
A Appendix

A.1 Plate Notations of Generative Models

Figure 2: The generative model of Fig. 1 (d)-(f). The generative models show how we compute data
likelihood for multiple-sample approaches, not how the image is actually generated in nature. For
clarity, we omit the parameters.

Fig. A.1 shows the generative models of Fig. 1 (d)-(f). Note that we have only one unique sample
of x inside the n plate, but it is repeated k times for IWAE, MS-NIC-MIX and k × l times for
MS-NIC-DMS. Similarly, k samples of ỹ is repeated l times and l samples of z̃ is repeated k times
for MS-NIC-DMS.

A.2 Proof on the Properties of MS-NIC-MIX and MS-NIC-DMS

In this section, we add the q(z̃|ỹ), q(ỹ|x) back to equations for clarity of the proof. This makes
the notations slightly different from Eq. 12 and Eq. 14. Note that divide by q(z̃|ỹ), q(ỹ|x) does not
effect the value of equation, and add log q(z̃|ỹ), log q(ỹ|x) does not effect the value of equation.

For MS-NIC-MIX to be a reasonably better approach to apply over [Ballé et al., 2018], we show that
LMIX
k satisfies following properties:

1. log p(x) ≥ LMIX
k

2. LMIX
k ≥ LMIX

m for k ≥ m

We can show 1. log p(x) ≥ LMIX
k by applying Jensen’s inequality twice:

LMIX
k = Eqϕ(z̃|x)[Eqϕ(ỹ1:k|x)[log

1
k

k∑
i

p(x|ỹi)p(ỹi|z̃)
q(ỹi|x) |z̃] + log p(z̃)− log q(z̃|x)]

≤ Eqϕ(z̃|x)[log(
1
k

k∑
i

Eqϕ(ỹ1:k|x)[
p(x|ỹi)p(ỹi|z̃)

q(ỹi|x) |z̃]) + log p(z̃)− log q(z̃|x)]

= Eqϕ(z̃|x)[log p(x|z̃) + log p(z̃)− log q(z̃|x)]
≤ log(Eqϕ(z̃|x)[

p(x|z̃)p(z̃)
q(z̃|x) ])

= log p(x)

(18)

We can show 2. LMIX
k ≥ LMIX

m for k ≥ m by borrowing the Theorem 1 from IWAE paper:

k ≥ m⇒ Eq(hi|x)[log
1
k

k∑
i

p(hi|x)p(hi)
q(hi|x) ] ≥ Eq(hi|x)[log

1
m

m∑
i

p(hi|x)p(hi)
q(hi|x) ] (19)

15



Applying Eq. 19 to the internal part of LMIX
k , when k ≥ m, we have:

LMIX
k = Eqϕ(z̃|x)[Eqϕ(ỹ1:k|x)[log

1
k

k∑
i

p(x|ỹi)p(ỹi|z̃)
q(ỹi|x) |z̃] + log p(z̃)− log q(z̃|x)]

≥ Eqϕ(z̃|x)[Eqϕ(ỹ1:m|x)[log
1
m

m∑
i

p(x|ỹi)p(ỹi|z̃)
q(ỹi|x) |z̃] + log p(z̃)− log q(z̃|x)]

= LMIX
m

(20)

For MS-NIC-DMS to be a reasonably better approach to apply over [Ballé et al., 2018] and MS-NIC-
MIX, we show that LDMS

k,l statisfies following properties:

1. log p(x) ≥ LDMS
k,l

2. LDMS
k,l ≥ LDMS

m,n for k ≥ m, l ≥ n

3. LDMS
k,l ≥ LMIX

k

4. LDMS
k,l → log p(x) as k, l → ∞, under the assumption that log

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) and

log
p(x|z̃j)p(z̃j)

q(z̃j |x) are bounded.

