
Neural-Symbolic Entangled Framework for Complex
Query Answering

Zezhong Xu1∗, Wen Zhang1∗, Peng Ye1, Hui Chen3, Huajun Chen1,2†
1Zhejiang University & AZFT Joint Lab for Knowledge Engine, China
2Hangzhou Innovation Center, Zhejiang University, 3Alibaba Group
{xuzezhong, zhang.wen, yep, huajunsir}@zju.edu.cn,

weidu.ch@alibaba-inc.com

Abstract

Answering complex queries over knowledge graphs (KG) is an important yet chal-
lenging task because of the KG incompleteness issue and cascading errors during
reasoning. Recent query embedding (QE) approaches embed the entities and rela-
tions in a KG and the first-order logic (FOL) queries into a low dimensional space,
answering queries by dense similarity search. However, previous works mainly
concentrate on the target answers, ignoring intermediate entities’ usefulness, which
is essential for relieving the cascading error problem in logical query answering. In
addition, these methods are usually designed with their own geometric or distribu-
tional embeddings to handle logical operators like union(∨), intersection(∧), and
negation(¬), with the sacrifice of the accuracy of the basic operator – projection,
and they could not absorb other embedding methods to their models. In this work,
we propose a Neural and Symbolic Entangled framework (ENeSy) 3) for complex
query answering, which enables the neural and symbolic reasoning to enhance
each other to alleviate the cascading error and KG incompleteness. The projection
operator in ENeSy could be any embedding method with the capability of link
prediction, and the other FOL operators are handled without parameters. With
both neural and symbolic reasoning results contained, ENeSy answers queries
in ensembles. ENeSy achieves the SOTA performance on several benchmarks,
especially in the setting of training model only with the link prediction task.

1 Introduction

People built different Knowledge Graphs, such as Freebase [4], YAGO [13], and Wordnet [11], to
store complex structured information and knowledge. The facts in KG are usually represented in the
form of triplets, e.g., isCityOf(New York, USA). KGs have been widely applied in various intelligent
systems such as question answering and natural language understanding. One of the key tasks on KG
reasoning is complex query answering which involves answering FOL query with logical operators
including existential quantification (∃), conjunction(∧), disjunction(∨), and negation(¬).

Given a question "Who won the Turing Award in developing countries?", as illustrated in Figure 1, it
could be converted to a FOL query, and a computation graph can be generated with the query. Each
node in the computation graph represents an entity or an entity set, while each edge represents a
logical operation. Answering these queries is challenging since not all the answers could be directly
identified by traversing the KG because of the incompleteness of KG. To address this problem, several

∗Equal Contribution.
†Corresponding Author.
3Source code of ENeSy is available at https://github.com/zjukg/ENeSy.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

𝑞𝑞 = 𝑉𝑉?.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Developing_Country,𝑉𝑉?𝑞𝑞 = 𝑉𝑉?.∃ 𝑉𝑉:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Developing_Country,𝑉𝑉
∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉,𝑉𝑉? ∧𝑊𝑊𝐶𝐶𝐶𝐶(Turing_Award,𝑉𝑉?) 𝑉𝑉? = {China,India,Sri Lanka,...}

AnswerAnchor Entity Predicted EntityVariable Embedding Projection Neural Symbolic Entangled

A1

r1 r2
r2

r3
embedding space

A2

Developing
Country

A2 : Turing
Award

A1 : r1: Contain r2: Citizen

r3 : Win

(A) Computation Graph (B) Neural Symbol Entangled Reasoning

Figure 1: An example of answering a complex graph query by using the ENeSy. (A): FOL query and
its computation graph for the question ’Who won the Turing Award in developing countries?’. (B):
ENeSy uses neural and symbolic ways to handle projection separately, and the results are entangled
to enhance each other to alleviate the problem of cascading error and incompleteness of KG. The
logic operator ∧, ∨, and ¬ are supported with symbolic reasoning.

QE methods [9, 14, 15, 6] are proposed which encode entities and the query to a low-dimensional
embedding space and the logical operators are also parameterized. Following the corresponding
computation graph, the query embedding could be computed step by step. The target answers are
selected according to the distance between the final embedding and candidate entity embedding.

