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Abstract

This paper considers the problem of lossy neural image compression (NIC). Current
state-of-the-art (sota) methods adopt uniform posterior to approximate quantiza-
tion noise, and single-sample pathwise estimator to approximate the gradient
of evidence lower bound (ELBO). In this paper, we propose to train NIC with
multiple-sample importance weighted autoencoder (IWAE) target, which is tighter
than ELBO and converges to log likelihood as sample size increases. First, we
identify that the uniform posterior of NIC has special properties, which affect the
variance and bias of pathwise and score function estimators of the IWAE target.
Moreover, we provide insights on a commonly adopted trick in NIC from gradient
variance perspective. Based on those analysis, we further propose multiple-sample
NIC (MS-NIC), an enhanced IWAE target for NIC. Experimental results demon-
strate that it improves sota NIC methods. Our MS-NIC is plug-and-play, and can
be easily extended to other neural compression tasks.

1 Introduction

Latent variable-based lossy neural image compression (NIC) has witnessed significant success. The
majority of NIC follows the framework proposed by Ballé et al. [2017]: For encoding, the original
image x is transformed into y by the encoder. Then y is scalar-quantized into integer ȳ, estimated
with an entropy model p(ȳ) and coded. For decoding, ȳ is transformed back by the decoder to obtain
reconstructed x̄. The optimization target of NIC is R-D cost: R+ λD. R denotes the bitrate of ȳ, D
denotes the distortion between x and x̄, and λ denotes the hyper-parameter controlling their trade-off.
During training, the quantization ȳ = ⌊y⌉ is relaxed with ỹ = y + ϵ to simulate the quantization
noise. And ϵ is fully factorized uniform noise ϵ ∼ p(ϵ) =

∏
U(− 1

2 ,+
1
2 ).

Ballé et al. [2017] further recognises that such training framework is closely related to variational
inference. Indeed, the above process can be formulated as a graphic model x← ỹ. During encoding,
x is transformed into variational parameter y by inference model (encoder), and ỹ is sampled from
variational posterior q(ỹ|x), which is a unit unifrom distribution centered in y. The prior likelihood
p(ỹ) is computed, and ỹ is transformed back by the generative model (decoder) to compute the
likelihood p(x|ỹ). Under such formulation, the prior is connected to the bitrate, the likelihood is
connected to the distortion, and the posterior likelihood is connected to the bits-back bitrate (See
Appendix. 2.3), which is 0 in NIC. Finally, the evidence lower bound (ELBO) is the negative R+λD
target (Eq. 1). Denote the transform function ỹ(ϵ;ϕ) = y+ϵ, and sampling ỹ ∼ q(ỹ|x) is equivalent
to transforming ϵ through ỹ(ϵ;ϕ). Then the gradient of ELBO is estimated via pathwise estimator
with single-sample Monte Carlo (Eq. 2). This is the same as SGVB-1 [Kingma and Welling, 2013].
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L = −(R+ λD) = Eq(ỹ|x)[log p(x|ỹ)︸ ︷︷ ︸
- distortion

+ log p(ỹ)︸ ︷︷ ︸
- rate

− log q(ỹ|x)︸ ︷︷ ︸
bits-back rate: 0

]
(1)

∇ϕL = Ep(ϵ)[∇ϕ(log
p(x,ỹ(ϵ;ϕ))
q(ỹ(ϵ;ϕ)|x) )] ≈ ∇ϕ log

p(x,ỹ(ϵ;ϕ))
q(ỹ(ϵ;ϕ)|x) (2)

Ballé et al. [2018] further extends this framework into a two-level hierarchical structure, with
graphic model x ← ỹ ← z̃. The variational posterior is fully factorized uniform distribution
U(y − 1

2 ,y + 1
2 )U(z −

1
2 , z + 1

2 ) To simulate the quantization noise. And y, z denote outputs of
their inference networks.

L = Eq(ỹ,z̃|x)[log p(x|ỹ)︸ ︷︷ ︸
- distortion

+ log p(ỹ|z̃) + log p(z̃)︸ ︷︷ ︸
- rate

− log q(ỹ|x)− log q(z̃|ỹ)︸ ︷︷ ︸
bits-back rate: 0

]
(3)

The majority of later NIC follows this hierarchical latent framework [Minnen et al., 2018, Cheng
et al., 2020]. Some focus on more expressive network architectures [Zhu et al., 2021, Xie et al., 2021],
some stress better context models [Minnen and Singh, 2020, He et al., 2021, Guo et al., 2021a], and
some emphasize semi-amortization inference [Yang et al., 2020]. However, there is little research on
multiple-sample methods, or other techniques for a tighter ELBO.