Similar to MS-NIC-DMS, we can show 1.log p(x) ≥ LDMS
k,l by applying Jensen’s inequality twice:

LDMS
k,l = Eqϕ(z̃1:l|x)[log

1
l

l∑
j

exp (Eqϕ(ỹ1:k|x)[log
1
k

k∑
i

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) |z̃j ])p(z̃j)/q(z̃j |x)]

≤ Eqϕ(z̃1:l|x)[log
1
l

l∑
j

exp log( 1k

k∑
i

Eqϕ(ỹ1:k|x)[p(x|ỹi)p(ỹi|z̃j)|z̃j ])p(z̃j)/q(z̃j |x)]

= Eqϕ(z̃1:l|x)[log
1
l

l∑
j

p(x|z̃j)p(z̃j)
q(z̃j |x) ]

≤ log 1
l

l∑
j

Eqϕ(z̃1:l|x)[
p(x|z̃j)p(z̃j)

q(z̃j |x) ]

= log p(x)
(21)

Also similar to MS-NIC-MIX, we can borrow conclusion from IWAE (Eq. 19) and apply it twice to
show 2. LDMS

k,l ≥ LDMS
m,n for k ≥ m, l ≥ n:

LDMS
k,l = Eqϕ(z̃1:l|x)[log

1
l

l∑
j

exp (Eqϕ(ỹ1:k|x)[log
1
k

k∑
i

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) |z̃j ])p(z̃j)/q(z̃j |x)]

≥ Eqϕ(z̃1:l|x)[log
1
l

l∑
j

exp (Eqϕ(ỹ1:m|x)[log
1
m

m∑
i

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) |z̃j ])p(z̃j)/q(z̃j |x)]

≥ Eqϕ(z̃1:n|x)[log
1
n

n∑
j

exp (Eqϕ(ỹ1:m|x)[log
1
m

m∑
i

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) |z̃j ])p(z̃j)/q(z̃j |x)]

= LDMS
m,n

(22)

With 2. LDMS
k,l ≥ LDMS

m,n for k ≥ m, l ≥ n holds, we can show 3. LDMS
k,l ≥ LMIX

k immediately as
LDMS
k,l ≥ LDMS

k,1 = LMIX
k .

To show 4. LDMS
k,l → log p(x) as k, l→∞, we first define intermediate variables Wk, M̃k,l,Mk,l:
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Wk = 1
k

k∑
i

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x)

M̃k,l =
1
l

l∑
j

p(x|z̃j)p(z̃j)
q(z̃j |x)

Mk,l =
1
l

l∑
j

exp (Eqϕ(ỹ1:k|x)[logWk|z̃j ])p(z̃j)/q(z̃j |x)

(23)

Under the assumption that log p(x|ỹi)p(ỹi|z̃j)/q(ỹi|x) is bounded, from the strong law of large
number, we have Wk

a.s.−−→ p(x|z̃j) (Eq. 24). Then we have E[logWk|z̃j ]→ log p(x|z̃j).

Wk
a.s.−−→ Eq(ỹi|x)[

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) |z̃j ] =

∫
q(ỹi|x)p(x|ỹi)p(ỹi|z̃j)

q(ỹi|x) dỹi = p(x|z̃j) (24)

Moreover, as E[logWk|z̃j ] → log p(x|z̃j), we have Mk,l → M̃k,l. This means that ∀ϵ >

0,∃k, l, s.t.|Mk,l− M̃k,l| < ϵ. And thus we have |E[Mk,l]−E[M̃k,l]| ≤ E[|Mk,l− M̃k,l|] < ϵ→ 0.
Then we have |E[Mk,l] − p(x)| ≤ |E[Mk,l] − E[M̃k,l]| + |E[M̃k,l] − p(x)| → 0, and thus
E[Mk,l]→ p(x). Finally we have E[logMk,l] = LDMS

k,l → log p(x).

A.3 Effects of Sample Size

When comparing the R-D performance of models trained with a single λ, we use R-D cost as our
metric. The R-D cost is simply computed as bpp +λ MSE, where bpp is a short of bits-per-pixel, and
MSE is a short of mean square error. The lower the R-D cost is, the better the R-D performance is.
Another way to interpret R-D cost is to view it as the ELBO with constant offset. Then the λ MSE is
connected to the log likelihood of a Gaussian distribution whose mean is the output of decoder and
sigma is determined by λ. Note that R-D cost is only comparable when λ is the same.