Although the query embedding methods are effective for solving the incompleteness of KG, several
limitations still exist. Firstly, the role of intermediate entities remains largely unexamined which we
argue plays a significant role in obtaining the target answers since besides incompleteness, cascading
error also influences the accuracy of complex queries. Existing works only pay attention to the
target answers, but for multi-hop reasoning, the intermediate entities could not be ignored. Secondly,
previous works propose different geometric shapes or distribution embedding to support more logical
operators. For instance, Query2Box (Q2B) embed queries to boxes and can handle intersection(∧),
while ConE [26] and BetaE [15] embed query with cone embedding and beta distribution to further
support negation(¬). Although the logical operators are supported with their own embedding shape,
the performance of the basic operator, projection, is not satisfying. For example, the accuracy of Q2B
on one projection query is worse than TransE [5] according to the Q2B paper [14]. Few studies have
investigated generalizing existing embedding models, such as TransE and RotatE which achieve good
performance on link prediction, to the complex query.

In this paper, we propose a neural symbolic entangled model, named ENeSy, which enables embed-
ding and symbolic reasoning to enhance each other. The embedding results influence the symbolic
results to solve the KG incompleteness while symbolic results could revise embedding results by
alleviating the problem of cascading error in multi-hop reasoning. Our approach has the following
important advantages: (1) ENeSy can generalize KG embedding methods to answering complex
queries, and it could not only use the classic KGE algorithm like TransE, but also the projection
operator of existing query embedding methods could be employed. (2) The logical operators except
for projection (including ∧, ∨, ¬) are not parameterized so ENeSy could be trained with only link
prediction task since meaningful complex query data might be hard to obtain in the real world.

The experimental results prove that our model outperforms existing complex query answering methods
over standard knowledge graphs: FB15K-237 [18] and NELL-995 [22]. The performance, which is
trained with link prediction, is also competitive to or better than the baselines trained with complex
queries. The analysis of the model proves the effectiveness of neural and symbolic entanglement in
solving the problem of cascading error and KG incompleteness with our framework.

2 Related Work

2.1 Knowledge Graph Embedding

A great deal of previous research into KG has focused on using machine learning to reason with
the embedding method. The effects have been shown in TransE [5], TransH [20], TransG [21],

2

ComplEx [19], ConvE [8], DistMult [23] and RotatE [17]. These approaches aim to embed the
entities and relations to a continuous vector space so that one-hop reasoning can be answered with
link prediction. Different methods map the entities and relations into vector space with different
distributions. Meanwhile, the rule and path-based models [10, 25, 24, 16], try to use learned patterns
of path or rules to do multi-hop reasoning.

However, KGE models lack the ability to handle complex logical operators like conjunction (∧),
disjunction (∨), and negation (¬), and they are not easy to generalize to multi-hop queries. In contrast,
our framework can alleviate the problem of cascading error during multi-hop reasoning and also
support all of the logical operators above so that any KGE models could be used to answer the
complex query.

2.2 Embedding for Complex Query Answering

To answer logical queries, some works [9, 14, 26, 2, 15, 6] aims to encode the complex query into a
space that proposes various geometric shape to represent the entity set and support complex query
reasoning. Generally, a FOL query is converted to a computation graph with a directed acyclic
graph (DAG) structure with which the query representation could be iteratively computed using
the logical operation in embedding space. GQE (graph-query embedding) [9] consider conjunction
operator (∧) with vector representation. Q2B (query to box) [14] replace the vector embedding
with hyper-rectangles since it holds the idea that box embedding can represent sets of entities better
and define the disjunctive norm form (DNF) to support the disjunction (∨) operator. More recently,
BetaE [15] models the query and entities with beta distributions which could support the negation (¬)
operator. CQD [1] applies beam search to an embedding model. ConE [26] proposes a new geometry
model that embeds entities with cones embedding. FuzzQE [6] satisfies the axiomatic system of fuzzy
logic to reason. Q2P (Query2Particles) [2] encodes each query into multiple vectors. GNN-QE [27]
concentrates on the interpretation of the variables along the query path.

Most of these methods usually design their geometric or distribution embedding to support logical
operators but the effectiveness of the projection operator, which is the most basic operator, has not
been discussed. Meanwhile, they only concentrate on the final answers as labels but ignore the
intermediate entities during the query process which are also important for reasoning.

3 Preliminaries

In this section, we introduce the task of complex query answering on KG. Given a set of entities V
and a set of relations R, a knowledge graph G is defined as (V,R, T) where T is the set of triplets. A
triplet is defined as r(ei, ej) where ei ∈ V, ej ∈ V, r ∈ R if the relation r exists between ei and ej .