On the other hand, IWAE [Burda et al., 2016] has been successful in density estimation. Specifically,
IWAE considers a multiple-sample lowerbound Lk (Eq. 4), which is tighter than its single-sample
counterpart. The benefit of such bound is that the implicit distribution defined by IWAE approaches
true posterior as k increases [Cremer et al., 2017]. This suggests that its variational posterior is less
likely to collapse to a single mode of true posterior, and the learned representation is richer. The
gradient of Lk is computed via pathwise estimator. Denote the exponential ELBO sample as wi, its
reparameterization as w(ϵi;ϕ), and its weight w̃i =

wi∑
wj

. Then ∇ϕLk has the form of importance
weighted sum (Eq. 5).

Lk = Eq(ỹ1:k|x)[log
1
k

k∑
i

p(x, ỹi)

q(ỹi|x)︸ ︷︷ ︸
wi

] = Ep(ϵ1:k)[log
1
k

k∑
i

p(x, ỹ(ϵi;ϕ))

q(ỹ(ϵi;ϕ)|x)︸ ︷︷ ︸
w(ϵi;ϕ)

]
(4)

∇ϕLk = Ep(ϵ1:k)[
k∑
i

w̃i∇ϕ logw(ϵi;ϕ)] ≈
k∑
i

w̃i∇ϕ logw(ϵi;ϕ) (5)

In this paper, we consider the problem of training NIC with multiple-sample IWAE target (Eq. 4),
which allows us to learn a richer latent space. First, we recognise that NIC’s factorized uniform
variational posterior has impacts on variance and bias properties of gradient estimators. Specifically,
we find NIC’s pathwise gradient estimator equivalent to an improved STL estimator [Roeder et al.,
2017], which is unbiased even for the IWAE target. However, NIC’s IWAE-DReG estimator [Tucker
et al., 2018] has extra bias, which causes performance decay. Moreover, we provide insights on a
commonly adopted but little explained trick of training NIC from gradient variance perspective. Based
on those analysis and observations, we further propose MS-NIC, a novel improvement of multiple-
sample IWAE target for NIC. Experimental results show that it improves sota NIC methods [Ballé
et al., 2018, Cheng et al., 2020] and learns richer latent representation. Our method is plug-and-play,
and can be extended into neural video compression.

To wrap up, our contributions are as follows:

• We provide insights on the impact of the uniform variational posterior upon gradient
estimators, bits-back coding and a commonly adopted but little discussed trick of NIC
training from gradient variance perspective.

• We propose multiple-sample neural image compression (MS-NIC). It is a novel enhancement
of hierarchical IWAE [Burda et al., 2016] for neural image compression. To the best of
our knowledge, we are the first to consider a tighter ELBO for training neural image
compression.
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• We demonstrate the efficiency of MS-NIC through experimental results on sota NIC methods.
Our method is plug-and-play for neural image compression and can be easily applied to
neural video compression.

2 Gradient Estimation for Neural Image Compression

The common NIC framework (Eq. 1, Eq 3) adopts fully factorized uniform distribution q(ỹ, z̃|x) =∏
U(yi − 1

2 , y
i + 1

2 )
∏
U(zj − 1

2 , z
j + 1

2 ) to simulate the quantization noise. Such formulation has
the following special properties:

• Property I: q(z̃|ỹ) and q(ỹ|x)’s support depends on the parameter.
• Property II: log q(z̃|ỹ) = log q(ỹ|x) = 0 on their support.

The impacts of these two properties are frequently neglected in previous works, which does not
influence the results for single-sample pathwise gradient estimators (a.k.a. reparameterization trick in
Kingma and Welling [2013]). In this section, we discuss the impacts of these two properties upon
the variance and biasness of gradient estimators. Our analysis is based on single level latent (Eq. 1)
instead of hierarchical latent (Eq. 3) to simplify notations.

