - {St»,‘lf,- St1y St42, Tt42, Tt435 St+45 T't+55 St+65 At +6, 5t+7}
{St, Aty St+1, At1, St42, Te42] —7 {Su St+15 Tt 415 St4+2, Tt42, St43
{81, Q1415 Tt+25 St+4, TH»/i} - {Sz+27 A4+3, Tt+35 At+45 St+5}
{8t a1, Gy, oot = {86,7, Se41, St42, Te42)
Stage-2 Aty Tty St415 41 St42> G425 Te42> Gt43; Qrpd ) — {St41, 5142, 5643, Qe 43, St4a)
{Sz, At Tty A4 15 T415 Q425 T1425 Q43,5 fh+4} - {SL-, St+1, St+25 St+45 St+5
{rt, st41, o1} = {56, ap, Gy, Sty
{Si, at7ai+21/’>t+2} — {Si; St+1, St+277“t+2}
{8637ty Qe 1, @3, T4 3, Teas Qg s, Ty 5, St465 @6, St4+7) — {St; Aty St41, S142, 42, 1435 St4s Te45, 81465 St47, 7}
Stage-3 | {8¢,Qt, Qrg1, o1, Qug2, Te42, g3, Stegd, Gira} — {5641, St42, St1d, St45
{51, Aty A1 Tt4+15 1142, 5t+3~,(lf+377“t+4} - {St+17 St+2; Tt+35 St+4, At4+4, 5t+5}
{re,se41) = {56, a4, G141, 5642}
{Sm St41y Gt42, Tt425 St+43, St+4} - {at+1, St425 Tt425 St44, Qt+4, 8t+5}
{51, Aty A1 Tt4+15 1142, 5t+3-,(lt+3} - {Sz+17 St+25 Tt+35 8:+4}
Stage-4 | {st} — {St:7t, St41, Tt 41, St42, Ary2, Te42}
{St, Tty A1y St+25 At+2, 142, At43, Tt +3, az+4} - {Su Aty St+15 Tt+15 T't+35 St+4, At44, St+5}
{re, Sea1, g1} = {56, a0, aug1, Seq2}
{7ty 86415 Qe 15 Te4 1, Qer2s T4 2, et 3, Te43) — {Tts St41, Qeg1, 5642, St4d}
188, Qet1, Te42, Qreas Sead, Tega} = {Se41, St42, Qra3, Stad, Qegd, St45)
Stage-5* T{St+17at+1~, 42, Qry3} = {76, Te41, Se42, St43}
{5t} = {86, 7t: 8141, "o 41, St42}
{St} — {Sh Tty St4+1, Tt415 St+2, 7't+2}
{az+1, Tt4+15 St+2; Tt+25 At+3, Elf,+4} - {7% St+15Tt+1, Tt+35 5t+4;at+4~,5t+5}
{8t @11, Qry3, Se4a,Terat — {841, 8642, G a3, Stvd, Grras St4s
Stage-6 | {8, Qui1,Ted1, St42, Qer2, Ter2, St43, Qs Teast = {@e, Sev2, Ter2, Qess, St44, Qetd, Seis}
{80: Qi1 Te42, Qets, Seds Tera} = {Sed1, Se42, ey 3y St4as Qitd, S145, Gets |
{86, Qg1 a2, Tesos Seas, Quys, Staas Tevat = {8641, Qes1s Se4, Tetn, Si4d, e, Tega, Seas
{820 e, T4, Qr 1, Ter2, gy, Sepa) — {Qe,Te, St42, 7643, St44, Aoy, Tetd, St4s
{86, 7002, @ras, sevay = {@e, 8641, St42, T1425 Aot 3, 1435 Strds Qeads Terds St45)
Stage-7 | {St41, 12, Te42, St43, Q43, Te43, Sta} — {7t Gty Tea1s St42, T1425 St445 G, St45 )
{St, At415 St+25 At4+2, Tt4+25 St43, At+3, Tt+35 flf,+4} — {at, St+1y St+25 Tt4+25 St+3, Tt+35 St+4, At4+4, St+5}
{St, Q141511425 At+3, St+45 T:+4} - {St+1¢ St+2; Tt+2; At+3; St44, At+4, St+5; at+5}

+: Used for cross-validation. {: A2-winner.
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Table 14: Top-5 candidates of each stage in Reacher-Easy (Image) evolution process

