
A Algorithm

Algorithm 1 Automated Auxiliary Loss Search

1: Initialization: Randomly generate (bootstrapping) P auxiliary loss functions {Lp}Pstage-1 and P
parameterized policy {⇡!p}Pstage-1;

2: for i = 1, 2, . . . N do
3: Optimize policies {⇡!p}Pstage-i with RL loss LRL and corresponding Auxiliary loss {Lp}Pstage-i.
4: Evaluate performance (AULC scores) of each RL agent {Ep}Pstage-i and select top T candidates

{Lt}Tstage-i.
5: Apply mutations and loss rejection check (introduced in Section 3.2.2) on top T candidates

{Lt}Tstage-i to generate new auxiliary loss candidates {Lp}Pstage-(i+1)

6: end for
7: Cross validate (introduced in Section 4.2) top-performing candidates during evolution to get the

optimal auxiliary loss L⇤.
8: return L⇤

B Examples of Loss Functions

We show examples of existing LRL and LAux below.

RL loss instances. RL losses are the basic objectives for solving RL problems. For example, when
solving discrete control tasks, the Deep Q Networks (DQN) [31] only fit the Q function, where LRL
is minimizing the error between Q! and Q!̂ (target Q network):

LRL = LRL,Q(!; E) = Es,r⇠E,a⇠⇡(Q!(st, at)� (rt + �max
a

Q!̂(st+1, at)))
2 (4)

However, for continuous action space, the agent is always required to optimize a policy function
alongside the Q loss as in eq. (4). For instance, Soft Actor Critic (SAC) [14] additionally optimizes
the policy by policy gradient like:

LRL = LRL,Q + LRL,⇡, LRL,⇡(!; E) = Es,r⇠E,a⇠⇡(� min
i=1,2

Q!̂i(st, at) + ↵ log ⇡!(at|st)) (5)

Auxiliary loss instances. Besides LRL, adding an auxiliary loss LAux helps to learn informative
state representation for the best learning efficiency and final performance. For example, auxiliary loss
of forward dynamics measures the mean squared error of state in the latent space:

LAux(✓; E) = kh(g✓(st), at)� g✓̂(st+1)k2, (6)

where h denotes a predictor network. Another instance, Contrastive Unsupervised RL (CURL) [23]
designs the auxiliary loss by contrasitive similarity relations:

LAux(✓; E) =
exp(g✓(s0t)

>Wg✓̂(s
0
t+))

exp(g✓(s0t)
>Wg✓̂(s

0
t+)) +

PK�1
i=0 exp(g✓(s0t)

>Wg✓̂(s
0
i))

, (7)

where s0t and s0t+ are states of the same state st after different random augmentations, and W is a
learned parameter matrix.

16

C Implementation Details

C.1 Architecture

C.1.1 State Encoder Architectures

In Figure 8, we demonstrate the overall architecture when auxiliary loss is used. The architecture is
generally identical to architectures adopted in CURL [23]. “Image-based” and “1-layer DenseMLP”
are the architectures we used in our experiments. “MLP” and “4-layer DenseMLP” are for ablations.
Ablation details are given in Appendix D.6.

Conv Encoder

State Embedding

Actor

Faltten

Concat

Critic

SAC Loss

MLP Encoder

State Embedding

Actor

Concat

Critic

SAC Loss

Image-based Vector-based (MLP)

MLP Encoder

State Embedding

Actor

Concat

Concat

Critic

SAC Loss

Vector-based (1-Layer DenseMLP) Vector-based (4-Layer DenseMLP)

MLP Encoder

Concat

MLP Encoder

Concat

MLP Encoder

Concat

MLP Encoder

Concat

State Embedding

Auxiliary Loss Auxiliary Loss Auxiliary Loss

Input Elements

Operator

Input Elements

Operator

Input Elements

Operator

Figure 8: Network structures of image-based RL and vector-based RL with auxiliary losses.

C.1.2 Siamese Network

For a fair comparison with baseline methods, we follow the same Siamese network structure for
representation learning as CURL [23]. As shown in Figure 2, when computing targets ŷ for auxiliary
losses, we map states to state embeddings with a target encoder. We stop gradients from target
encoder ✓̂ and update ✓̂ in the exponential moving averaged (EMA) manner where ✓̂0 = ⌧✓+(1�⌧)✓̂.
This step, i.e., to freeze the gradients of the target encoder, is necessary when the loss is computed
without negative samples. Otherwise, encoders will collapse to generate the same representation for
any input. We have verified this in our early experiments.

C.2 Loss Operators

Instance Discrimination Our implementation is based on InfoNCE loss [33]:

L = log
exp(�(y, ŷ))

exp(�(y, ŷ)) +
PK�1

i=0 exp(�(y, yi))
(8)

The instance discrimination loss can be interpreted as a log-loss of a K-way softmax classifier whose
label is ŷ. The difference between discrimination-based loss operators lies in the discrimination
objective � used to measure agreement between (y, ŷ) pairs. Inner employs inner product �(y, ŷ) =
y>ŷ while Bilinear employs bilinear product �(y, ŷ) = yWŷ, where W is a learnable parameter
matrix. Cosine uses cosine distance �(y, ŷ) = y>ŷ

kyk·kŷk for further matrix calculation. As for losses
implemented with cross entropy calculation without negative samples, we only take diagonal elements
of matrix M where Mi,j = �(yj , ŷi) for cross entropy calculation.

Mean Squared Error The implementation of MSE-based loss operators are straightforward. MSE
loss operator = (y � ŷ)2 while normalized MSE = (y

kyk � ŷ
kŷk)

2. When combined with negative
samples, MSE loss operator (with negative pairs) = (y � ŷ)2 � (y � yi)2 while normalized MSE
(with negative pairs) = (y

kyk � ŷ
kŷk)

2 � (y
kyk � yi

kyik)
2.

17

C.3 Evolution Strategy

Horizon-changing Mutations There are two kinds of mutations that can change horizon length.
One is to decrease horizon length. Specifically, we remove the last time step, i.e., (st+k, at+k, rt+k)
if the target horizon length is k. The other is to increase horizon length, in which we append three
randomly generated bits to the given masks at the end. We do not shorten the horizon when it becomes
too small (less than 1) or lengthen the horizon when it is too long (exceeding 10).

Mutating Source and Target Masks When mutating a candidate, the mutation on the source and
the target are independent except for horizon change mutation where two masks should either both
increase horizon or decrease horizon.

Initialization At each initialization, we randomly generate 75 auxiliary loss functions (every bit of
masks are generated from Bernoulli(p) where p = 0.5.) and generate 25 auxiliary loss functions with
prior probability, which makes the auxiliary loss have some features like forward dynamics prediction
or reward prediction. The prior probability for generating the pattern of forward dynamics prediction
is: (i) every bit of states from target is generated from Bernoulli(p) where p = 0.2; (ii) every bit
of actions from source is generated from Bernoulli(p) where p = 0.8; (iii) every bit of states from
target is generated by flipping the states of source; (iv) The other bits are generated from Bernoulli(p)
where p = 0.5. The prior probability for generating the pattern of reward prediction is: (i) every bit
of rewards from target is generated from Bernoulli(p) where p = 0.8; (ii) Every bit of states and
actions from target is 0; (iii) The other bits are generated from Bernoulli(p) where p = 0.5.