2.1 Impact on Pathwise Gradient Estimators

First, let’s consider the single-sample case. We can expand the pathwise gradient of ELBO in Eq. 2
into Eq. 6. As indicated in the equation, ϕ contributes to L in two ways. The first way is through the
reparametrized ỹ(ϵ;ϕ) (pathwise term), and the other way is through the parameter of log q(ỹ|x)
(parameter score term). Generally, the parameter score term has higher variance than the pathwise
term. The STL [Roeder et al., 2017] reduces the gradient by dropping the score. It is unbiased since
the dropped term’s expectation Eq(ỹ|x)[∇ϕ log qϕ(ỹ|x)] is 0.

∇ϕL = Ep(ϵ)[∇ỹ(log
p(x|ỹ)p(ỹ)
q(ỹ|x)

)∇ϕỹ(ϵ;ϕ)︸ ︷︷ ︸
pathwise term

−∇ϕ log qϕ(ỹ|x)︸ ︷︷ ︸
parameter score term

]
(6)

Now let’s consider the STL estimator of multiple-sample IWAE bound (Eq. 4). As shown in Tucker
et al. [2018], the STL estimation of IWAE bound gradient is biased. To reveal the reason, consider
expanding the gradient Eq. 5 into partial derivatives as we expand Eq. 2 into Eq. 6. Unlike single-
sample case, the dropped parameter score term Ep(ϵ1:k)[

∑
w̃i(−∇ϕ log qϕ(ỹ|x))] is no longer 0 due

to the importance weight w̃i. This means that STL loses its unbiasness in general IWAE cases.

Regarding NIC, however, the direct pathwise gradient for IWAE bound is automatically an unbiased
STL estimator. Property II means that variational posterior has constant entropy, which further means
that the parameter score gradient is 0. So, NIC’s pathwise gradient of IWAE bound is equvailent to
an extended, unbiased STL estimator.

2.2 Impact on Score Function Gradient Estimators

In previous section, we show the bless of NIC’s special properties on pathwise gradient estimators.
In this section, we show their curse on score function gradient estimators. Sepcifically, Property I
implies that q(z̃|ỹ) and q(ỹ|x̃) are not absolute continuous, and hence the score function gradient
estimators of those distributions are biased.

For example, consider a univariate random variable x ∼ pθ(x) = U(θ − 1
2 , θ + 1

2 ). Our task is
to estimate the gradient of a differentiable function f(x). And consider the θ-independent random
variable ϵ ∼ p(ϵ) = U(− 1

2 ,+
1
2 ), the transform x(ϵ; θ) = θ + ϵ. Under such conditions, the Monte

Carlo estimated pathwise gradient and score function gradient are:

pathwise gradient: ∇θEpθ(x)[f(x)] = ∇θEp(ϵ)[f(x(ϵ; θ))] ≈ 1
N

N∑
i

∇θf(θ + ϵi) (7)

score function gradient: ∇θEpθ(x)[f(x)] = Epθ(x)[∇θ log pθ(x)f(x)] = 0 (8)
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Eq. 7 does not equal to Eq. 8, and Eq.8 is wrong. The score function gradient is only unbiased
when the distribution satisfies the absolute continuity condition of [Mohamed et al., 2020]. This
reflects that under the formulation of NIC, the equivalence between the score function gradient (a.k.a.
REINFORCE [Williams, 1992]) and pathwise gradient (a.k.a reparameterization trick in [Kingma
and Welling, 2013]) no longer holds.

Table 1: Effect of DReG gradient estimator in NIC.

Sample Size bpp MSE PSNR (db) R-D cost

Single-sample
Baseline [Ballé et al., 2018] - 0.5273 32.61 33.28 1.017

Multiple-sample
MS-NIC-MIX(pathwise gradient) 5 0.5259 31.84 33.38 1.003
MS-NIC-MIX(DReG gradient) 5 0.5316 35.09 32.90 1.058

Such equivalence is the cornerstone of many gradient estimators, and IWAE-DReG [Tucker et al.,
2018] is one of them. IWAE-DReG is a popular gradient estimator for IWAE target (Eq. 4) as
it resolves the vanish of inference network gradient SNR (signal to noise ratio). However, the
correctness of IWAE-DReG depends on the equivalence between the score function gradient and
pathwise gradient, which does not hold for NIC. Specifically, IWAE-DReG expand the total derivative
of IWAE target as Eq. 9 and perform another round of reparameterization on the score function
term as Eq. 10 to further reduce the gradient variance. However, Eq. 10 requires the equivalence of
pathwise gradient and score function gradient.