First-Order Logic. The purpose of complex query answering on KG is obtaining the target answer
of FOL query which is defined with existential quantifiers(∃), conjunction (∧), disjunction (∨), and
negation (¬). In a FOL query q, the anchor nodes are represented as a set Va ⊆ V , existential
quantified variables nodes are represented as V1, V2, . . . Vk and the target answer nodes is a variable
V?. Following the betaE [15], we use the FOL query in its disjunctive norm form, with which the
query can be represented as a disjunction of several conjunctions. Finally, the query can be formulated
as:

q[V?] := V? : V1, V2, . . . , Vk : c1 ∨ c2 ∨ · · · ∨ cn.

where ci is a conjunction of several literals aij , i.e., ci = aij ∧ · · · ∧ aim, and aij is an atom or
negation of an atom: r(ea, V) or ¬r(ea, V) or r(V ′, V) or ¬r(V ′, V) where ea ∈ Va, V, V ′ ∈
{V1, V2, . . . , Vk, V?} and V ̸= V ′ in an atom.

Computation Graph and Logical Operators As illustrated in figure 1, for a given FOL query, we
can represent the whole process of reasoning as a computation graph. Each node corresponds to a
variable V or an anchor node ea and each edge represents a logical operation over the entity sets
which includes the following operators:

• Relational Projection: Given an entity set S ⊆ V and a relation r ∈ R, the projection
operator return a new entity set S ′ that contains the entities related to at least one of entity
in S: S ′ = {e′ ∈ V|∃r(e, e′), e ∈ S}.

3

• Intersection: Given sets of entities {S1, S2, . . . , Sn} where Si ⊆ V , the intersection
operator returns the intersection of these sets

⋂n
i=1 Si.

• Union: Given sets of entities {S1, S2,Sn} where Si ⊆ V , the union operator returns
the union of these sets

⋃n
i=1 Si.

• Complement: Given a set of entities S, the complement operator returns its complement
S ′ = V − S.

4 Methodology

In this section, we first introduce the neural and symbolic entangled projection operator in detail. Then
we define symbolic-based logical operators and describe the ensemble prediction using embedding
and symbolic results. Finally, the objective function and the learning procedure will be represented.

4.1 Neural and Symbolic Entangled Reasoning

Em
be

dd
in

g
Sy

m
bo

lic

PN

integrate

aggregate

PS

Intersection() Union()

Negation()

di
st

an
ce

 v
al

ue

Projection()

…

Figure 2: ENeSy’s logical operators and the details about neural symbolic entanglement. PN means
neural projection and PS means symbolic projection.

In our work, there are two ways to represent entities and relations. The neural part is just like the
KGE or query embedding method we adopt, and rotatE [17] is chosen in this paper which embeds
entities and relations to a complex space Ck. For the symbolic part, an entity and a relation are
encoded as a one-hot vector and an adjacent matrix, respectively.

Specifically, given the KG G, entity set V and relation set R, an entity e’s embedding representation
is a vector ve ∈ Ck and its symbolic representation is encoded as a one-hot vector pe ∈ {0, 1}1×|V|.
Each relation r is modeled as a vector vr ∈ Ck and the corresponding symbolic representation is an
adjacent matrix Mr ∈ {0, 1}|V|×|V| where Mij

r = 1 if r(ei, ej) ∈ G, else Mij
r = 0.

Neural projection follows the embedding method, we use rotatE [17] here as an example. For a
projection query (h, r, ?), the functional mapping with relation r is an element-wise rotation from h
to the target answer t:

vt = vh ◦ vr,where|vr| = 1 (1)

and ◦ means Hadamard product. This step gets the predicted embedding which could be used to
search for the target answers.

Symbolic projection is conducted with matrix multiplications followed TensorLog [7]:

pt = g(phMr)
⊤ (2)

where pt is a multi-hot vector that represents the entities linked with h via relation r, ⊤ means
transposing the vector and g is a normalization function. Particularly, we consider the function as
g(x) = x/sum(x). This step gets the target entities by traversing KG.