C.4 Training Details

C.4.1 Hyper-parameters in the Image-based Setting

We use the same hyper-parameters for A2LS, SAC-wo-aug, SAC and CURL during the search phase
to ensure a fair comparison. When evaluating the searched auxiliary loss, we use a slightly larger
setting (e.g., larger batch size) to train RL agents sufficiently. A full list is shown in Table 6.

C.4.2 Hyper-parameters in the Vector-based Setting

We use the same hyper-parameters for A2LS, SAC-Identity, SAC-DenseMLP and CURL-DenseMLP,
shown in Table 7. Since training in vector-based environments is substantially faster than in image-
based environments, there is no need to balance training cost and agent performance. We use this
setting for both the search and final evaluation phases.

C.5 Baselines Implementation

Image-based Setting These following baselines are chosen because they are competitive methods
for benchmarking control from pixels. CURL [23] is the main baseline to compare within the
image-based setting, which is considered to be the state-of-the-art image-based RL algorithm. CURL
learns state representations with a contrastive auxiliary loss. PlaNet [16] and Dreamer [15] are
model-based methods that generate synthetic rollouts with a learned world model. SAC+AE [51]
uses a reconstruction auxiliary loss of images to boost RL training. SLAC [26] leverages forward
dynamics to construct a latent space for RL agents. Note that there are two versions of SLAC with
different gradient Updates per agent step: SLACv1 (1:1) and SLACv2(3:1). We adopt SLACv1 for
comparison since all methods only make one gradient update per agent step. Image SAC is just
vanilla SAC [14] agents with images as inputs.

Vector-based Setting As for the vector-based setting, we compare A2LS with SAC-Identity, SAC
and CURL. SAC-Identity is the vanilla vector-based SAC where states are directly fed to actor/critic
networks. SAC and CURL use the same architecture of 1-layer densely connected MLP as a state
encoder. Note that both A2LS and baseline methods use the same hyper-parameter reported in
Table 7 without additional hyper-parameter tuning.

18

Table 6: Hyper-parameters used in image-based environments.
Hyper-parameter During Evolution Final Evaluation of A2-winner

Random crop False for SAC-wo-aug;
True for others

True

Observation rendering (84, 84) for SAC-wo-aug;
(100, 100) for others

(100, 100)

Observation downsampling (84, 84) (84, 84)
Replay buffer size 100000 100000

Initial steps 1000 1000
Stacked frames 3 3
Actoin repeat 4 (Cheetah-Run, Reacher-Easy)

2 (Walker-Walk);
8 (Cartpole-Swingup);

4 (Others)
2 (Walker-Walk, Finger-Spin)

Hidden units (MLP) 1024 1024
Hidden units (Predictor MLP) 256 256

Evaluation episodes 10 10
Optimizer Adam Adam

(�1,�2) for actor/critic/encoder (.9, .999) (.9, .999)
(�1,�2) for entropy ↵ (.5, .999) (.5, .999)

Learning rate for actor/critic 1e-3 2e-4 (Cheetah-Run);
1e-3 (Others)

Learning rate for encoder 1e-3 3e-3 (Cheetah-Run, Finger-Spin, Walker-Walk);
1e-3 (Others)

Learning for ↵ 1e-4 1e-4
Batch size for RL loss 128 512

Batch size for auxiliary loss 128 128 (Walker-Walk)
256 (Cheetah-Run, Finger-Spin)

512 (Others);
Auxiliary Loss multipilier � 1 1

Q function EMA ⌧ 0.01 0.01
Critic target update freq 2 2

Convolutional layers 4 4
Number of filters 32 32

Non-linearity ReLU ReLU
Encoder EMA ⌧ 0.05 0.05
Latent dimension 50 50

Discount � .99 .99
Initial temperature 0.1 0.1

Table 7: Hyper-parameters used in vector-based environments.
Replay buffer size 100000

Initial steps 1000
Action repeat 4

Hidden units (MLP) 1024
Hidden units (Predictor MLP) 256

Evaluation episodes 10
Optimizer Adam

(�1,�2) for actor/critic/encoder (.9, .999)
(�1,�2) for entropy ↵ (.5, .999)

Learning rate for actor/critic/encoder 2e-4 (Cheetah-Run);
1e-3 (Others)

Learning for ↵ 1e-4
Batch size 512

Auxiliary Loss multipilier � 1
Q function EMA ⌧ 0.01

Critic target update freq 2
DenseMLP Layers 1

Non-linearity ReLU
Encoder EMA ⌧ 0.05

Latent dimension of DenseMLP 40
Discount � .99

Initial temperature 0.1

19

D Additional Experiment Results

D.1 Search Space Pruning

Results of Search Space Pruning Considering that the loss space is huge, an effective optimization
strategy is required. Directly grid-searching over the whole space is infeasible because of unacceptable
computational costs. Thus some advanced techniques such as space pruning and an elaborate search
strategy are necessary. Our search space can be seen as a combination of the space for the input I and
the space for the operator f . Inspired by AutoML works [5, 52] that search for hyper-parameters first
and then neural architectures, we approximate the joint search of input and operator in Equation (1)
in a two-step manner. The optimal auxiliary loss {I⇤, f⇤} can be optimized as:

max
L

R(M!⇤(L); E) = max
I,f

R(M!⇤(I,f); E) ⇡ max
I

R(M!⇤(I,f⇤); E)

where f⇤ ⇡ argmax
f

EI [R(M!⇤(I,f); E)]
(9)

To decide the best loss operator, for every f in the operator space, we estimate EI [R(M!⇤(I,f); E)]
with a random sampling strategy. We run 15 trials for each loss operator to estimate performance
expectation. For each of 10 possible f in the search space (5 operators with optional negative
samples), we run 5 trials on each of the 3 image-based environments (used in evolution) with the same
input elements {st, at} ! {st+1}, as we found that forward dynamics is a reasonable representative
of our search space with highly competitive performance. Surprisingly, as summarized in Table 8, the
simplest MSE without negative samples outperforms all other loss operators with complex designs.
Therefore, this loss operator is chosen for the rest of this paper.

Table 8: Normalized episodic rewards (mean & standard deviation for 5 seeds) of 3 environments
used in evolution on image-based DMControl500K with different loss operators.

Loss operator and discrimination Inner Bilinear Cosine MSE N-MSE
w/ negative samples 0.979± 0.344 0.953± 0.329 0.872± 0.412 0.124± 0.125 0.933± 0.360

w/o negative samples 0.669± 0.311 0.707± 0.299 0.959± 0.225 1.000± 0.223 0.993± 0.229

Ablation Study on Search Space Pruning As introduced in Appendix D.1, we decompose the full
search space into operator and input elements. Here we try to directly apply the evolution strategy to
the whole space without the pruning step. The comparison results are shown in Figure 9. We can see
that pruning improves the evolution process, making it easier to find good candidates.

D.2 Learning Curves for A2LS on Image-based DMControl

We benchmark the performance of A2LS to the best-performing image-based baseline (CURL). As
shown in Figure 10, the sample efficiency of A2LS outperforms CURL in 10 out of 12 environments.
Note that the learning curves of CURL may not match the data in Table 2. This is because we use
the data reported in the CURL paper for tabular while we rerun CURL for learning curves plotting,
where we find the performance of our rerunning CURL is sightly below the CURL paper.

Stage 1 Stage 2 Stage 3

Figure 9: Comparison of evolution with and without pruning by performance histogram.