Reacher-Easy (Image)
Tserv-aci} = {7}

Pty U410 Qe 13 81425 @2, T2, Q043 Qs T ds S5y Qb5 T15s SE465 Q046 TE46 TH4Ts St485 Qe sy 5149} = {41, T4ty 50420 51435 0435 St44y Qtds bt 55 Q465 Teh6s S14Ts U4 Ty T14T Qs e85 St410)

Stage-1 | {8¢ Tty St41, @42, Strds ety T4, 546, tb6 QT 51495 S6410F = {8ty 86413 To15 5642, Te425 T3, Sty ety T, St455 St-46y Q465 Te+75 T8 St410
Sty Tty St 1y Qe ls St42: 5643, Q43 Qeds St45, Teb5r Qa6 Te46 St470 > {Q04 13 8642, Qrvz, T2, S35 Qe43, Te43, St44, Qe ds Teid, St46 Q46
SHEL T 00420 T2 T8 S4d Qi Tbds St50 80460 Tero} = {70 14108042, Qe 1042, 14, 8145, Te45: S1460Gev6: St47, Stys
Sty 5041, Geet ] = {7 T}
00T A2y Gty St ds Qerds T ds Qs T, Se66s QreT, Qegs ] = {70 Qeats Se42, Ter2, $643, Qeas, 043y Qs Teads Qe Tees, Ak, St47, Se49)
Slage'2 Sty At Tt St41,; Ap42, Gt43, SH»G} - {‘Ll- St+25 At+2, Tt+2, St43, At43, At 44, "t+4}
Sty Aty SU41s Q43 Stds Qs Qet 5 St46s Qb6s Q4T 47y St40y Q0 ) —> {8t Qe Tty Sep1, Teits S142, P43y St4ds Tty St465 Q46 Te47 et 8y St410)
S0 Q4 T4 Q] Q04 143 Sty Qo bds St45, 0445, 452 46 T Qo 7} > {5041, 8142, Q1420 043, S146: Q46 S147: Se48}
G, Sty Qe S, Grea} — e @ T sz}
St Aty St1s 5425 Q42 Qs Stbds Tebds Q045 Teas, Ter6s U7} = {56y @y T, S142, 5043, Q043 St-445 Qb a5 Te45, St46 5647, St4s}
Slage'3 Sty Oty St41; Q415 Te41, St42, Qt+2, At43, St+4, Tt+6; 4“77) - (l't~ 442, Tt425 At43; Tt+43; St4+4; At+4; 45, St46, At+6, St+7, Tt+47, SH»S}
Sty Qs SE41 Tt Qg2 Qpg3s Stds Teds SthGs T4 6y Q147 } —> {80270 Tt 1y G4, P42, G043, T04 3 St-pds Qetds Ar4 5. Te45, S146: S04, 5148}
S0 QT4 Q| T4 1y Q4 S1460 5147, At Ty S48} > {5074 8042 Qtd T42, A443: 1143, 5148, Qi
50300 T Qg 1, Q3 T8y Sty S4B Qs TSy QL6 TLR6, A7) — (S 5142, S48, TLrds Ti45: TAT, S148)
@ty S, s Sepat = {1 T4, a2, T2}
Stage-4 | {8t, 06,7, Qp4 1, Te43, St44, 8645, 5646, Te46: Ara7) = {Sto1, 8642, 00s3, St045 7004, St45, St46, ST, TH47, St8)
15 0ty ey Qe 2, U435 St Tepds Tt 5S040, TH46s b7} —> {80, T4 T 1y Qe 2, Teg 2, Qg 35 Te4 35 Sty Qs Qg5 Ty 55 S646, St47 S48}
Ay 041, Qe S142. Gan} = {1 71 T
Sty Aty A1y Qg 2y At 3y Sty St5s Uity Te46y QaTs Stb8) —F Wt et 2y P42, W43y Sty St455 Qe 5s 51465 U465 St+7, T1-47: S1+8)
S15 0, St41, Qg1 Trp1 ) = {710 Si4
Slage—S Sty @ty Tty A4 1, T143, S +4v<’t+5-5l+6v7't+6-“177) - (“’t*lv<’t+2»ul+3v«5t+4~ Tt44; St45: Tt46> St47; Tt47 l"H»X)
Sty Qe Ty Qg1 T 1y S142, A2, Q43) Sty St45: Q45 Te46: Qea7} = {5670 Qei1, Teq1, Qg2 Tea2, Se43, 0043, St44y St46, A6, 146, St47 )
S0 @ S141,The 1, Q42,5148 St4as Te46, Ua7y Sees} = {5670 a1, Qrga, Tera, oty Staas Ggas Bt 146, Tess: St47s
St2 Qe T4 Qg1 Qa8 T3, Stds Qs S5 Q45 T8 St46: A1+6:T140) — 156415 5642, 0042, 543, Te4ds St46)