4

Entangled projection tries to take advantage of these above two results. Since embedding prediction
suffers from the cascading error but could obtain the answer not linked with h, while traversing
KG could not get the answers which lack the edges to the head entity but the searched answers are
convincing, ENeSy combines them in an entanglement way as illustrated in Figure 2. Specifically,
the similarity between the predicted embedding vt and all the entities are calculated first. We define
the similarity function as:

S(x,y) = γ − ∥x− y∥1 (3)
where γ denotes the margin. The L1 norm function can be changed to any distance function. We
define a new vector representation with these similarity values. After softmax function, we get a
inferred vector p′

t ∈ [0, 1]1×|V| which is generated from vt. With p′
t, a new symbolic vector p′′

t is
obtained by the following step:

p′′
t = g(pt + p′

t) (4)
This new symbolic vector p′′

t integrates the information from the embedding vt with symbolic
reasoning results pt. This procedure adds more entities, which might be the answer to the query
which are not linked with h, to p′′

t . This enhancement eliminates the limitation of KG incompleteness
of symbolic reasoning to some extent. Each element of p′′

t could be regarded as the probability of
the corresponding entity. Let’s assume the entity set with non-zero probability as St, a aggregation
function is employed to transfer the symbolic vector p′′

t and the embedding of entities in St to a new
embedding vector v′

t with an MLP function:

v′
t =

|St|∑
i=1

pi′′
t MLP(vei)vei , ei ∈ St (5)

where pi′′
t is the corresponding probability of ei in pt. This new embedding v′

t aggregates the
symbolic answer, Note that although we use the rotatE as the neural function, any other sufficiently
expressive KG embedding model or the projection operator of any other query embedding models
could be employed with our framework in theory.

4.2 Neural and Symbolic Ensemble Answering

With the symbolic vector p, the logical operator intersection(p1 ∧ p2), union(p1 ∨ p2) and negation
(¬p) could be defined as follows:

p1 ∧ p2 : g(p1 ◦ p2), p1 ∨ p2 : g(p1 + p2 − p1 ◦ p2), ¬p : g(
α

|V|
− p)

where ◦ is the Hadmard product and α is a hyperparameter. After getting symbolic vector with
these logical operators, the MLP function used in Equation (5) is employed to get an aggregated
embedding.

The embedding and symbolic vector can both be used to get the final answers. For the neural part, the
similarity between the embedding vector v and all the entities e ∈ V is computed with Equation (3),
which is used to rank the candidate answers. For the symbolic part, since the vector p represents the
probability of each entity, the answers can be directly obtained with ranked elements of p. To make
the ensemble using the two type answers, we set λ to get a combined result with v and p as:

a = λp+ (1− λ)Softmax(Concat
∀e∈V

(S(v,ve))) (6)

where λ is the weight to balance the influence of v and p and Concat is a function mapping the
similarity between all entities e ∈ V and v to a vector. The final answers can be determined with
g(a) ∈ [0, 1]1×|V|.

4.3 Learning Procedure

Given a query q with answer entity set Sq , after getting the final answer embedding vq and symbolic
vector pq , we construct two following objective loss functions:

L1 = −logσ(−S(vq,ve))−
1

n

n∑
i=1

logσ(S(vq,ve′)) (7)

L2 = −logσ(pe · log[p⊤
q , θ]+) (8)

5

where e ∈ Sq is an answer of q, e′ /∈ Sq is a negative answer which is sampled randomly. σ is the
sigmoid function, · is dot-product and [x, θ]+ denotes the maximum value between each element of
x and θ, which is a threshold.

Meanwhile, the MLP function in Equation (5) needs to be pretrained individually. Since this function
is employed to convert a symbolic vector to an embedding vector, and in the projection operator, we
have p′

t which is generated from vt, MLP could be used to convert p′
t back to vt. Based on this, we

also design a loss function to train this function as follows:

L3 = −logσ(−S(vt,

|S′
t|∑

i=1

pi′
t MLP(vei)vei)), ei ∈ S ′

t (9)

where S ′
t is the corresponding entity set whose probabilities are not zero in p′

t. In the first step of the
training process, the symbolic part is not included, and only the embedding of entities and relations
will be trained with the link prediction task. Next, in the second step, the completed projection
operator will be trained still by link prediction and the loss function is L = L1 + L2 + L3. In theory,
the model could answer complex queries after the above two steps, but it could also be fine-tuned
with complex query data using the loss function L = L1 + L2.

5 Experiment

In this section, we evaluate the ability of ENeSy on answering the complex query on several KG
benchmark datasets. The experiment results demonstrate that: 1) The performance of ENeSy is
excellent; 2) We can train ENeSy with only link prediction task to answering complex queries; 3)
The embedding and symbolic parts of our model can enhance each other.

5.1 Dataset and Experiment Setting

5.1.1 Datasets and Evaluation Protocol

We perform the experiments on two benchmarks, FB15K-237 [18] and NELL-995 [22]. FB15K-237
is a subset from Freebase [3] and removes the inverse relation. NELL-995 is a dataset constructed
from high-confidence facts of NELL [12].