Tab. 7 shows the effect of sample size to MS-NIC. Moreover, we compare the naïve increase of batch
size versus multiple importance weighted samples. As shown by the table, increasing the batch size
×3− 16 only slightly affects the R-D cost (from 1.017 to 1.013). However, the MS-NIC-MIX can
achieve R-D cost of 0.9988 with sample size 8, and MS-NIC-DMS can achieve 0.9954 with sample
size 16. This means that MS-NIC is effective over the baseline and vanilla batch size increases. It is
also noteworthy that we have not observed inference model training failure as sample size increase.
While MS-NIC also suffers from gradient SNR vanishing problem, a sample size of 16 is probably
not large enough to make it evident. Limited by computational power, we can not raise sample size
by several magnitudes as [Rainforth et al., 2018] does with small model.

A.4 Detailed Experimental Settings

All the experiments are conducted on a computer with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
and 8× Nvidia(R) TitanXp. All the training scripts are implemented with Pytorch 1.7 and CUDA
9.0. For experiments with single-sample, we adopt Adam optimizer with β1 = 0.90, β2 = 0.95, lr =
1e−4. For experiments with multiple-sample/big batch, we scale lr linearly with sample size. All
the models are trained for 2000 epochs with the settings in Sec. 5.1. For first 200 epochs, we adopt
cosine annealing [Loshchilov and Hutter, 2016] to schedule learning rate. It takes around 1− 2 days
to train models based on Ballé et al. [2018], and 3− 5 days to train models on Cheng et al. [2020].
Note that our multiple-sample approaches’ training time does not scale linearly with sample size, as
we perform sampling on posterior, and the variational encoder only computes parameter of posterior
parameters once. Further, we provide the pytorch style sudo code for implementation guidance of
MS-NIC-MIX and MS-NIC-DMS.

i m p o r t t o r c h
from t o r c h . nn i m p o r t f u n c t i o n a l a s F

d e f IWAELoss ( minus_e lbo ) :
’ ’ ’
a r g s
−−−−
minus_e lbo : t e n s o r , [ b , k ] , which i s R + \ lambda D
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Table 7: Effect of sample size in MS-NIC.

Sample/Batch Size bpp MSE PSNR (db) R-D cost

Baseline [Ballé et al., 2018] - 0.5273 32.61 33.28 1.017

Baseline-BigBatch ×3 0.5308 32.51 33.31 1.018
×5 0.5285 32.51 33.30 1.016
×8 0.5279 32.37 33.34 1.013
×16 0.5321 32.12 33.38 1.014

IWAE [Burda et al., 2016] 3 0.9128 32.46 33.28 1.400
5 0.7903 31.73 33.40 1.266
8 0.9477 31.48 33.44 1.420

16 1.273 31.69 33.40 1.748

MS-NIC-MIX 3 0.5238 31.80 33.40 1.000
5 0.5259 31.84 33.38 1.003
8 0.5260 31.52 33.44 0.9988

16 0.5256 32.48 33.29 1.013

MS-NIC-DMS 3, 3 0.5247 32.39 33.30 1.010
5, 5 0.5230 31.84 33.39 1.001
8, 8 0.5255 31.55 33.43 0.9989

16, 16 0.5249 31.38 33.46 0.9954

r e t u r n
−−−−−−
l o c a l iwae l o s s
’ ’ ’
# t h i s i s t h e minus ELBO r e l a t e d t o y p a r t ,
# t o g e t t h e r e a l ELBO:
l o g _ w e i g h t s = − minus_e lbo . d e t a c h ( )
# no g r a d i e n t g i v e n t o w e i g h t s
w e i g h t s = F . so f tmax ( l o g _ w e i g h t s , dim =1) # B , K
l o s s _ b = t o r c h . sum ( minus_e lbo * we igh t s , dim =1 , keepdim= F a l s e )
l o s s _ i w a e = t o r c h . mean ( l o s s _ b )
r e t u r n l o s s _ i w a e

d e f DMSLoss ( x , x_hat , y _ l i k e l i h o o d , z _ l i k e l i h o o d , lam ) :
’ ’ ’
a r g s
−−−−
x : o r i g i n a l image : [ b , c , h , w]
x _ h a t : r e c o n s t r u c t e d image : [ b , k , c , h , w] , k i s t h e

number o f samples
y _ l i k e l i h o o d : [ b , 1 9 2 / 3 2 0 , h / / 8 , w / / 8 , k ^ 2 ] ,