20

Ball in cup-Catch Cartpole-Swingup Cartpole-Swingup sparse Cheetah-Run

Finger-Spin Finger-Spin hard Hopper-Hop Hopper-Stand

Pendulum-Swingup Reacher-Easy Walker-Stand Walker-Walk

Figure 10: Learning curves of A2-winner and CURL on 12 DMC environments. Shadow represents
the standard deviation over five random seeds. The curves are uniformly smoothed for visual display.
The y-axis represents episodic reward and x-axis represents interaction steps.

D.3 Effectiveness of AULC scores

To illustrate why we use the area under learning curve (AULC) instead of other metrics, we select
top-10 candidates with different evolution metrics. In practice, AULC is calculated as the sum of
scores of all checkpoints during training. Figure 11 demonstrates the usage of AULC score could well
balance both sample efficiency and final performance. The learning curves of the top-10 candidates
selected by AULC score look better than the other two metrics (that select top candidates simply with
100k step score or 500k step score).

Figure 11: Learning curves of top-10 loss candidates selected with different metrics.

D.4 Comparing Auxiliary Loss with Data Augmentation

Besides auxiliary losses, data augmentation has been shown to be a strong technique for data-efficient
RL, especially in image-based environments[25, 22]. RAD [25] can be seen as a version of CURL
without contrastive loss but with a better image transformation function for data augmentation. We
compare A2-winner with RAD in both image-based and vector-based DMControl environments.
The learning curves in image-based environments are shown in Figure 12, where no statistically
significant difference is observed. As readers may notice, the scores on RAD paper [25] are higher
than the RAD and A2-winner learning curves reported. To avoid a misleading conclusion that
RAD is much stronger than A2-winner , we would like to emphasize some key differences between
RAD and our implementationt: 1) Large Conv encoder output dim (RAD: 47, A2LS/CURL: 25);

21

2) Larger image size (RAD: 108, A2LS/CURL: 100); 3) Larger encoder feature dim (RAD: 64,
A2LS/CURL: 50). We use the hyper-parameters used in CURL for consistency of scores reported
in our paper. However, in vector-based environments, as shown in Figure 13, A2-winner greatly
outperforms RAD. Due to the huge difference between images and proprioceptive features, RAD
could not transfer augmentation techniques like random crop and transforms used for images to
vectors. Though RAD designs noise and random scaling for proprioceptive features, A2-winner
shows much better performance on vector-based settings. These results show that recent progress in
using data augmentation for RL is still limited to image-based RL while using auxiliary loss functions
for RL is able to boost RL across environments with totally different data types of observation.
Besides comparing auxiliary losses with data augmentation in DMC, we also provide experimental
results in Atari [1]. As shown in Table 3, A2-winner significantly outperforms DrQ [22].

Ball in cup-Catch Cartpole-Swingup Cheetah-Run

Finger-Spin Reacher-Easy Walker-Walk

Figure 12: Comparison of learning curves of A2LS and RAD in image-based DMC environments.

Cheetah-Run Hopper-Hop Humanoid-Run

Figure 13: Comparison of learning curves of A2LS and RAD in vector-based DMControl environ-
ments.

D.5 Evolution on Vector-based RL

F

State Embedding

Concat

MLP Encoder

Figure 14: Network
architecture of 1-layer
DenseMLP state en-
coder.

Experiment Settings As for vector-based RL, we use a 1-layer densely
connected MLP as the state encoder as shown in Figure 14 due to the low-
dimensional state space. So, for this setting, we focus on this simple encoder
structure. Additional ablations on state encoder architectures are given in
Appendix D.6. In the search phase, we compare A2LS to SAC-Identity,
SAC-DenseMLP, CURL-DenseMLP. To ensure a fair comparison, all SAC
related hyper-parameters are the same as those reported in the CURL paper.
Details can be found in Appendix C.4.2. SAC-Identity is vanilla SAC with no
state encoder, while the other three methods (A2LS, SAC-DenseMLP, CURL-
DenseMLP) use the same encoder architecture. Different from the image-based
setting, there is no data augmentation in the vector-based setting. Note that
many environments that are challenging in image-based settings become easy
to tackle with vector-based inputs. Therefore we apply our search framework to more challenging
environments for vector-based RL, including Cheetah-Run, Hopper-Hop and Quadruped-Run.

22

Cheetah-Run (Vector) Hopper-Hop (Vector) Quadruped-Run (Vector)

Figure 15: Evolution process in in the three training (vector-based) environments. Every white dot
represents a loss candidate, and the score of y-axis shows its corresponding approximated AULC
score. The horizontal lines show the scores of baselines. The AULC score is approximated with the
average evaluation score at 300k, 600k, 900k, 1200k, 1500k time steps (Cheetah-Run at 100k, 200k,
300k, 400K).

Search Results Similar to image-based settings, we approximate AULC with the average score
agents achieved at 300k, 600k, 900k, 1200k, and 1500k time steps3. For each environment, we early
stop the experiment when the budget of 1,500 GPU hours is exhausted. The evolution process is
shown in Figure 15, where we find a large portion of candidates outperform baselines (horizontal
dashed lines). The performance improvement is especially significant on Cheetah-Run, where almost
all candidates in the population greatly outperform all baselines by the end of the first stage. Similar
to image-based settings, we also use cross-validation to select the best loss function, which we call
“A2-winner-v” here (all the top candidates during evolution are reported in Appendix F)

D.6 Encoder Architecture Ablation for Vector-based RL

Table 9: Normalized episodic rewards of A2LS (mean & standard deviation for 5 seeds of 6
environments) on v DMControl100K with different encoder architectures.

A2LS-MLP (1-layer) A2LS-MLP (4-layer) A2LS-DenseMLP (1-layer) A2LS-DenseMLP (4-layer)
0.919 ± 0.217 0.544 ± 0.360 1.000 ± 0.129 0.813 ± 0.218

As shown in Figure 14, we choose a 1-layer densely connected MLP as the state encoder for vector-
based RL. We conduct an ablation study on different encoder architectures in the vector-based setting.
The results are summarized in Table 9, where A2LS with 4-layer encoders consistently perform
worse than 1-layer encoders. We also note that dense connection is helpful in the vector-based setting
compared with naive MLP encoders.

D.7 Visualization of Loss Landscape

In an effort to reveal why auxiliary losses are helpful to RL, we draw the loss landscape of critic loss
of both A2-winner and SAC using the technique in [29, 34]. We choose Humanoid-Stand as the
testing environment since we observe the most significant advantage of A2-winner over SAC on
complex robotics tasks like Humanoid. Note that the only difference between A2-winner and SAC
is whether using auxiliary loss or not. As shown in Figure 16, the critic loss landscape of A2-winner
appears to be convex during training, while the loss landscape of SAC becomes more non-convex as
training proceeds. The auxiliary loss of A2-winner is able to efficiently boost Q learning (gaining
near 300 reward at 500k steps), while SAC suffers from the poor results of critic learning (gaining
near 0 reward even at 1000k time steps). This result shows that such an auxiliary loss might make
learning easier from an optimization perspective.

D.8 Histogram of Auxiliary Loss Analysis

The histogram of each pattern analysis is shown in Figure 17.
3As for Cheetah-Run, we still use average score agents achieved at 100k, 200k, 300k, 400K and 500k time

steps since agents converge close to optimal score within 500k time steps.