The focus of our experiment is answering FOL queries on incomplete KGs so we only evaluate the
ability of models to obtain the answers that could not be discovered by traversing KGs. Specifically,
with the standard training, validation, and testing set, the edges in KG could be divided into three
parts, which are training edges, validation edges, and test edges. The corresponding graph Gtrain,
Gvalid and Gtest are build with training edges, training + validation edges and training + validation +
test edges, respectively, so we have Gtrain ⊂ Gvalid ⊂ Gtest. We only use the queries whose answer
sets Atrain, Avalid and Atest on different graph have Atrain ⊂ Avalid ⊂ Atest. The answers
in Avalid − Atrain could be used to tune the hyper-parameters and results are reported with the
answer entities in Atest −Avalid. This means we only evaluate on entities that are not the answers
to the training query set and the model has not seen them. Meanwhile, these answers could not
be found with graph traversal on Gtrain/Gvalid. For each answer of a test query, we calculate the
Mean Reciprocal Rank (MRR) as evaluation metrics, and the results are reported with filter setting
as TransE [5], in which all other correct answers are filtered out before calculating the rankings of
answers.

The queries sampled from these two benchmarks are provided by BetaE [15] which is an expansion
of the version provided by Q2B [14]. The query set contains 14 different types of query structures
are shown in Figure 3. In order to further verify the generalization ability of the models, only 5
conjunctive queries (1p/2p/3p/2i/3i) and 5 query types with negation (2in/3in/inp/pni/pin) are used to
train the model, while the other four query types (2u/up/ip/pi) do not appear in the training process
and are directly evaluated when testing, which makes this task more challenging.

5.1.2 Baseline

We consider four baselines as the compared methods in the following sections: Graph Query Embed-
ding (GQE) [9] embeds the query into vectors, which could handle the projection and conjunction

6

pininp

3in

2in1p 2p 3p 2i 3i

ip pnipi 2u up

Anchor Entity Variable Answer Projection Intersection Union Negation

Figure 3: The query structure of all queries used for training and evaluation. Namely, the p, i, u and n
stands for the projection, intersection, union and negation, respectively.

Table 1: The MRR results of FOL queries on FB15K-237 and NELL-995, and the models are trained
with only link prediction task. The Avgp and Avgn are the average MRR of Existential Positive First
Order (EPFO) queries (query with ∃, ∨ or ∧ and without ¬) and queries with ¬, respectively. N/A
means not available.

Model Avgp Avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15K-237
GQE 17.7 N/A 41.6 7.9 5.4 25.0 33.6 16.3 10.9 11.9 6.2 N/A N/A N/A N/A N/A
Q2B 18.2 N/A 42.6 6.9 4.7 27.3 36.8 17.5 11.1 11.7 5.5 N/A N/A N/A N/A N/A

BetaE 15.8 0.5 37.7 5.6 4.4 23.3 34.5 15.1 7.8 9.5 4.5 0.1 1.1 0.8 0.1 0.2
FuzzQE 21.8 6.6 44.0 10.8 8.6 32.3 41.4 22.7 15.1 13.5 8.7 7.7 9.5 7.0 4.1 4.7
ENeSy 23.4 8.1 44.5 10.8 7.7 33.2 48.4 25.8 18.8 13.4 7.6 9.6 10.2 7.1 5.8 7.8

NELL-995
GQE 21.7 N/A 47.2 12.7 9.3 30.6 37.0 20.6 16.1 12.6 9.6 N/A N/A N/A N/A N/A
Q2B 21.6 N/A 47.6 12.5 8.7 30.7 36.5 20.5 16.0 12.7 9.6 N/A N/A N/A N/A N/A

BetaE 19.0 0.4 53.1 6.0 3.9 32.0 37.7 15.8 8.5 10.1 3.5 0.1 1.4 0.1 0.1 0.1
FuzzQE 27.1 7.3 57.6 17.2 13.3 38.2 41.5 27.0 19.4 16.9 12.7 9.1 8.3 8.9 4.4 5.6
ENeSy 28.7 9.4 58.8 17.4 12.8 39.1 48.9 29.1 24.1 16.0 12.4 10.9 8.2 11.0 8.4 8.6

queries. With DNF setting, it could also support the union operator. Query2Box (Q2B) [14] uses
box embedding to represent the query and entity sets and could answer existential positive first-order
(EPFO) logic queries. Beta Embedding (BetaE) [15] models query as Beta Distributions which
enables it to support negation(¬) operation. CQD [1] applies beam search to an embedding model
but it could not support the negation operator. FuzzQE [6] uses fuzzy logic to embed the query.