a s o r i g i n a l p a p e r o f [ B a l l e e t a l . 2 0 1 8 ] , t h e number o f
c h a n n e l s 192 /320 i s d e t e r m i n e d by lambda , k ^2 i s t h e
number o f samples i n DMS s e t t i n g , w i th MS−NIC−MIX,
t h i s k ^2 i s k

z _ l i k e l i h o o d : [ b , 1 2 8 / 1 9 2 , h / / 6 4 , w/ / 6 4 , k ] , a s o r i g i n a l
p a p e r o f [ B a l l e e t a l . 2 0 1 8 ] , t h e number o f c h a n n e l s
128 /192 i s d e t e r m i n e d by lambda ,
k i s t h e number o f samples

r e t u r n
−−−−−−
t o t a l iwae l o s s
’ ’ ’
b , c , h , w = x . shape
k = x _ h a t . shape [ 0 ] / / x . shape [ 0 ]
x = t o r c h . r e p e a t _ i n t e r l e a v e ( x , r e p e a t s =k , dim =0)
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x = x . r e s h a p e ( b , k , c , h , w)
x _ h a t = x _ h a t . r e s h a p e ( b , k , c , h , w)
d _ l o s s = t o r c h . mean ( lam * 65025 * ( x − x _ h a t ) * * 2 , dim = ( 2 , 3 , 4 ) ,

keepdim= F a l s e )
y z _ l o s s = − t o r c h . sum ( t o r c h . l og2 ( y _ l i k e l i h o o d ) , dim = ( 1 , 2 , 3 ) ) . \

r e s h a p e ( b , −1) / ( h * w)
z _ l o s s = − t o r c h . sum ( t o r c h . l og2 ( z _ l i k e l i h o o d ) , dim = ( 1 , 2 , 3 ) ) . \

r e s h a p e ( b , −1) / ( h * w)
l o c a l _ d = IWAELoss ( d _ l o s s )
l o c a l _ y z = IWAELoss ( y z _ l o s s )
l o c a l _ z = IWAELoss ( z _ l o s s )
l o s s _ t o t a l = l o c a l _ d + l o c a l _ y z + l o c a l _ z

r e t u r n l o s s _ t o t a l

A.5 Detailed Experimental Results

In this section we present more detailed experimental results in Tab. 8 and Tab. 5. Note that without
direct-y trick, the IWAE for Cheng et al. [2020] totally fails and we can not produce a valid BD metric
from it.

Table 8: Detailed results based on [Ballé et al., 2018].

λ bpp MSE PSNR (db) MS-SSIM

Baseline [Ballé et al., 2018] 0.0016 0.1205 138.4 27.23 0.9111
0.0032 0.1990 91.52 28.95 0.9384
0.0075 0.3492 52.68 31.28 0.9624
0.015 0.5270 32.78 33.28 0.9766
0.03 0.7626 19.90 35.37 0.9847

0.045 0.9249 15.69 36.39 0.9883
0.08 1.211 10.04 38.27 0.9919

IWAE [Burda et al., 2016] 0.0016 0.2559 144.7 27.12 0.9134
0.0032 0.3478 90.65 29.03 0.9389
0.0075 0.5931 51.40 31.38 0.9642
0.015 0.7902 31.73 33.40 0.9765
0.03 1.135 19.41 35.47 0.9850

0.045 1.886 14.70 36.65 0.9885
0.08 1.753 9.898 38.32 0.9919

MS-NIC-MIX 0.0016 0.1132 146.4 27.08 0.9121
0.0032 0.1967 88.44 29.15 0.9409
0.0075 0.3496 51.27 31.39 0.9632
0.015 0.5260 31.52 33.43 0.9773
0.03 0.7591 19.33 35.49 0.9851

0.045 0.9248 14.43 36.72 0.9885
0.08 1.201 9.694 38.40 0.9919

MS-NIC-DMS 0.0016 0.1173 135.1 27.38 0.9145
0.0032 0.1967 86.07 29.26 0.9413
0.0075 0.3495 49.98 31.51 0.9647
0.015 0.5250 31.36 33.46 0.9771
0.03 0.7546 19.81 35.37 0.9846

0.045 0.9220 14.74 36.61 0.9883
0.08 1.196 9.637 38.43 0.9920

A.6 Distribution of Latent Variance

We show the histogram of latent variance in log space in Fig. A.6. From the histogram we can observe
that for latent y, the variance distribution of two MS-NIC approaches is similar and single-sample
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Table 9: Detailed results based on [Cheng et al., 2020].