∇ϕEqϕ(ỹ1:k|x)[log
1

k

k∑
i=1

wi] = Ep(ϵ1:k)[

k∑
i=1

wi∑k
j=1 wj

(−∂ log qϕ(ỹi|x)
∂ϕ︸ ︷︷ ︸

score function term

+
∂ logw(ϵi;ϕ)

∂ỹi

∂ỹ(ϵi;ϕ)

∂ϕ
)]

(9)

Eq(ỹi|x)[
wi∑k
j=1 wj

∂ log qϕ(ỹi|x)
∂ϕ

] = Ep(ϵi)[
∂

∂ỹi
(

wi∑k
j=1 wj

)
∂ỹ(ϵi;ϕ)

∂ϕi
] (10)

As we show empirically in Tab. 1, blindly adopting IWAE-DReG estimator for multiple-sample NIC
brings evident performance decay. Other than IWAE-DReG, many other graident estimators such as
NVIL [Mnih and Gregor, 2014], VIMCO [Mnih and Rezende, 2016] and GDReG [Bauer and Mnih,
2021] do not apply to NIC. They either bring some extra bias or are totally wrong.

2.3 Impact on Bits-Back Coding

It is well known that the ELBO L is the minus overall bitrate for bits-back coding in compression
[Hinton and Van Camp, 1993, Hinton et al., 1995, Chen et al., 2017], and the entropy of variational
posterior is exactly the bits-back rate itself. For this reason, earlier works [Townsend et al., 2018, Yang
et al., 2020] point out that [Ballé et al., 2018, Minnen et al., 2018] waste bits for not using bits-back
coding on z. However, during training the differential entropy [Cover, 1999] Eq(z̃|ỹ)[log q(z̃|ỹ)] is
constant. And this means that this term does not have impact on the optimization procedure. And due
to the deterministic inference, the log q(z̄|ȳ) is 0, which means that the bitrate saved by bits-back
coding is 0. In this sense, [Ballé et al., 2018, Minnen et al., 2018] is also optimal in bits-back coding
perspective, although no actual bits-back coding is performed. In fact, there is no space for bits-back
coding so long as encoder is deterministic. Since we can view deterministic encoder as a posterior
distribution with mass 1 on a single point. And then the posterior’s entropy is always 0.

2.4 The direct-y Trick in Training NIC

In NIC, we feed deterministic parameter y into z inference model instead of noisy samples ỹ. This
implies that z̃ is sampled from q(z̃|y) instead of q(z̃|ỹ). This trick is initially adopted in Ballé
et al. [2018] and followed by most of the subsequent works. However, it is little discussed. In this
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paper, we refer it to direct-y trick. Yang et al. [2020] observes that feeding ỹ instead of y causes
severe performance decay. We confirm this result in Tab. 2. Thus, direct-y trick is essential to train
hierarchical NIC.

Table 2: Effects of direct-y on R-D performance. 2-level VAE is equivalent to Ballé et al. [2018]
without direct-y.

bpp MSE PSNR R-D cost

2-level VAE 0.9968 33.08 33.22 1.493
[Ballé et al., 2018] 0.5273 32.61 33.28 1.017

Table 3: Effects of direct-y on gradient SNR of different parts of the model. 2-level VAE is equivalent
to Ballé et al. [2018] without direct-y. "early" is 5 × 104 iterations, "mid" is 5 × 105 iterations
and "late" is 1× 106 iterations. "infer" is the abbreviation for "inference model", and "gen" is the
abbreviation for "generative model".

gradient SNR of #

Iteration Method y infer y gen z infer z gen z prior

early 2-level VAE 2.287 0.5343 0.3419 0.4099 0.9991
Ballé et al. [2018] 2.174 0.5179 0.5341 0.3813 1.069

mid 2-level VAE 1.350 0.4793 0.2414 0.3583 0.8861
Ballé et al. [2018] 1.334 0.4813 0.4879 0.3761 0.9693

late 2-level VAE 1.217 0.4746 0.2863 0.3439 0.8691
Ballé et al. [2018] 1.206 0.4763 0.5506 0.3707 0.9339

One explanation is to view q(z̃|y) as q(z̃|x), and q(ỹ, z̃|x̃) factorized as q(ỹ|x)q(z̃|x) (See Fig.1
(a)-(c)). A similar trick of feeding mean parameter can be traced back to the Helmholtz machine
[Dayan et al., 1995]. However, this provides a rationale why direct-y is fine to be adopted but does not
explain why samping z̃ from q(z̃|ỹ) fails. We provide an alternative explanation from the gradient
variance perspective. Specifically, q(z̃|ỹ) has two stochastic arguments that could cause high variance
in the gradient of z inference model, and make its convergence difficult. To verify this, we follow
Rainforth et al. [2018] to compare the gradient SNR, which is the absolute value of the empirical
mean divided by standard deviation. We trace the gradient SNR during different training stages as
model converges (See Sec. 5.1 for detailed setups).