The MRR results of these baselines are from the BetaE [15] and FuzzQE paper [6]. The first two
methods can’t handle negation operation and among these models, only FuzzQE can be trained with
only link prediction tasks and answer the complex query.

5.1.3 Training Procedure and Experiment Settings

To train the model, we first only train the embedding of relations and entities with 1p queries which
is similar to the pure KG embedding training. Second, the projection operator of ENeSy is trained on
1p queries. Meanwhile, the queries of all structures can be used to fine-tune the model.

We implement our model with Pytorch framework and train our model on RTX3090 GPU. The
ADAM optimizer was used to parameter tune with a learning rate of 0.0001 that will decrease during
the training process. In the second step, the learning rate is set to be 10−5 to train the model with 1p
queries, and in the fine-tuning process, the learning rate starts with 2 ∗ 10−7. We set the embedding
dimension of the entity and relation to 1024, respectively. The hidden state dimension of MLP is
1024. The training batch size is {64, 16} for FB15K-237 and NELL-995, while the negative sample
size is {128, 32}. The margin γ used in similarity computation is 24. θ used as a threshold is 10−10.
α is set to be 10. The choices of λ which is used for ensemble prediction are based on the results
of valid set for each query type. The best hyperparameter setting is selected by the MRR metric on
the valid set. We run the experiment several times and find random seed has almost no effect on the
result, but in the fine-tuning process, the learning rate influence the accuracy.

7

Table 2: The average MRR results of FOL queries on FB15K-237 and NELL-995 , and the models
are trained with complex query data.

Model Avgp Avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15K-237
GQE 16.3 N/A 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 N/A N/A N/A N/A N/A
Q2B 20.1 N/A 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 N/A N/A N/A N/A N/A

BetaE 20.9 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
CQD 21.7 N/A 46.3 9.9 5.9 31.7 41.3 21.8 15.8 14.2 8.6 N/A N/A N/A N/A N/A

FuzzQE 24.2 8.5 42.2 13.3 10.2 33.0 47.3 26.2 18.9 15.6 10.8 9.7 12.6 7.8 5.8 6.6
ENeSy 24.5 8.5 44.7 11.7 8.6 34.8 50.4 27.6 19.7 14.2 8.4 10.1 10.4 7.6 6.1 8.1

NELL-995
GQE 18.6 N/A 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 N/A N/A N/A N/A N/A
Q2B 22.9 N/A 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 N/A N/A N/A N/A N/A

BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
CQD 28.4 N/A 60.0 16.5 10.4 40.4 49.6 28.6 20.8 16.8 12.6 N/A N/A N/A N/A N/A

FuzzQE 29.3 8.0 58.1 19.3 15.7 39.8 50.3 28.1 21.8 17.3 13.7 8.3 10.2 11.5 4.6 5.4
ENeSy 29.4 9.8 59.0 18.0 14.0 39.6 49.8 29.8 24.8 16.4 13.1 11.3 8.5 11.6 8.6 8.8

5.2 Trained with Link Prediction

Since meaningful FOL queries are usually not available in real scenes, we first report the results of
models which are trained with only 1p query data, which also can be seen as a link prediction task.
The MRR results are shown in Table 1.

As the table shows, compared with pure embedding methods like GQE, Q2B, and BetaE, the
performance of ENeSy significantly improves. Since the operators except for the projection of these
methods are parameterized, the ability to handle complex queries is limited, but our model can be
generalized to more complex query structures. Even though, the improvement on 1p query proves
the advantages of generalizing other KG embedding models to solve this problem. Compared with
FuzzQE, which could also be trained with link prediction, our model improves the average MRR of
EPFO by about 2.6%(relatively 11.9%) on FB15K-237 and 1.6%(relatively 5.9%) on NELL-995. For
the queries with negation, ENeSy provides a more absolute improvement, which is 1.5%(relatively
24.6%) and 2.1%(relatively 28.8%) on FB15K-237 and NELL-995. We believe the reason for this
enhancement is that the symbolic representation can indicate the probability of each entity better.