λ bpp MSE PSNR (db) MS-SSIM

Baseline [Cheng et al., 2020] 0.0016 0.1205 138.4 27.23 0.9111
0.0032 0.1990 91.52 28.95 0.9384
0.0075 0.3492 52.68 31.28 0.9624
0.015 0.5270 32.78 33.28 0.9766
0.03 0.6424 19.48 35.54 0.9855

0.045 0.7846 15.48 36.53 0.9885
0.08 1.026 11.41 37.87 0.9916

IWAE [Burda et al., 2016] 0.0016 3.226 109.1 28.32 0.9182
0.0032 3.407 78.07 29.74 0.9414
0.0075 3.555 47.19 31.84 0.9652
0.015 3.445 31.84 33.56 0.9779
0.03 3.534 23.66 34.92 0.9849

0.045 3.545 20.63 35.59 0.9878
0.08 3.157 16.40 36.62 0.9908

MS-NIC-MIX 0.0016 0.1068 109.7 28.30 0.9171
0.0032 0.1636 78.07 29.71 0.9404
0.0075 0.2861 47.29 31.85 0.9651
0.015 0.4309 31.88 33.55 0.9777
0.03 0.6586 19.11 35.60 0.9853

0.045 0.8007 14.65 36.76 0.9889
0.08 1.034 10.93 38.00 0.9916

MS-NIC-DMS 0.0016 0.1043 109.8 28.30 0.9163
0.0032 0.1644 77.44 29.74 0.9412
0.0075 0.2849 47.30 31.85 0.9656
0.015 0.4306 32.22 33.51 0.9775
0.03 0.6432 18.94 35.65 0.9856

0.045 0.7926 14.84 36.67 0.9886
0.08 1.039 10.48 38.18 0.9918

approach is quite different. MS-NIC has more latent dimensions that have high variance (the right
mode), and less with low variance (the left mode). Moreover, the low variance mode of MS-NIC
has less variance than single-sample approach, which indicates that MS-NIC does a better job in
separating active and inactive latent dimensions. Similarly, the low variance mode of z̃ in MS-NIC
approaches is lower than single-sample approach.

Table 10: The average of per-dimension latent variance and Cov across Kodak test images. The
model is trained with λ = 0.015.

Var(#) Cov(#)

Method y z y z

Single-sample
Ballé et al. [2018] 1.512 0.3356 20.36 14.48

Multiple-sample
MS-NIC-MIX 1.909 0.7705 114.4 7.234
MS-NIC-DMS 1.908 0.7522 93.67 7.024
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Figure 3: The histogram of log space per-dimension latent variance across Kodak test images. The
model is trained with λ = 0.015.

A.7 Tighter ELBO for Inference Time

A.7.1 Inference time ELBO and Softmin Coding [Theis and Ho, 2021]

The inference time tighter ELBO is another under-explored issue. In fact, the training time tighter
ELBO and inference time ELBO is independent. We can train a model with tighter ELBO, infer with
single sample ELBO. Or we can also conduct multiple sample infer on a model trained with single
sample. The general idea is:

• The training time tighter ELBO benefits the performance in terms of avoiding posterior
collapse. As we state and empirically verify in Sec. 5.3. We adopt deterministic rounding
during inference time, and there is no direct connection between the training time tighter
ELBO and inference time R-D cost. However, we indeed end up with a richer latent space
(Sec. 5.3), which means more active latent dimensions and less bitrate waste.

• The inference time tighter ELBO sounds really alluring for compression community. How-
ever, there remains two pending issue to be resolved prior to the application of the inference
time tighter ELBO: 1) How this inference time multiple-sample ELBO is related to R-D cost
remains under-explored. In other words, whether the entropy coding itself can achieve the
R-D cost defined by multiple-sample ELBO is a question. 2) The inference time multiple-
sample ELBO only makes sense with stochastic encoder (you can not importance weight
the same deterministic ELBO), whose impact on lossy compression remains dubious.