23

250k

250k

500k

500k 750k

750k 1000k

1000k

A2-winner

SAC

Figure 16: Left: Learning curves of A2-winner and SAC on vector-based Humanoid-Stand. Right:
Critic Loss Landscape of A2-winner (upper right) and SAC (lower right) at 250k, 500k, 750k and
1000k time steps, trained on vector-based Humanoid-Stand. The first row shows 3D surface plots,
and the second row shows heatmap plots of loss landscapes.

Table 10: Mean and Median scores (normalized by human score and random score) achieved by
A2LS and baselines on 26 Atari games benchmarked at 100k time-steps (Atari100k).

Metric A2-winner CURL Eff. Rainbow DrQ [22] SimPLe DER OTRainbow SPR Random Human

Mean Human-Norm’d 0.568 0.381 0.285 0.357 0.443 0.285 0.264 0.704 0.000 1.000
Median Human-Norm’d 0.317 0.175 0.161 0.268 0.144 0.161 0.204 0.415 0.000 1.000

D.9 Comparing A2-winner with Advanced Human-designed Auxiliary Losses

Besides CURL, many recent works (e.g., SPR [39] and ATC [42]) also proposed advanced auxiliary
losses that achieve strong performance. Surprisingly, we find that both SPR and ATC designed similar
patterns as we conclude in Section 6, like forward dynamics and ntarget > nsource. Particularly, in
ATC, they train the encoder only with ATC loss, and we find the performance of A2-winner has
better performances than the results reported in their paper: we are 2⇥ more sample efficient to reach
800 scores on Cartpole-Swingup, 2⇥ more sample efficient to reach 100 scores on Hopper-Hop, and
3⇥ more sample efficient to reach 600 scores on Cartpole-Swingup sparse (see Figure 2 of [42]). As
for SPR, we find they have superior performance on Atari games benchmark, as shown in Table 10,
where A2-winner outperform all baselines except SPR. However, note that, our A2-winner is only
searched on a small set of DMC benchmarks and can still generalize well to discrete-control tasks
of Atari, while SPR is designed and only evaluated on Atari environments. In addition, we believe
such a gap can arise from different base RL algorithm implementation (A2LS is based on Efficient
Rainbow DQN while SPR adopts Categorical DQN) and different hyper-parameters.

D.10 The Trend of Increasing Performance during Evolution

Table 11: Average AULC scores of populations of each stage.

stage-1 stage-2 stage-3 stage-4 stage-5 stage-6 stage-7 SAC (baseline)

Cheetah-Run 191.75 252.51 258.09 284.53 349.52 351.51 352.57 285.82
Reacher-Easy 674.87 782.75 812.61 823.04 810.15 811.88 827.19 637.60
Walker-Walk 599.38 633.75 716.18 702.49 N/A N/A N/A 675.84

To illustrate the trend of increasing performance during evolution, we provide the average AULC
score of populations of each stage in Table 11. As for comparing evoluationary search with random

24

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(a) Forward dynamics

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(b) Inverse dynamics

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(c) Reward prediction

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(d) Action inference

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(e) State reconstruction

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(f) State source & target

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(g) Action source & target

Cheetah-Run (Pixel) Reacher-Easy (Pixel) Walker-Walk (Pixel) Cheetah-Run (State) Hooper-Hop (State) Quadruped-Run (State)

(h) Reward source & target

Figure 17: Histogram of statistical analysis of auxiliary loss candidates in six evolution processes.
The x-axis represents approximated AULC score while the y-axis represents the percentage of the
corresponding bin of population. Best viewed in color.

25

Table 12: Average AULC scores of Top-5 candidates of each stage.

stage-1 stage-2 stage-3 stage-4 stage-5 stage-6 stage-7 SAC (baseline)

Cheetah-Run 398.18 424.27 428.08 485.54 487.94 482.65 498.46 285.82
Reacher-Easy 931.27 950.61 943.83 938.91 954.77 955.02 969.43 637.60
Walker-Walk 834.09 883.77 896.52 880.73 N/A N/A N/A 675.84

sampling, we can take the stage-1 of each evolution procedure as random sampling. As shown in
Table 11, the average performance of the stage-1 population (i.e., random sampling) is even worse
than SAC in Cheetah-Run and Walker-Walk. Nevertheless, as evolution continues, the performance
of the evolved population in the following stages improves significantly, surpassing the score of SAC.

To illustrate the trend of increasing performance of best individuals during evolution, we provide the
average AULC score of the top 5 candidates of the population at each stage in Table 12. As shown
in Table 12, there is an obvious trend that the performance of the best individuals in the population
at each stage continues to improve and also outperformed the baseline by a large margin during the
evolution across all the three training environments.

26

E Search Space Complexity Analysis

The search space size is calculated by the size of input element space multiplying by the size of the
loss operator space.

For input elements, the search space for input elements is a pair of binary masks (m, m̂), each of
which is up to length (3k + 3) if the length of an interaction data sequence, i.e., horizon, is limited to
k steps. In our case, we set the maximum horizon length kmax = 10. we calculate separately for each
possible horizon length k. When length is k, the interaction sequence length (st, at, rt, · · · , st+k)
has length (3k + 3). For binary mask m̂, there are 23k+3 different options. There are also 23k+3

distinct binary mask m to select targets. Therefore, there are 26k+6 combinations when horizon
length is fixed to k. As our maximum horizon is 10, we enumerate k from 1 to 10, resulting inP10

i=1 2
6i+6.

For operator, we can learn intuitively from Table 8 that there are 5 different similarity measures with
or without negative samples, resulting in 5⇥ 2 = 10 different loss operators.

In total, the size of the entire space is

10⇥
10X

i=1

26i+6 ⇡ 7.5⇥ 1020.

27

F Top-performing Auxiliary Losses

F.1 A2-winner and A2-winner-v

We introduce all the top-performing auxiliary losses during evolution in this section. Note that MSE
is chosen (details are given Appendix D.1) as the loss operator for all the auxliary losses reported
below. The source seqsource and target seqtarget of auxiliary loss of A2-winner are:

{st+1, at+1, at+2, at+3} ! {rt, rt+1, st+2, st+3}, (10)

where A2-winner is the third-best candidate of stage 4 in Cheetah-Run (Image).

The source seqsource and target seqtarget of auxiliary loss of A2-winner-v are:

{st, at, at+1, st+2, at+2, at+3, rt+3, at+4, rt+4, at+5, at+7, st+8, at+8, rt+8}
! {st+1, st+3, at+4, st+6, st+9},

(11)

where A2-winner-v is the fourth-best candidate of stage 4 in Cheetah-Run (Vector).

These two losses are chosen because they are the best-performing loss functions during cross-
validation.

F.2 During Evolution

We report all the top-5 auxiliary loss candidates during evolution in this section.