5.3 Trained with Complex Query

The results of models trained with query data are also reported in Table 2. Compared with the average
MRR in Table 1, the performance of most baselines improves a lot because of the labeled data of
complex queries, but ENeSy still achieves the best performance on the average MRR of EPFO query
and negation query. Moreover, our model could get closer results with different training settings.
Specifically, the average MRR decreases by about 4.7% and 2.4% for EPFO and 5% and 4.1% for
negation queries on FB15K-237 and NELL-995 respectively when trained with link prediction. For
FuzzQE, the results decline about 9.9%, 7.5% for EPFO, and 22.4%, 8.8% for query with negation
on FB15K-237 and NELL-995, respectively. This proves the stronger robustness of our methods.
Note that though the 2p/3p results seem to be worse than FuzzQE, we can replace RotatE with the
projection operator of FuzzQE, and the results should be the same in theory. All the models do not
get good results on the negation query. We think it’s because, after the negation operation, most of
the entities in KG will be included, which makes the reasoning hard. Maybe a better way is only
considering the entities which belong to the same type as the entities before the negation operation.

5.4 Analysis of ENeSy

To get deep insights into the neural and symbolic reasoning part of ENeSy, we investigate their
impact in this section. In what follows, we first explore how symbolic affects the embedding results.
We then examine the influence of embedding on symbolic. Finally, the effect of ensemble prediction
is discussed. The results are based on FB15K-237, and the situation on NELL-995 is similar.

8

15.7

27.4

10.1

6.3

17.5

31.2

10.2

7.5

17.9

31.6

10.5

8.1

0

10

20

30

q(∃) q(∧) q(∨) q(┐)

ENeSy_E ENeSy_S ENeSyENeSyE ENeSyS ENeSy

0

10

20

30

42.8

12

6.9
5.1

3.3

41.9

13.1

10.1

7 7.1

-10

20

50

80

110

0

10

20

30

40

1p 2u 2p up 3p

KGE ENeSy_EENeSyE

1p(1) up(3)2p(2)2u(2) 3p(3)

Increase

0

10

20

30

40

20

50

80

110

-10
0.1 0.1 0.1 0.1

17.5

31.2

10.2

7.5

0

10

20

30

q(∃) q(∧) q(∨) q(┐)

Traverse ENeSy_SENeSyS

0

10

20

30

M
R

R

M
R

R

M
R

R%

(a) (b) (c)

Figure 4: The figure of model analysis. (a): The MRR results and increase scale of ENeSyE and
pure KGE models. The query types are sorted by the query length. (b): The average MRR results of
ENeSyS and traversing. The queries are grouped by their operator. q∃ includes all of the query type,
q∧ includes 2i/3i/pi/ip, q∨ includes 2u/up and q¬ includes 2in/3in/inp/pin/pni. (c): The average MRR
results of ENeSyE , ENeSyS and ENeSy, queries are grouped in the same way as (b).

5.4.1 Q1: Do symbolic results assist neural reasoning in cascading error?

We compare the pure KE embedding model, which is RotatE in this experiment, with the embedding
results of ENeSy without ensemble using, which we denote as ENeSyE . For fairness of training
data, after the KGE model has converged which is trained with 1p query, ENeSyE is trained with
1p data rather than complex query data based on the KGE model. Since the KGE method could not
support logical operators, the results of 1p/2p/3p query and the 2u/up with DNF are reported. The
MRR results and the ratio of improvement are shown in Figure 4 (a). The query types are listed
below the horizontal axis and we sort them by the length of the query which is the longest distance
from the anchor nodes to the target node in the computation graph, and it’s marked after the query
type. Based on the similar performance on 1p query, the MRR results of more complex queries
significantly improve with query length increases. This comparison demonstrates that the cascading
error, which is the main limitation of multi-hop embedding reasoning, has been alleviated with the
symbolic assistant.

5.4.2 Q2: Does embedding results assist symbolic reasoning in KG incompleteness?

The symbolic MRR results of ENeSy without ensemble, denoted as ENeSyS , and pure symbolic
results are shown in Figure 4 (b). We divided the query types into four groups according to the
operator they have. Since we only evaluate the generalization ability of models with answers that
could not be found by simply traversing KG, the traversing results are nearly zero (since the result is
MRR, the number won’t be an absolute zero), while the ENeSyS achieve better results than most
baselines. The reason for this significant improvement from zero to almost SOTA performance is in
the entangled process, ENeSy successfully captures the information from embedding which makes
symbolic results include the answers that could not be obtained directly. In summary, the experiment
proves that the KG incompleteness problem for symbolic reasoning can be solved in our framework.