St2 Qe Ty Se41y Aty T, St02y Qug2, St43y Qtdy Tea5s Te6y St47: S068F > {8070 1042, G043, T3 St44s T0d Qe 7045, St465 A46, T046; St4T, QT Te7s St}
Stage-6 | {Se. Qe 1o, Ty Qa2 Aty Stids Se45, T4} — {86370 Tty Q2 Qg3 Te43s ety T ds Qs St465 Qet6, T1465 56475 St
Sty 0, St Qg 3, gty Q5 S1465 Q0465 St4Ts MpTs THpTs S6405 ek} —> {8130 Tty St e St425 51485 T1435 Sty Qids Tr4as St465 Qg 65 TH475 48, A1 9, S1410}
S0 QT4 Qg1 T4 1 Q2 Q3 Sty S5, 0445, T1b6r Q7 ) = {70 S0 Pty 02, 11420 5143 St4d0 S146: Q046 T146: S147: 5148
St g, Sty At4 1 Ter L, Se42, Qet2, T5, 646, QeaTy SthS | — ATt 0442, 642, Te43, St44, Qtids Q45, Qe 6y 146, St17: 5648
S0 Qe Qra, St425 Qg2 Qi3 Sty Q045 45, Ter6y QA7) = {801 42, Qt3, T143) S, G045, Tt 5, St46, A6y SL1T, T4 7}
Stage-7 | {st, 06,7, Qp42, Qes3, Sttas S5, Te45, Qrae} = {8676 Te 1, St42, Q2. 0643, Te43, Tead, Se46, Stas )
St 0y Tty Qi 1y Qa3 Tods Stpds Qs S5 Qs TSy Sth6s a6y T146} — {7ty St41 S142, Qeg2s S48, Teds St46}
{802 00 T4 Q01 441, Q430 71430 S04, Qs S045, T45: 51062 QT T} = {8070 S50 1141 G142, S043, Qeg3, e, St46: Sets}
‘Walker-Walk (Image)
{b Uty St42, Q12,7142 5143, A1t ds Ut 45, St46, Aty U4 T; St485 Tt 48] — {5m5r+1$7't+11 St42; Tt+42, T't43, At+4 "t459 At 465 Tt 465 TH4T St485 llt+x-5t+s\}
(é‘ Aty g1, T +1} - {at,s +1,H+1}
Stage-1 {ThaH»l,SH»Zau‘H»'z«,"'H»livSH»Gv(LH»&aH»b‘v"t+7qu‘t+8} - {shahﬁ'ﬂ»lv5t+3vat+3sst+4~at+4uSH»basH»?-,at+7«5t+8v5t+9vat+9 St+1u}
St Ty SE1y A4 1y St42, Otk T2y St-43s Utkd Tekds St45, A5, Qb6 ) = {86 Qe Tty St 1, Se420 8443, St44, Te4d, Q45 Te45, St465 St47
St Ty Q1 St2, e, St43, Q) A ds S145, Qs Tegs b = {80 @y Tey Qg 1, Tt Se42, St43, A, St45, At Tes, St46
St Tty 5t+l«,at+lart+l>5t+34at+3vat+4} - {afxrtast+175t+2~ St+3 Tt4+35 At 44, St+5
St Tty S142) Qe 2, T2, Se43: T3} = {00 St41, Qe St42, Qra, T2, Te43, Sea}
Stage-2 | {74, @1, Se42,Ter2, 5043, Teas} — {0e, Se01, Qeg1s 5142, g2, T2, Giges, Teas, Serat
St3 Tty $t425 St43: T3y St44} — {56, Tt St15 A2, 142, 51435 St Atd, St+5
StwrhSH»I-5:+‘2-,51+4-ar+4aaz+5--9t+6-Tt+G=5:+7} - {Sszzy’leszH- 1425 Tt+2, St435 !+4-at+4‘rt+5w£t+6w"’t+7vr!+7‘SH»S}
St QU St Qg 1, o1, Stb2, T2, St43: U3, 143} — {St42, Qt2, 5143, 7043, Sthd )
Sts Tty St41s At 1y T 15 St42, T1425 At Stds Ut d } = 10 Tty St415 5642, A2, St43 435 Ut St45 )
Stage-3 | {51, @, av1, 741} — {Se42
St Ty StH1y Q41 T 1y S1435 Aet3, Qudy Ted} = {82, Qe Ty S1415 S04, Qe2, S143, 143, Qs Se45)
S0 Tt St42, O, Ter2, 543, P43} = {04, 41, Qeg1, 542, Uutd, Te42, T3, Sea}
Sty ey g1} = {Set1, Qe Se2)
St T Tt St42, S48, Te3s Tipa ) = {86, Gy Ty St41, i1, St2, 2, St43, T35 St-445 Qeed, St45 )
Stage-4