For the first pending issue, the softmin coding [Theis and Ho, 2021] is proposed to achieve multiple
sample ELBO based on Universal Quantization (UQ) [Agustsson and Theis, 2020]. However, it is
not a general method and is tied to UQ. Moreover, as we stated in Sec 4.3, its computational cost is
forbiddingly high and its improvement is marginal. But those are not the real problem of softmin
coding. Instead, the real problem is the second pending issue: stochastic lossy encoder. The softmin
coding relies on UQ, and UQ relies on stochastic lossy encoder. And the stochastic lossy encoder is
exactly the second issue that we want to discuss.

A.7.2 Stochastic Lossy Encoder and Universal Quantization

It is known to lossless compression community that stochastic lossy encoder benefits compression
performance [Ryder et al., 2022] with the aid of bits-back coding [Townsend et al., 2018]. While
the bits-back coding is not applicable to lossy compression. For lossy compression, currently we
know that the stochastic encoder degrades R-D performance especially when distortion is measured
in MSE [Theis and Agustsson, 2021]. In the original UQ paper, the performance decay of vanilla
UQ over deterministic rounding is obvious (≈ 1db). When we writing this paper, we also find the
performance decay of UQ is quite high. As shown in Tab. 11, the R-D cost of UQ is significantly
higher than deterministic rounding. This negative result makes softmin coding less promising than it
seems as it only obtains a marginal gain over UQ. In our humble opinion, this performance decay
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y bpp z bpp MSE RD Cost

Deterministic Rounding 0.3347 0.01418 26.86 0.7552
Universal Quantization 0.5379 0.01431 23.94 0.9080

Table 11: The R-D performance of UQ vs deterministic rounding on the first image of Kodak dataset.

of UQ is partially brought by stochastic encoder itself. For lossless compression, the deterministic
encoder and stochastic encoder are just two types of bit allocation preference:

• The deterministic encoder allocate less bitrate to log p(ỹ), more to log p(x|ỹ) and 0 to
log q(ỹ|x).

• Given the same quantization step-size, from the differential entropy’s perspective, the
stochastic encoder allocate more bitrate to log p(ỹ), less to log p(x|ỹ) and minus bitrate to
log q(ỹ|x)

Therefore, for lossless compression, it is reasonable that the bitrate increase to log p(ỹ) and log p(x|ỹ)
can be offset by bits-back coding bitrate log q(ỹ|x). While for lossy compression, there is no obvious
way to bits-back log q(ỹ|x) (as we can not reconstruct q(ỹ|x) without x). If the bitrate increase in
log p(ỹ) and log p(x|ỹ), the R-D cost just increases for lossy compression. Prior to other entropy
coding bitrate that is able to achieve R-D cost equals to minus ELBO with Eq[log q] ̸= 0 becomes
mature (such as relative entropy coding [Flamich et al., 2020]), we have no way to implement a
stochastic lossy encoder with reasonable R-D performance. By now, we have no good way to achieve
tighter ELBO during inference time.

A.7.3 Training-Testing Distribution Mismatch and Universal Quantization

Moreover, whether the quantization error is uniform distribution remains a question. And we think
that is another reason why UQ does not work well. In fact, the real distribution of quantization noise
is pretty much a highly concentrated distribution around 0 (See Fig. A.7.3). And it is quite far away
from uniform distribution, which violates the assumption of Ballé et al. [2018]. We also find that
this concentrated distribution is caused by that most of latent dimension is quite close to 0. The
evidence is, if we remove the latent dimension yi ∈ [−0.5, 0.5], then the quantization noise looks
similar to a uniform distribution (See Fig. A.7.3). So, if we apply direct rounding, they are kept as
0 and the latent is sparse. However, adding uniform noise to it loses this sparsity, which result in
bitrate increase. And from Tab. 11, we can wee that the UQ reduce MSE while increase the bitrate.
From total R-D cost perspective, the deterministic rounding outperforms UQ. As a matter of fact, the
assumption of UQ that resolving training-testing distribution mismatch improves R-D performance
does not hold well. To wrap up, we find that there is some pending issues to be resolved prior to the
practical solution of tighter ELBO for inference time.