As demonstrated in Tab. 3, the gradient SNR of z inference model of standard 2-level VAE (without
direct y) is indeed significantly lower than Ballé et al. [2018] (with direct y) during all 3 stage of
training. This result reveals that the z inference model is more difficult to train without direct-y. And
such difficulty could be the source of the failure of NIC without direct-y trick.

3 Multiple-sample Neural Image Compression

In this section, we consider the multiple-sample approach based on the 2-level hierarchical framework
by Ballé et al. [2018], which is the de facto NIC architecture adopted by many sota methods. To
simplify notations, log q(z̃|ỹ) and log q(ỹ|x) in ELBO are omitted as they are 0. First, let’s consider
directly applying 2-level IWAE to NIC without direct-y trick (See Fig. 1 (d)). Regarding a k sample
IWAE, we first compute parameter y of q(ỹ|x) and sample ỹ1:k from it. Then, we compute parameter
z1:k of q(z̃1:k|ỹ1:k) and samples z̃1:k from it. Afterward, ỹ1:k and z̃1:k are fed into the generative
model and compute w1:k. Finally, we follow Eq 5 to compute the gradient and update parameters. In
fact, this is the standard 2-level IWAE in the original IWAE paper.

However, the vanilla 2-level IWAE becomes a problem for NIC with direct-y trick. Concerning a k
sample IWAE, we sample ỹ1:k from q(ỹ|x). Due to the direct-y trick, we feed y instead of ỹ1:k into
z inference network, and our q(z̃|y) has only one parameter z other than k parameter z1:k. If we
follow the 2-level IWAE approach, only one sample z̃ is obtained, and w1:k can not be computed.
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Figure 1: The plate notation of different NIC methods. x is the observed image, ỹ and z̃ are latent.
The inference models show how we sample from variational posterior duing training. n is the number
of data points in dataset, k, l is the sample size of multiple-sample approaches. The generative model
of (b), (c) is (a). The generative model of (d)-(f) is shown in Appendix. A.1. For clarity, we omit the
parameters.

One method is to limit the multiple-sample part to ỹ related term only and optimize other parts via
single-sample SGVB-1, which produces our MS-NIC-MIX (See Fig 1 (e)). Another method is to
sample another l samples of z̃j from q(z̃|y) and nest it with MS-NIC-MIX, which generates our
MS-NIC-DMS (See Fig 1 (f)).

3.1 MS-NIC-MIX: Multiple-sample NIC with Mixture

One way to optimize multiple-sample IWAE target of NIC with direct-y trick is to sample ỹ k times
to obtain ỹ1:k and z̃ only 1 time. Then we perform k sample log mean of p(x|ỹi)p(ỹi|z̃) to obtain a
multiple-sample estimated log p(x|z̃), add it with single-sample log p(z̃). This brings a LMIX

k with
the form of a mixture of 1-level VAE and 1-level IWAE ELBO:

LMIX
k = Eqϕ(z̃|x)[Eqϕ(ỹ1:k|x)[log

1
k

k∑
i

p(x|ỹi)p(ỹi|z̃)|z̃] + log p(z̃)] (11)

Moreover, LMIX
k is a reasonably preferable target over ELBO as it satisfies the following properties

(See Appendix. A.2 for proof):

1. log p(x) ≥ LMIX
k

2. LMIX
k ≥ LMIX

m for k ≥ m

Although LMIX
k does not converge to true log p(x) as k grows, it is still a lower bound of log p(x)

and tighter than ELBO (as LMIX
1 = ELBO). Its gradient can be computed via pathwise estimator.

Denote the per-sample integrand p(x|ỹi)p(ỹi|z̃) as wMIX
i , and its relative weight as w̃MIX

i , then
the gradient ∇ϕLMIX

k can be estimated as Eq. 13.