Sts 542, 5643, A43, Te43, St4d; Qera} = {84, 01,7e, Qg2 T42, et S5}
STty Stly Qg 1, Te 1, St42, 43, St4d, Qepd} = Qe T, St41, Se42, Q42,7643 St45 )
S5 Tty St 1y Qg 1, e 1, T2, St43, Qe43, Sty Gryal = {0676 Se41, Se42, Qe42, 5643, 743, Qeied, Seas)
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Table 16: Top-5 candidates of each stage in Cheetah-Run (Vector) evolution process

Cheetah-Run (Raw)

{stsae, e, arr, e} = {se41, 5042}
{ae,1e, St12, Qrg2, ares rera} = {5t Sea1, Qe Se43, Seqa b
Stage-1 | {ar, @1, St42, Qug2, Te42, Q643 Te43, Sty Tt ds At 55 T4 55 QAT TehTs St48y U85 Te8 ) —> {863 St15 643, Qt-ds St-455 St-465 Q465 51475 5149}
{”t+1,at+z,é,+. s At+43, A4, At 45, +5w”‘ﬁ+61r¢+7} - {shatv'SH»lv'st+235f+4>5t+5sst+61 St+75 At47, St+8
Sty Aty 41, At42, Tt +3, At+4, Tt +4, St4+5, 45, A+6, St47, At+7, St+8, At+8; "'L+8} - {'5(+1:5/,+2<, St43, At+35 St+45 St46, 5H»‘J}

{56, a1, 74, arg1, T} — {8141, 8142

{st,a,7¢, 001,701} = {8141, St42}

Stage-2 | {8ty Gty Qe 1, Teg15 Q2 Te42, tt 3, 43 Qe ds Teids Sth5s Qb Te45s Utt6, Ut Ty Q18 Te48 ) — (s 81415 St425 Qtt2, S143, St445 St4+65 St+9 )
Sty Oty Q415 St+25 At25 Q435 Tt+35 Q-4 Tt44, At455 47, St48, ar+8-Tt+8} - {St+1‘51+3‘at+47 St+65 St+9

{st,ae,me} = {re, 8041

i1, Tep1) = {Se41)
{st,ac} = {re, se1

Stage-3 | {st,as, 7, a1} = {si42}
{stae,re} = {se41}

{8t a, arsr, repa} = {84, 5041, 8040}

{s;ae, 7, a1} — {5041, 5042

{8ty @ty g1, T4 15 Qe o142, T143 Tody St5s At 5y T455 Qe 6y 75 risy Teys ) — {as, 5t+115t+2vat+2 St43s St-+45 St-465 St49}
Stage-4* {5hai Q15 Q42 Tt+25 Tt435 At 4, Tt44s At+5, Tt+5, At+6, W47, At+8, Tf+8} - {ﬂf St41y St+2, Q425 St+43, St+4, St+6, At+85 5r+9}
T{'bl,vahaH»lybH»Zxlll+2va(,+dv’l+-iva/,+ “tpdy At 455 Q475 S48, At +85 'H»S} - {-51+1xvS/.+3>fll,+/1x6L+by-51+3}
{Suttt-,dt+1>fh+217'z+:hllt+41 V‘t,+/1-,51,+s‘(lz+575/,+7,0H+7>SHSJH&J‘H&} - {'5H»115L+21SH»ihaH»Ih'5I,+/115L+lnal,+8-,m+8>sl+9}

{st,ae,1e, a1} = {141,701}

{8t,at,ap41, 7041} = {St41, Qeg1, Sty Qg2 Ter2, Se43}

Stage-5* | {s¢, a7, ar1, 7041} = {Se41

{Sr,-ﬂ t+15 Q425 Tt4+2, Tt43, At +4, rr,+4,5r+5-at+5~Tr+5<,(lr,+5,ﬂt+7,ar+8,Tt+8} - {5r+1-5!+2s5H»3<,5t+415t+6xat+8=5i+9}
{st,ae,1e, arpr} = {st41, 5e12