Table 13: Top-5 candidates of each stage in Cheetah-Run (Image) evolution process

Cheetah-Run (Image)

Stage-1

{rt, st+1, at+1, rt+1, at+2, rt+2, at+3, rt+3} ! {st, at, st+2, st+3, st+4}
{st, at, rt} ! {st+1}
{st, at, at+1, rt+2} ! {st, at, st+1, at+1, rt+1, st+2, rt+2, st+3}
{st, rt, at+1, at+2, at+3, rt+3, rt+4, at+5, rt+5, st+6, st+7} ! {st, at, st+1, st+2, rt+2, rt+3, st+4, rt+5, st+6, at+6, st+7}
{st, at, st+1, at+1, st+2, rt+2} ! {st, st+1, rt+1, st+2, rt+2, st+3}

Stage-2

{st, at+1, rt+2, st+4, rt+4} ! {st+2, at+3, rt+3, at+4, st+5}
{st, at, at+2, rt+2} ! {st, rt, st+1, st+2, rt+2}
{at, rt, st+1, rt+1, st+2, at+2, rt+2, at+3, at+4} ! {st+1, st+2, st+3, at+3, st+4}
{st, at, rt, at+1, rt+1, at+2, rt+2, at+3, at+4} ! {st, st+1, st+2, st+4, st+5}
{rt, st+1, rt+1} ! {st, at, at+1, st+2}

Stage-3

{st, at, at+2, rt+2} ! {st, st+1, st+2, rt+2}
{st, rt, at+1, at+3, rt+3, rt+4, at+5, rt+5, st+6, at+6, st+7} ! {st, at, st+1, st+2, rt+2, rt+3, st+4, rt+5, st+6, st+7, at+7}
{st, at, at+1, rt+1, at+2, rt+2, at+3, st+4, at+4} ! {st+1, st+2, st+4, st+5}
{st, at, at+1, rt+1, rt+2, st+3, at+3, rt+4} ! {st+1, st+2, rt+3, st+4, at+4, st+5}
{rt, st+1} ! {st, at, at+1, st+2}

Stage-4

{st, st+1, at+2, rt+2, st+3, st+4} ! {at+1, st+2, rt+2, st+4, at+4, st+5}
{st, at, at+1, rt+1, rt+2, st+3, at+3} ! {st+1, st+2, rt+3, st+4}
{st} ! {st, rt, st+1, rt+1, st+2, at+2, rt+2}
{st, rt, at+1, st+2, at+2, rt+2, at+3, rt+3, at+4} ! {st, at, st+1, rt+1, rt+3, st+4, at+4, st+5}
{rt, st+1, at+1} ! {st, at, at+1, st+2}

Stage-5⇤

{at, rt, st+1, at+1, rt+1, at+2, rt+2, at+3, rt+3} ! {rt, st+1, at+1, st+2, st+4}
{st, at+1, rt+2, at+3, st+4, rt+4} ! {st+1, st+2, at+3, st+4, at+4, st+5}
†{st+1, at+1, at+2, at+3} ! {rt, rt+1, st+2, st+3}
{st} ! {st, rt, st+1, rt+1, st+2}
{st} ! {st, rt, st+1, rt+1, st+2, rt+2}

Stage-6

{at+1, rt+1, st+2, rt+2, at+3, at+4} ! {rt, st+1, rt+1, rt+3, st+4, at+4, st+5}
{st, at+1, at+3, st+4, rt+4} ! {st+1, st+2, at+3, st+4, at+4, st+5}
{st, at+1, rt+1, st+2, at+2, rt+2, st+3, at+3, rt+3} ! {at, st+2, rt+2, at+3, st+4, at+4, st+5}
{st, at+1, rt+2, at+3, st+4, rt+4} ! {st+1, st+2, at+3, st+4, at+4, st+5, at+5}
{st, at+1, at+2, rt+2, st+3, at+3, st+4, rt+4} ! {st+1, at+1, st+2, rt+2, st+4, at+4, rt+4, st+5}

Stage-7

{st, at, rt, at+1, rt+2, at+3, st+4} ! {at, rt, st+2, rt+3, st+4, at+4, rt+4, st+5}
{st, rt+2, at+3, st+4} ! {at, st+1, st+2, rt+2, at+3, rt+3, st+4, at+4, rt+4, st+5}
{st+1, at+2, rt+2, st+3, at+3, rt+3, st+4} ! {rt, at+1, rt+1, st+2, rt+2, st+4, at+4, st+5}
{st, at+1, st+2, at+2, rt+2, st+3, at+3, rt+3, at+4} ! {at, st+1, st+2, rt+2, st+3, rt+3, st+4, at+4, st+5}
{st, at+1, rt+2, at+3, st+4, rt+4} ! {st+1, st+2, rt+2, at+3, st+4, at+4, st+5, at+5}

⇤: Used for cross-validation. †: A2-winner.

28

Table 14: Top-5 candidates of each stage in Reacher-Easy (Image) evolution process
Reacher-Easy (Image)

Stage-1

{st+1, at+1} ! {rt, rt+1}
{rt, st+1, at+1, st+2, at+2, rt+2, at+3, at+4, rt+4, st+5, at+5, rt+5, st+6, at+6, rt+6, rt+7, st+8, at+8, st+9} ! {at+1, rt+1, st+2, st+3, rt+3, st+4, at+4, at+5, at+6, rt+6, st+7, at+7, rt+7, at+8, rt+8, st+10}
{st, rt, st+1, at+2, st+4, at+4, rt+5, st+6, at+6, at+7, st+9, st+10} ! {st, st+1, rt+1, st+2, rt+2, rt+3, st+4, at+4, rt+4, st+5, st+6, at+6, rt+7, rt+8, st+10}
{st, rt, st+1, at+1, st+2, st+3, at+3, at+4, st+5, rt+5, at+6, rt+6, st+7} ! {at+1, st+2, at+2, rt+2, st+3, at+3, rt+3, st+4, at+4, rt+4, st+6, at+6}
{st+1, rt+1, at+2, rt+2, rt+3, st+4, at+4, rt+4, st+5, st+6, rt+6} ! {rt, st+1, st+2, at+2, rt+2, st+4, st+5, rt+5, st+6, at+6, st+7, st+8}

Stage-2

{st, st+1, at+1} ! {rt, rt+1}
{st, rt, at+2, at+3, st+4, at+4, rt+4, at+5, rt+5, st+6, at+7, at+8} ! {rt, at+1, st+2, rt+2, st+3, at+3, rt+3, at+4, rt+4, at+5, rt+5, at+6, st+7, st+9}
{st, at, rt, st+1, at+2, at+3, st+5} ! {at, st+2, at+2, rt+2, st+3, at+3, at+4, rt+4}
{st, at, st+1, at+3, st+4, at+4, at+5, st+6, at+6, at+7, rt+7, st+9, at+9} ! {st, at, rt, st+1, rt+1, st+2, rt+3, st+4, rt+4, st+6, at+6, rt+7, at+8, st+10}
{st, at, rt, at+1, at+3, rt+3, st+4, at+4, st+5, at+5, rt+5, at+6, rt+6, at+7} ! {st+1, st+2, at+2, st+3, st+6, at+6, st+7, st+8}

Stage-3

{at, st+1, at+1, st+2, at+2} ! {rt, at+1, rt+1, rt+2}
{st, at, st+1, st+2, at+2, at+3, st+4, rt+4, at+5, rt+5, rt+6, at+7} ! {st, at, rt, st+2, st+3, at+3, st+4, at+4, at+5, rt+5, st+6, st+7, st+8}
{st, at, st+1, at+1, rt+1, st+2, at+2, at+3, st+4, rt+6, at+7} ! {rt, at+2, rt+2, at+3, rt+3, st+4, at+4, at+5, st+6, at+6, st+7, rt+7, st+8}
{st, at, st+1, rt+1, at+2, at+3, st+4, rt+4, st+6, rt+6, at+7} ! {st, rt, rt+1, at+2, rt+2, at+3, rt+3, st+4, at+4, at+5, rt+5, st+6, st+7, st+8}
{st, at, rt, at+1, rt+1, at+2, st+6, st+7, at+7, st+8} ! {st, rt, st+2, at+2, rt+2, at+3, rt+3, st+8, at+8}