Figure 4: The histogram of y − ȳ of first image of Kodak dataset.
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A.8 The Effect on Training Time

The MS-NIC-MIX and MS-NIC-DMS should be more time efficient than simply increase batchsize.
For MS-NIC-MIX with k samples, the ỹ encoder q(ỹ|x) is inferred with only 1 sample, and the
z̃ encoder, decoder and entropy model q(z̃|x), p(ỹ|z̃), p(z̃) is inferred with only 1 sample. And
only the ỹ decoder p(x|ỹ) is inferred k times. This sample efficiency makes the training time grows
slowly with k. In our experiment, the MS-NIC-MIX with 8 samples only increases the training
time by ×1.5, the MS-NIC-MIX with 16 samples only increases the training time by ×3. The
MS-NIC-DMS is slightly slower, as the z entropy model and decoder p(z̃), p(ỹ|z̃) also requires
k times inference. However, it is still much more efficient than batchsize ×k as all the encoders
q(ỹ|x), q(z̃|x) requires only 1 inference. In fact, sampling from posterior is much cheaper than
inferring the posterior parameters. Similar spirit has also been adopted in improving the efficiency of
sampling from Gumbel-Softmax relaxed posterior [Paulus et al., 2020].

The trade-off between batchsize and sample number is a more subtle issue. As stated in Rainforth
et al. [2018], the gradient SNR of encoder (inference model) scales with Θ(M/K), and the gradient
SNR of decoder (generative model) scales with Θ(M/K), where M is the batchsize and K is the
sample size. Another assumption required prior to further discussion is that the suboptimality of VAE
mainly comes from inference model [Cremer et al., 2018], which means that the encoder is harder
to train than the decoder. This means that an infinitely large K ruins the convergence of encoder,
and solemnly increasing sample number frustrates training. In practice the overall performance is
determined by both inference suboptimality and ELBO-likelihood gap. In a word, we believe there is
no general answer for all problem. But a reasonable balance between sample size and batchsize is
the golden rule to maximize performance (as T (M) and T (K) grow linearly with batchsize/sample
size). And the obvious case is that neither setting batchsize to M = 1 and give all resources to K,
nor setting sample size K = 1 and give all resources to M is optimal.

A.9 More Limitation and Discussion

The cause of negative results on MS-SSIM of Cheng et al. [2020] is more complicated. One possible
explanation is that the gradient property of Cheng et al. [2020] is not as good as Ballé et al. [2018].
As a reference, the training of [Burda et al., 2016] totally fails on Cheng et al. [2020] and produces
garbage R-D results (See Tab. 9). This bad gradient property might account for the bad results of
MS-SSIM on Cheng et al. [2020], as the gradient of IWAE and MS-NIC is certainly trickier than the
gradient of single sample approaches.

As evidence, when we are studying the stability of the network in Cheng et al. [2020], we find that
without limitation of entropy model (imagine setting λ to∞) and quantization, Cheng et al. [2020]
produces PSNR of 43.27db, while Ballé et al. [2018] produces PSNR of 48.54db. This means that
Cheng et al. [2020] is not as good as Ballé et al. [2018] as an auto-encoder. Moreover, when we
finetune these pre-trained model into a lossy compression model, Cheng et al. [2020] produces nan
results while Ballé et al. [2018] converges. This result indicates that the backbone of Cheng et al.
[2020]’s gradient is probably more difficult to deal with than Ballé et al. [2018].

A.10 Broader Impact

Improving the R-D performance of NIC methods is valuable itself. It is beneficial to reducing the
carbon emission by reducing the resources required to transfer and store images. And NIC has
potential of saving network channel bandwidth and disk storage over traditional codecs. Moreover,
for traditional codecs, usually dedicated hardware accelerators are required for efficient decoding.
This codec-hardware bondage hinders the wide adaptation of new codecs. Despite the sub-optimal
R-D performance of old codecs such as JPEG, H264, they are still prevalent due to broad hardware
support. While modern codecs such as H266 [Bross et al., 2021] can not be widely adopted due to
limited hardware decoder deployment. However, for NIC, the general purpose neural processors are
able to fit to all codecs. Thus the neural decoders have better hardware flexibility, and the cost to
update neural decoder only involves software, which encourages the adoption of newer methods with
better R-D performance.
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