LMIX
k = Ep(ϵy1:k,ϵ

z)[log
1
k

k∑
i

p(x|ỹ(ϵyi ;ϕ))p(ỹ(ϵ
y
i ;ϕ)|z̃(ϵz;ϕ)) + log p(z̃(ϵz;ϕ))]

≈ log 1
k

k∑
i

p(x|ỹ(ϵyi ;ϕ))p(ỹ(ϵ
y
i ;ϕ)|z̃(ϵ

z;ϕ))︸ ︷︷ ︸
wMIX(ϵy1:k,ϵ

z ;ϕ)

+ log p(z̃(ϵz;ϕ))
(12)

∇ϕLMIX
k ≈

k∑
i

w̃MIX
i ∇ϕ logw

MIX(ϵy1:k, ϵ
z;ϕ) +∇ϕ log p(z̃(ϵ

z;ϕ)) (13)

Another way to understand MS-NIC-MIX is to view the y inference/generative model as a single level
IWAE, and the z inference/generative model as a large prior of ỹ which is optimized via SGVB-1.
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This perspective is often taken by works in NIC context model [Minnen et al., 2018, He et al., 2021],
as the context model of NIC is often limited to ỹ.

3.2 MS-NIC-DMS: Multiple-sample NIC with Double Multiple Sampling

An intuitive improvement over MS-NIC-MIX is to add another round of multiple-sample over z̃.
Specifically, we sample z̃ l times, nest it with LMIX

k to obtain LDMS
k,l :

LDMS
k,l = Eqϕ(z̃1:l|x)[log

1
l

l∑
j

exp (Eqϕ(ỹ1:k|x)[log
1
k

k∑
i

p(x|ỹi)p(ỹi|z̃j)|z̃j ])p(z̃j)] (14)

And we name it MS-NIC-DMS as it adopts multiple sampling twice. Moreover, LDMS
k,l is a reasonably

better target for optimizaion over ELBO and LMIX
k , as it satisfies the following properties (See proof

in Appendix. A.2):

1. log p(x) ≥ LDMS
k,l

2. LDMS
k,l ≥ LDMS

m,n for k ≥ m, l ≥ n

3. LDMS
k,l ≥ LMIX

k

4. LDMS
k,l → log p(x) as k, l → ∞, under the assumption that log

p(x|ỹi)p(ỹi|z̃j)
q(ỹi|x) and

log
p(x|z̃j)p(z̃j)

q(z̃j |x) are bounded.

In other words, the target LDMS
k,l is a lowerbound of log p(x), converging to log p(x) as k, l→∞,

tighter than LMIX
k and tighter than ELBO (as LDMS

1,1 = ELBO). However, its Monte Carlo estimation
is biased due to the nested transformation and expectation. Empirically, we find that directly adopting
biased pathwise estimator works fine. And its gradient can be estimated by pathwise estimator similar
to original IWAE target (See Eq. 5).

LDMS
k,l = Eq(ϵz1:l)

[log 1
l

l∑
j

exp(Eq(ϵyk:l)
[log 1

k

k∑
i

p(x|ỹ(ϵyi ;ϕ))p(ỹ(ϵ
y
i ;ϕ)|z̃(ϵzj ;ϕ))])p(z̃(ϵzj ;ϕ))]

≈ log 1
l

l∑
j

1
k

k∑
i

p(x|ỹ(ϵyi ;ϕ))p(ỹ(ϵ
y
i ;ϕ)|z̃(ϵ

z
j ;ϕ))p(z̃(ϵ

z
j ;ϕ))︸ ︷︷ ︸

wDMS(ϵy1:k,ϵ
z
1:l;ϕ)

(15)

Another interpretation of MS-NIC-DMS is to view it as a multiple level IWAE with repeated local
samples. The LDMS

k,l Monte Carlo pathwise estimator has the form of IWAE with k × l samples.
However, there are multiple repeated samples that contain the same ỹi and z̃j . For example, the
samples wIWAE

1:6 of 2 level IWAE with sample size 6 look like Eq. 16. While the samples wDMS
1:2,1:3 of

MS-NIC-DMS with 2× 3 samples look like Eq. 17. We can see that in IWAE, we have 6 pairs of
independently sampled ỹ and z̃, while in MS-NIC-DMS, we have 2 independent ỹ and 3 independent
z̃, they are paired to generate 6 samples in total. Note that this is only applicable to NIC as ỹ and z̃
are conditionally independent given x̃ due to direct-y trick.