Stage-4

{st, at, rt, at+1, at+3, rt+3, st+4, st+5, at+5, rt+5, at+6, rt+6, at+7} ! {st+1, st+2, st+3, rt+4, rt+5, rt+7, st+8}
{at, st+1, at+1, st+2} ! {rt, rt+1, at+2, rt+2}
{st, at, rt, at+1, rt+3, st+4, st+5, st+6, rt+6, at+7} ! {st+1, st+2, at+3, st+4, rt+4, st+5, st+6, st+7, rt+7, st+8}
{st, at, rt+1, at+2, at+3, st+4, rt+4, rt+5, st+6, rt+6, at+7} ! {st, rt, rt+1, at+2, rt+2, at+3, rt+3, st+4, at+4, at+5, rt+5, st+6, st+7, st+8}
{at, st+1, at+1, st+2, at+2} ! {rt, rt+1, rt+2}

Stage-5

{st, at, at+1, at+2, at+3, st+4, st+5, at+6, rt+6, at+7, st+8} ! {rt, at+2, rt+2, at+3, st+4, st+5, at+5, st+6, at+6, st+7, rt+7, st+8}
{st, at, st+1, at+1, rt+1} ! {rt, st+2}
{st, at, rt, at+1, rt+3, st+4, st+5, st+6, rt+6, at+7} ! {st+1, st+2, at+3, st+4, rt+4, st+5, rt+6, st+7, rt+7, st+8}
{st, at, rt, at+1, rt+1, st+2, at+2, at+3, st+4, st+5, at+5, rt+6, at+7} ! {st, rt, at+1, rt+1, at+2, rt+2, st+3, at+3, st+4, st+6, at+6, rt+6, st+7}
{st, at, st+1, rt+1, at+2, st+3, st+4, rt+6, at+7, st+8} ! {st, rt, rt+1, at+2, rt+2, at+3, st+4, at+4, at+5, st+6, rt+6, st+7, st+8}

Stage-6

{st, at, rt, at+1, at+3, rt+3, st+4, at+4, st+5, at+5, rt+5, st+6, at+6, rt+6} ! {st+1, st+2, at+2, st+3, rt+4, st+6}
{st, at, rt, st+1, at+1, rt+1, st+2, at+2, st+3, at+4, rt+5, rt+6, st+7, st+8} ! {st, rt, rt+2, at+3, rt+3, st+4, rt+4, at+5, rt+5, st+6, at+6, rt+6, st+7, at+7, rt+7, st+8}
{st, at, rt, rt+1, at+2, at+3, st+4, st+5, rt+5} ! {st, rt, rt+1, at+2, at+3, rt+3, at+4, rt+4, at+5, st+6, at+6, rt+6, st+7, st+8}
{st, at, st+1, at+3, at+4, at+5, st+6, at+6, st+7, at+7, rt+7, st+9, at+9} ! {st, at, rt, st+1, rt+1, st+2, st+3, rt+3, st+4, at+4, rt+4, st+6, at+6, rt+7, at+8, at+9, st+10}
{st, at, rt, at+1, rt+1, at+2, at+3, st+4, st+5, at+5, rt+6, at+7} ! {rt, st+1, rt+1, at+2, rt+2, st+3, st+4, st+6, at+6, rt+6, st+7, st+8}

Stage-7

{st, at, st+1, at+1, rt+1, st+2, at+2, rt+5, rt+6, at+7, st+8} ! {rt, at+2, rt+2, rt+3, st+4, at+4, at+5, at+6, rt+6, st+7, st+8}
{st, at, at+1, st+2, at+2, at+3, st+4, at+5, rt+5, rt+6, at+7} ! {st+1, rt+2, at+3, rt+3, st+4, at+5, rt+5, st+6, at+6, st+7, rt+7}
{st, at, rt, at+2, at+3, st+4, st+5, rt+5, at+6} ! {st, rt, rt+1, st+2, at+2, at+3, rt+3, rt+4, st+6, st+8}
{st, at, rt, at+1, at+3, rt+3, st+4, at+4, st+5, at+5, rt+5, st+6, at+6, rt+6} ! {rt, st+1, st+2, at+2, st+3, rt+4, st+6}
{st, at, rt, at+1, rt+1, at+3, rt+3, st+4, at+4, st+5, rt+5, st+6, at+7, rt+7} ! {st, rt, st+1, rt+1, at+2, st+3, at+3, rt+4, st+6, st+8}

Table 15: Top-5 candidates of each stage in Walker-Walk (Image) evolution process
Walker-Walk (Image)

Stage-1

{st, at, st+2, at+2, rt+2, st+3, at+4, at+5, st+6, at+6, at+7, st+8, rt+8} ! {st, st+1, rt+1, st+2, rt+2, rt+3, at+4, rt+4, at+5, rt+5, at+6, rt+6, rt+7, st+8, at+8, st+9}
{st, at, at+1, rt+1} ! {at, st+1, rt+1}
{rt, at+1, st+2, at+2, rt+3, st+5, at+5, at+6, rt+7, at+8} ! {st, at, st+1, st+3, at+3, st+4, at+4, st+6, st+7, at+7, st+8, st+9, at+9, st+10}
{st, rt, st+1, at+1, st+2, at+2, rt+2, st+3, at+4, rt+4, st+5, at+5, at+6} ! {st, at, rt, st+1, st+2, st+3, st+4, rt+4, at+5, rt+5, st+6, st+7}
{st, rt, at+1, st+2, at+2, st+3, at+3, at+4, st+5, at+5, rt+5} ! {st, at, rt, at+1, rt+1, st+2, st+3, at+3, st+5, at+5, rt+5, st+6}

Stage-2

{st, rt, st+1, at+1, rt+1, st+3, at+3, at+4} ! {at, rt, st+1, st+2, st+3, rt+3, at+4, st+5}
{st, rt, st+2, at+2, rt+2, st+3, rt+3} ! {at, st+1, at+1, st+2, at+2, rt+2, rt+3, st+4}
{rt, at+1, st+2, rt+2, st+3, rt+3} ! {at, st+1, at+1, st+2, at+2, rt+2, at+3, rt+3, st+4}
{st, rt, st+2, st+3, rt+3, st+4} ! {st, rt, st+1, at+2, rt+2, st+3, st+4, at+4, st+5}
{st, rt, st+1, st+2, st+4, at+4, at+5, st+6, rt+6, st+7} ! {st, rt, at+1, rt+1, st+2, rt+2, st+3, st+4, at+4, rt+5, st+6, at+7, rt+7, st+8}

Stage-3

{st, at, st+1, at+1, rt+1, st+2, rt+2, st+3, at+3, rt+3} ! {st+2, at+2, st+3, rt+3, st+4}
{st, rt, st+1, at+1, rt+1, st+2, rt+2, at+3, st+4, at+4} ! {at, rt, st+1, st+2, at+2, st+3, rt+3, at+4, st+5}
{st, at, at+1, rt+1} ! {st+2}
{st, rt, st+1, at+1, rt+1, st+3, at+3, at+4, rt+4} ! {st, at, rt, st+1, st+2, at+2, st+3, rt+3, at+4, st+5}
{st, rt, st+2, at+2, rt+2, st+3, rt+3} ! {at, st+1, at+1, st+2, at+2, rt+2, rt+3, st+4}