{SMG A1, At42, Tt+2, Q435 Tt +3 "1+4xv5'¢+a>al,+5xTt+5=@1+s,lu+7vat+8="t+8} - {Shflhsl,+1~51,+2yﬂ/,+z4,51,+31a«,+3>at+1,51+5,S/.+5>fll,+sx5:,+9}
{stan, ain} = {re se41, e, sepa}

Stage-6 | {St, @ty i1, Qg2 o2, Qg ds Tet3, Qe ds T ds Stbss Qtt5s Ut 65 Ut Ty Stbss ety Te48) —> L, St415 St42, 51435 St+65 U485 T148, 5149}

{st,as,re, 0001} = {8e41, 5042}

{8ts a1, 7, a1} — {841, 5042

{8ty a6, 76, a1y Teg1 ] — {8t 5042}

{st,ar,1e, a1, re1 b = {Se41, o1, Seq2}

Stage-7 | {se,ae,7e, arp1} = {re, se41, 8042}

41} = {841, Qrg1, Se42}

{800 @ty Qua 1, Qug2, Teo, Qe Te43, Qrtd, Tegds Si45, G5, Aty Gk Ty Aty Te48 ) — {81415 142, 8143, At43, Atd, St46, St+85 St+9)

{Su

+: Used for cross-validation. {: A2-winner-v.

Table 17: Top-5 candidates of each stage in Hopper-Hop (Vector) evolution process

Hopper-Hop (Raw)

{Snflt} - {Tp 5‘t+1}

Ly Tty St425 U2, Te425 St435 Qtt3s Tt43y St45> Qtk5s Te45y Utt-65 QAT T4 Ty Q48 Tt48F — {545 St41y et 15 Stds Qttds St4+65 St+T5 St48 5149}
Stage-l {Sm Qty St+25 At+35 Tt445 At +5; Tt+55 St+65 Gt +65 Tt+7, Tt+8} - {Sh Tty St41, At41, Tt+15 St425 St435 St+4, Ut465 St+7, At+7, Tt47, A48 5t+9}
{Sn Aty St42, 43,143, at+5} — {St, Q415 St425 St+435 1435 St44s Tt44, Tt 45, St+6}

{se,m} = {56,710, St}

{56, a1, st41, 0001} = {5141, 8042}

{Stv Ay Ty St42, 7’t+2} - {"'t+1«, St42,At42, S:+3}

Stage-2 | {St, Qe St41, et 15 Qe St45, Qut5s St465 A6} —> {Se42, 742, Te435 Tebds S5, Te455 St-465 Q465 Te-46 )
{7t Qi1 1 S1425 @2, 8143y Q35 Qs Tea} = {St; Qus Tty St415 St42, S143, St445 Tr44

{”'m At41; St+42, At42, 7‘t+2} - {Sr,+1, Tt41, 0442, St+3}

{st, a1, 8041, @41} — {56, 5042}
si} = {56, a0, 70, 041}
Stage-3 | {s¢, e, 7e, St42, Qevas Tea} = {St, Se1, T 1, Sev2, Qgz, Teg2, Sttt
{st,at,arp1} — {st41, 542
{st, a0, a1} = {0, 5041, 5040}

{8t:7¢, 8142, Qrg2, Teg2} — {741, Qe Se43)

{st,at, 8041, 0041} = {s142

Stage-4 | {8t,7¢, St41, Qra1, T, Se42, Qrga, Teaa} — {8641, Aeg2, Ser3 )
{81, @11, 8642, Qry2, Tepay — {St41,Te41, Qg2 Seys)

st ae, Ser1, a1} = {141, Seqa}

{5ty a1, 71, Quy1, Stv2, g2, Tera) — (86,7041, Guy2, 5143}

{8ty @41, 41, St42, Qs Tera} = {8t o1, Sev2, Gr2, St43}
Stage-5 | {st,ar, 71} — {St. St41, 8142

{867 Qus1s Sev2, o2} —> {Se41, Quga, Se43}

{56, @, St41, @1} = {T141, 8142

{51, a, U'H»l} - {Sm St41.5t42)

{SmT y t+2sat+2v"“t+2} - (Sf,3:+1«5t+2,5t+3}
Stage-6 | {s¢,ar, ar11} — {51, 5141, 42