5.4.3 Q3: Is ensemble prediction of neural and symbolic results useful?

Ensemble prediction enables us to fuse the symbolic and reasoning results. To verify its effectiveness,
we compare the performance of ENeSyE , ENeSyS and ENeSy trained with 1p queries. The MRR
results are shown in Figure 4 (c). The queries are grouped in the same way as Q2. As the figure
illustrates, all the results of different group queries improve with ensemble using. Specifically, the
average MRR of the different groups increased by about 14.0%, 15.3%, 4.0%, 28.6% and 2.3%,
1.3%, 2.9%, 8.0% compared with ENeSyE and ENeSyS , respectively, which certifies that the two
parts could not only enhance each other in the reasoning process but also can be combined in the
final results.

9

6 Conclusion

In this paper, we proposed ENeSy, a neural-symbolic entangled framework for answering complex
logical queries over KGs. This model could generalize any embedding methods to the complex query
and use the symbolic reasoning results to alleviate cascading error, while the symbolic part also
benefits from neural reasoning to solve the problem of KG incompleteness. The ENeSy supports all
the FOL operations and can be trained with only link prediction tasks. Experimental results show that
our model achieves state-of-the-art performances in answering FOL queries with strong robustness,
and each part is tightly entangled to enhance the other.

Acknowledgements

This work is funded by NSFCU19B2027/91846204.

10

References
[1] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answer-

ing with neural link predictors. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[2] Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2particles: Knowledge
graph reasoning with particle embeddings. CoRR, abs/2204.12847, 2022.

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages 1247–1250, 2008.

[4] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li
Wang, editor, Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 1247–1250. ACM,
2008.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

[6] Xuelu Chen, Ziniu Hu, and Yizhou Sun. Fuzzy logic based logical query answering on
knowledge graph. CoRR, abs/2108.02390, 2021.

[7] William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: A probabilistic database
implemented using deep-learning infrastructure. J. Artif. Intell. Res., 67:285–325, 2020.

[8] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[9] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
logical queries on knowledge graphs. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 2030–2041, 2018.

[10] Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong Sun, Siwei Rao, and Song Liu. Modeling
relation paths for representation learning of knowledge bases. In Lluís Màrquez, Chris Callison-
Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 705–714. The Association for Computational Linguistics, 2015.

[11] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

[12] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr., Partha Pratim Talukdar, Justin
Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew Gardner, Bryan Kisiel, Jayant
Krishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Ndapandula Nakashole, Em-
manouil A. Platanios, Alan Ritter, Mehdi Samadi, Burr Settles, Richard C. Wang, Derry Wijaya,
Abhinav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm Greaves, and Joel Welling. Never-
ending learning. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages
2302–2310. AAAI Press, 2015.

[13] Thomas Rebele, Fabian M. Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey, and
Gerhard Weikum. YAGO: A multilingual knowledge base from wikipedia, wordnet, and
geonames. In Paul Groth, Elena Simperl, Alasdair J. G. Gray, Marta Sabou, Markus Krötzsch,
Freddy Lécué, Fabian Flöck, and Yolanda Gil, editors, The Semantic Web - ISWC 2016 - 15th
International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part
II, volume 9982 of Lecture Notes in Computer Science, pages 177–185, 2016.

11

[14] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs
in vector space using box embeddings. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[15] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[16] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM:
end-to-end differentiable rule mining on knowledge graphs. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 15321–15331, 2019.

[17] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph em-
bedding by relational rotation in complex space. In 7th International Conference on Learning
Representations, 2019.

[18] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In EMNLP, pages
1499–1509. The Association for Computational Linguistics, 2015.

[19] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In International Conference on Machine
Learning, pages 2071–2080, 2016.

[20] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[21] Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu. Transg : A generative mixture model for
knowledge graph embedding. CoRR, abs/1509.05488, 2015.

[22] Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel,
editors, Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages 564–573.
Association for Computational Linguistics, 2017.

[23] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In International Conference on
Learning Representations, 2015.

[24] Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 2319–2328, 2017.

[25] Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein,
and Huajun Chen. Iteratively learning embeddings and rules for knowledge graph reasoning. In
The World Wide Web Conference, pages 2366–2377. ACM, 2019.

[26] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings
for multi-hop reasoning over knowledge graphs. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 19172–19183, 2021.

12

[27] Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-symbolic models for
logical queries on knowledge graphs. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 27454–27478. PMLR, 2022.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1 and abstract.
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [No] There is

no potential negative societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
5.2, 5.3 and 5.4.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 5.2, 5.3
and 5.4.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section
5.1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.1

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.1
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