Stage-4

{st, at, at+1} ! {st+1, at+1, st+2}
{st, rt, rt+1, st+2, st+3, rt+3, rt+4} ! {st, at, rt, st+1, rt+1, st+2, at+2, st+3, rt+3, st+4, at+4, st+5}
{st, st+2, st+3, at+3, rt+3, st+4, at+4} ! {st, at, rt, at+2, rt+2, at+4, st+5}
{st, rt, st+1, at+1, rt+1, st+2, at+3, st+4, at+4} ! {at, rt, st+1, st+2, at+2, rt+3, st+5}
{st, rt, st+1, at+1, rt+1, rt+2, st+3, at+3, st+4, at+4} ! {at, rt, st+1, st+2, at+2, st+3, rt+3, at+4, st+5}

29

Table 16: Top-5 candidates of each stage in Cheetah-Run (Vector) evolution process
Cheetah-Run (Raw)

Stage-1

{st, at, rt, at+1, rt+1} ! {st+1, st+2}
{at, rt, st+2, at+2, at+3, rt+3} ! {st, st+1, at+1, st+3, st+4}
{at, at+1, st+2, at+2, rt+2, at+3, rt+3, st+4, rt+4, at+5, rt+5, at+7, rt+7, st+8, at+8, rt+8} ! {st, st+1, st+3, at+4, st+5, st+6, at+6, st+7, st+9}
{at+1, at+2, st+3, at+3, at+4, at+5, rt+5, at+6, rt+7} ! {st, at, st+1, st+2, st+4, st+5, st+6, st+7, at+7, st+8}
{st, at, at+1, at+2, rt+3, at+4, rt+4, st+5, at+5, at+6, st+7, at+7, st+8, at+8, rt+8} ! {st+1, st+2, st+3, at+3, st+4, st+6, st+9}

Stage-2

{st, at, rt, at+1, rt+1} ! {st+1, st+2}
{st, at, rt, at+1, rt+1} ! {st+1, st+2}
{st, at, at+1, rt+1, at+2, rt+2, at+3, rt+3, at+4, rt+4, st+5, at+5, rt+5, at+6, at+7, at+8, rt+8} ! {at, st+1, st+2, at+2, st+3, st+4, st+6, st+9}
{st, at, at+1, st+2, at+2, at+3, rt+3, at+4, rt+4, at+5, at+7, st+8, at+8, rt+8} ! {st+1, st+3, at+4, st+6, st+9}
{st, at, rt} ! {rt, st+1}

Stage-3

{st, at, rt, at+1, rt+1} ! {st+1}
{st, at} ! {rt, st+1}
{st, at, rt, at+1} ! {st+2}
{st, at, rt} ! {st+1}
{st, at, at+1, rt+1} ! {st, st+1, st+2}

Stage-4⇤

{st, at, rt, at+1} ! {st+1, st+2}
{st, at, at+1, rt+1, at+2, rt+2, rt+3, rt+4, st+5, at+5, rt+5, at+6, at+7, at+8, rt+8} ! {at, st+1, st+2, at+2, st+3, st+4, st+6, st+9}
{st, at, at+1, at+2, rt+2, rt+3, at+4, rt+4, at+5, rt+5, at+6, at+7, at+8, rt+8} ! {at, st+1, st+2, at+2, st+3, st+4, st+6, at+8, st+9}
†{st, at, at+1, st+2, at+2, at+3, rt+3, at+4, rt+4, at+5, at+7, st+8, at+8, rt+8} ! {st+1, st+3, at+4, st+6, st+9}
{st, at, at+1, at+2, rt+3, at+4, rt+4, st+5, at+5, st+7, at+7, st+8, at+8, rt+8} ! {st+1, st+2, st+3, at+3, st+4, st+6, at+8, rt+8, st+9}

Stage-5⇤

{st, at, rt, at+1} ! {st+1, rt+1}
{st, at, at+1, rt+1} ! {st+1, at+1, st+2, at+2, rt+2, st+3}
{st, at, rt, at+1, rt+1} ! {st+1}
{st, at, at+1, at+2, rt+2, rt+3, at+4, rt+4, st+5, at+5, rt+5, at+6, at+7, at+8, rt+8} ! {st+1, st+2, st+3, st+4, st+6, at+8, st+9}
{st, at, rt, at+1} ! {st+1, st+2}

Stage-6

{st, at, at+1, at+2, rt+2, at+3, rt+3, rt+4, st+5, at+5, rt+5, at+6, at+7, at+8, rt+8} ! {st, at, st+1, st+2, at+2, st+3, at+3, at+4, st+5, st+6, at+8, st+9}
{st, at, at+1} ! {rt, st+1, rt+1, st+2}
{st, at, at+1, at+2, rt+2, at+3, rt+3, at+4, rt+4, st+5, at+5, at+6, at+7, st+8, at+8, rt+8} ! {at, st+1, st+2, st+3, st+6, at+8, rt+8, st+9}
{st, at, rt, at+1} ! {st+1, st+2}
{st, at, rt, at+1} ! {st+1, st+2}

Stage-7

{st, at, rt, at+1, rt+1} ! {st+1, st+2}
{st, at, rt, at+1, rt+1} ! {st+1, rt+1, st+2}
{st, at, rt, at+1} ! {rt, st+1, st+2}
{st, at, at+1} ! {st+1, at+1, st+2}
{st, at, at+1, at+2, rt+2, at+3, rt+3, at+4, rt+4, st+5, at+5, at+6, at+7, at+8, rt+8} ! {st+1, st+2, st+3, at+3, at+4, st+6, st+8, st+9}

⇤: Used for cross-validation. †: A2-winner-v.

Table 17: Top-5 candidates of each stage in Hopper-Hop (Vector) evolution process
Hopper-Hop (Raw)

Stage-1

{st, at} ! {rt, st+1}
{at, rt, st+2, at+2, rt+2, st+3, at+3, rt+3, st+5, at+5, rt+5, at+6, at+7, rt+7, at+8, rt+8} ! {st, st+1, at+1, st+4, at+4, st+6, st+7, st+8, st+9}
{st, at, st+2, at+3, rt+4, at+5, rt+5, st+6, at+6, rt+7, rt+8} ! {st, rt, st+1, at+1, rt+1, st+2, st+3, st+4, at+6, st+7, at+7, rt+7, at+8, st+9}
{st, at, st+2, at+3, rt+3, at+5} ! {st, at+1, st+2, st+3, rt+3, st+4, rt+4, rt+5, st+6}
{st, rt} ! {st, rt, st+1}

Stage-2

{st, at, st+1, at+1} ! {st+1, st+2}
{st, at, rt, st+2, rt+2} ! {rt+1, st+2, at+2, st+3}
{st, at, st+1, at+1, at+4, st+5, at+5, st+6, at+6} ! {st+2, rt+2, rt+3, rt+4, st+5, rt+5, st+6, at+6, rt+6}
{rt, at+1, rt+1, st+2, at+2, st+3, at+3, at+4, rt+4} ! {st, at, rt, st+1, st+2, st+3, st+4, rt+4}
{st, at+1, st+2, at+2, rt+2} ! {st+1, rt+1, at+2, st+3}