{stsa6,7e, S1415 a1, Ten ) = {1 Seq1, Sesn}
{86, at,1t, arprs St} — {56, 5041, 741
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Table 18: Top-5 candidates of each stage in Quadruped-Run (Vector) evolution process

Quadruped-Run (Raw)

Stage-1

{ae, 1t Se41, 42, a2} — {5t aeg1, se43}

{Tu St+15 St+3, TL+3} - {51 s Aty Tty St41y Qg 15 Te415 St425 Tt 425 St+35 At 43, 5L+4}
{ﬂrt, At 1y Te41s St425 Tt 425 St43, At 43, 7'r,+3} - {St, St41, At 42, St+4}

{805 @1y To41, Qe 8143, Q1435 T43, St4as St5 ) — { @ty Qg1 o1, Qug 2y Te43, Arva}
{81, @1, 7, 415 Auy1s Seva} = {reer, Tego}

Stage-2

{a:, Tty Q425 Tt425 St43, At 43, Tt 43, at+4} — {8:4, St41y Q415 St425 St44, St+5}

{ﬁ‘t, Ay Qg 1y Te415 Te 425 Q435 U445 Ti44, At 45, Tt 455 St465 Tt 465 At+7, A48, Tt485 St+9} hnd {Sr/+17 St+25 At4+25 St+35 St+45 St+5, St+75 St+s}
{1,741, Se42, Qe et = {8e, @, T, Qs aees, sevat

{11, 81425 A2, 143, Qi ds Qs Tidss Q6 Ti6s Q47 St48, A48} — {5ty St 15 St43, St-+4, 5145, 56465 St+75 St48, 5149}

{Stv St41, Q41,5 St42, Q42,5 St43, 5£+4} — {Su Ay St415 St42, 42

Stage-3

{(lu Aty 1y Ot 435 Tt 435 Tt4ds Q455 A7, TH475 St48 at+8} - {5t~, St+15 St+25 St+35 St4+4s Ut+ds St455 U455 Tt+455 St4+65 At+65 T't+65 St+75 St+9}
{0y Qrt1s Qu4 3, Te43s Qess Qg Ty Sty Qs ) — {8ty @ty S141, Qet2, 5143, St-445 Qi dy St455 St465 Ut65 St+75 5149}
{ae,me,mer2, St4s, Qs Teas, Terat = {St, St41, Qedt, St42, G2, Qets, Sted, St45)

Ay Qg 15 Te4-35 Qpfds Tids Q45 A7, T 475 3:+8} — {St, Tty St415 St435 St445 St455 St465 At465 St475 St+8; 8r,+9}

Sty @y Tty Tt 15 @t 2, o2y St435 Ut 3s T3, St445 Str5 ) — {0ty Qg1 o1, Qus2s Tegs

Stage-4

Tty Tt 1 Qe 2, 142, 5143, Utt-3s Tt43, St44, 51451 — 10142, Tt+3, Qe }

{Sta Ay Tt 1y Qg 425 Tt 425 St435 At 43, Tt4-35 St44, 5t+5} — {at, Q415 Q425 1435 at+4}
{flz,at+1~ 43,7143, St+4} — {S‘t+1~ Tt415 St4+25 Q42,5 Tt 42, 5‘t+3}

{805 @0y T, i1y Qu2s St435 Qu3s Tet3, Stas Ses ) — { @1y Qg2 o3, arpa}

St42, Qr42, Quy3} = {81, Qr, Quyo, St4s, Qs Seqat

Stage-5

Aty 1 T2 St425 At 425 Te42, At 43, 7':+3} — {St, Aty Tty Q415 Tt415 At 425 St43, at+3}

Aty Tty Ty Ap42, Tt 42,5 St435 At4+3, Tt 43, T4 f — {Sn St41s Ap41y St42, At 42, At 435 St+4, 5t+5}

L@t Qg 15 Qe T4, Qe T4 dy Qe 5 Qe 7, Te 7, Sts, Qs ) — {56378 St St425 56435 Sty St45, A5, St465 W65 Tt-4+65 St4+7 St+8
{@t, Qe Si42, @043, Te43, Qetd, Qets, St46, AT, Si48, Aets ) —> {St, St41, 42y Qut2, St+35 Sty Uk, St45, S1465 St+7: Te47, T48 )
{St, Ay Tty 41y Gt 425 St435 At 43, Tt 435 8t+5} — {at, Q425 Tt 43, (L¢+4}
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