Stage-3

{st, at, st+1, at+1} ! {st, st+2}
{st} ! {st, at, rt, st+1}
{st, at, rt, st+2, at+2, rt+2} ! {st, st+1, rt+1, st+2, at+2, rt+2, st+3}
{st, at, at+1} ! {st+1, st+2}
{st, at, at+1} ! {st, st+1, st+2}

Stage-4

{st, rt, st+2, at+2, rt+2} ! {rt+1, at+2, st+3}
{st, at, st+1, at+1} ! {st+2}
{st, rt, st+1, at+1, rt+1, st+2, at+2, rt+2} ! {st, rt+1, at+2, st+3}
{st, at+1, st+2, at+2, rt+2} ! {st+1, rt+1, at+2, st+3}
{st, at, st+1, at+1} ! {st+1, st+2}

Stage-5

{st, at, rt, at+1, st+2, at+2, rt+2} ! {st, rt+1, at+2, st+3}
{st, at+1, rt+1, st+2, at+2, rt+2} ! {st, rt+1, st+2, at+2, st+3}
{st, at, rt+1} ! {st, st+1, st+2}
{st, rt, at+1, st+2, rt+2} ! {st+1, at+2, st+3}
{st, at, st+1, at+1} ! {rt+1, st+2}

Stage-6

{st, at, at+1} ! {st, st+1, st+2}
{st, rt, st+2, at+2, rt+2} ! {st, st+1, st+2, st+3}
{st, at, at+1} ! {st, st+1, st+2}
{st, at, rt, st+1, at+1, rt+1} ! {rt, st+1, st+2}
{st, at, rt, at+1, st+2} ! {st, st+1, rt+1}

30

Table 18: Top-5 candidates of each stage in Quadruped-Run (Vector) evolution process
Quadruped-Run (Raw)

Stage-1

{at, rt, st+1, st+2, at+2} ! {st, at+1, st+3}
{rt, st+1, st+3, rt+3} ! {st, at, rt, st+1, at+1, rt+1, st+2, rt+2, st+3, at+3, st+4}
{at, at+1, rt+1, st+2, rt+2, st+3, at+3, rt+3} ! {st, st+1, at+2, st+4}
{st, at, rt+1, at+2, st+3, at+3, rt+3, st+4, st+5} ! {at, at+1, rt+1, at+2, rt+3, at+4}
{st, at, rt, st+1, at+1, st+3} ! {rt+1, rt+2}

Stage-2

{at, rt, at+2, rt+2, st+3, at+3, rt+3, at+4} ! {st, st+1, at+1, st+2, st+4, st+5}
{st, at, at+1, rt+1, rt+2, at+3, at+4, rt+4, at+5, rt+5, st+6, rt+6, at+7, at+8, rt+8, st+9} ! {st+1, st+2, at+2, st+3, st+4, st+5, st+7, st+8}
{at+1, rt+1, st+2, at+3, rt+3} ! {st, at, rt, at+1, at+3, st+4}
{at, at+1, st+2, at+2, at+3, at+4, at+5, rt+5, at+6, rt+6, at+7, st+8, at+8} ! {st, st+1, st+3, st+4, st+5, st+6, st+7, st+8, st+9}
{st, st+1, at+1, st+2, at+2, st+3, st+4} ! {st, at, st+1, st+2, at+2}

Stage-3

{at, at+1, at+3, rt+3, rt+4, at+5, at+7, rt+7, st+8, at+8} ! {st, st+1, st+2, st+3, st+4, at+4, st+5, at+5, rt+5, st+6, at+6, rt+6, st+7, st+9}
{at, at+1, at+3, rt+3, at+5, at+7, st+8, at+8} ! {st, at, st+1, at+2, st+3, st+4, at+4, st+5, st+6, at+6, st+7, st+9}
{at, rt, rt+2, st+3, at+3, rt+3, rt+4} ! {st, st+1, at+1, st+2, at+2, at+3, st+4, st+5}
{at, at+1, rt+3, at+4, rt+4, at+5, at+7, rt+7, st+8} ! {st, rt, st+1, st+3, st+4, st+5, st+6, at+6, st+7, st+8, st+9}
{st, at, rt, rt+1, at+2, rt+2, st+3, at+3, rt+3, st+4, st+5} ! {at, at+1, rt+1, at+2, rt+3}

Stage-4

{rt, rt+1, at+2, rt+2, st+3, at+3, rt+3, st+4, st+5} ! {at+2, rt+3, at+4}
{st, at, rt+1, at+2, rt+2, st+3, at+3, rt+3, st+4, st+5} ! {at, at+1, at+2, rt+3, at+4}
{at, at+1, at+3, rt+3, st+4} ! {st+1, rt+1, st+2, at+2, rt+2, st+3}
{st, at, rt, rt+1, at+2, st+3, at+3, rt+3, st+4, st+5} ! {at, at+2, rt+3, at+4}
{st+2, at+2, at+3} ! {st, at, at+2, st+3, at+3, st+4}

Stage-5

{at+1, rt+1, st+2, at+2, rt+2, at+3, rt+3} ! {st, at, rt, at+1, rt+1, at+2, st+3, at+3}
{at, rt, rt+1, at+2, rt+2, st+3, at+3, rt+3, rt+4} ! {st, st+1, at+1, st+2, at+2, at+3, st+4, st+5}
{at, at+1, at+3, rt+3, at+4, rt+4, at+5, at+7, rt+7, st+8, at+8} ! {st, rt, st+1, st+2, st+3, st+4, st+5, at+5, st+6, at+6, rt+6, st+7, st+8}
{at, at+1, st+2, at+3, rt+3, at+4, at+5, st+6, at+7, st+8, at+8} ! {st, st+1, st+2, at+2, st+3, st+4, at+4, st+5, st+6, st+7, rt+7, rt+8}
{st, at, rt, rt+1, at+2, st+3, at+3, rt+3, st+5} ! {at, at+2, rt+3, at+4}

31

	Introduction
	Problem Formulation and Background
	Automated Auxiliary Loss Search
	Search Space Design
	Search Strategy
	Search Space Pruning
	Evolution Procedure

	Evolution and Searched Results
	Evolution on Training Environments
	Searched Results: A2-winner

	Generalization Experiments
	Analysis of Auxiliary Loss Functions
	Related Work
	Conclusion and Future Work
	Algorithm
	Examples of Loss Functions
	Implementation Details
	Architecture
	State Encoder Architectures
	Siamese Network

	Loss Operators
	Evolution Strategy
	Training Details
	Hyper-parameters in the Image-based Setting
	Hyper-parameters in the Vector-based Setting

	Baselines Implementation

	Additional Experiment Results
	Search Space Pruning
	Learning Curves for A2LS on Image-based DMControl
	Effectiveness of AULC scores
	Comparing Auxiliary Loss with Data Augmentation
	Evolution on Vector-based RL
	Encoder Architecture Ablation for Vector-based RL
	Visualization of Loss Landscape
	Histogram of Auxiliary Loss Analysis
	Comparing A2-winner with Advanced Human-designed Auxiliary Losses
	The Trend of Increasing Performance during Evolution

	Search Space Complexity Analysis
	Top-performing Auxiliary Losses
	A2-winner and A2-winner-v
	During Evolution