wIWAE
1:6 = {p(x|ỹ1)p(ỹ1|z̃1)p(z̃1),

p(x|ỹ2)p(ỹ2|z̃2)p(z̃2),
p(x|ỹ3)p(ỹ3|z̃3)p(z̃3),
p(x|ỹ4)p(ỹ4|z̃4)p(z̃4),
p(x|ỹ5)p(ỹ5|z̃5)p(z̃5),
p(x|ỹ6)p(ỹ6|z̃6)p(z̃6)}

(16)

wDMS
1:2,1:3 = {p(x|ỹ1)p(ỹ1|z̃1)p(z̃1),

p(x|ỹ1)p(ỹ1|z̃2)p(z̃2),
p(x|ỹ1)p(ỹ1|z̃3)p(z̃3),
p(x|ỹ2)p(ỹ2|z̃1)p(z̃1),
p(x|ỹ2)p(ỹ2|z̃2)p(z̃2),
p(x|ỹ2)p(ỹ2|z̃3)p(z̃3)}

(17)
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4 Related Work

4.1 Lossy Neural Image and Video Compression

Ballé et al. [2017] and Ballé et al. [2018] formulate lossy neural image compression as a variational
inference problem, by interpreting the additive uniform noise (AUN) relaxed scalar quantization
as a factorized uniform variational posterior. After that, the majority of sota lossy neural image
compression methods adopt this formulation [Minnen et al., 2018, Minnen and Singh, 2020, Cheng
et al., 2020, Guo et al., 2021a, Gao et al., 2021, He et al., 2022]. And Yang et al. [2020], Guo et al.
[2021b] also require a AUN trained NIC as base. Moreover, the majority of neural video compression
also adopts this formulation [Lu et al., 2019, 2020, Agustsson et al., 2020, Hu et al., 2021, Li et al.,
2021], implying that MS-NIC can be extended to video compression without much pain.

Other approaches to train NIC include random rounding [Toderici et al., 2015, 2017] and straight
through estimator (STE) [Theis et al., 2017]. Another promising approach is the VQ-VAE [Van
Den Oord et al., 2017]. By the submission of this manuscript, one unarchived work [Zhu et al., 2022]
has shown the potential of VQ-VAE in practical NIC. Our MS-NIC does not apply to the approaches
mentioned in this paragraph, as the formulation of variational posterior is different.

4.2 Tighter Lower Bound for VAE

IWAE [Burda et al., 2016] stirs up the discussion of adopting tighter lower bound for training VAEs.
However, at the first glance it is not straightforward why it might works. Cremer et al. [2018]
decomposes the inference suboptimality of VAE into two parts: 1) The limited expressiveness
of interence model. 2) The gap between ELBO and log likelihood. However, this gap refers to
inference not training. The original IWAE paper empirically shows that IWAE can learn a richer
latent representation. And Cremer et al. [2017] shows that the IWAE target converges to ELBO under
the expectation of true posterior. And thus the posterior collapse is avoided.

From the information preference [Chen et al., 2017] perspective, VAE prefers to distribute information
in generative distribution than autoencoding information in the latent. This preference formulates
another view of posterior collapse. And it stems from the gap between ELBO and true log likelihood.
There are various approaches alleviating it, including soft free bits [Theis et al., 2017] and KL
annealing [Serban et al., 2017]. In our opinion, IWAE also belongs to those methods, and it is
asymptotically optimal. However, we have not found many works comparing IWAE with those
methods. Moreover, those approaches are rarely adopted in NIC community.

Many follow-ups of IWAE stress gradient variance reduction [Roeder et al., 2017, Tucker et al.,
2018, Rainforth et al., 2018], discrete latent [Mnih and Rezende, 2016] and debiasing IWAE target
[Nowozin, 2018]. Although the idea of tighter low bound training has been applied to the field of
neural joint source channel coding [Choi et al., 2018, Song et al., 2020], to the best of our knowledge,
no work in NIC consider it yet.

4.3 Multi-Sample Inference for Neural Image Compression

Theis and Ho [2021] considers the similar topic of importance weighted NIC. However, it does
not consider training of NIC. Instead, it focuses on achieving IWAE target with an entropy coding
technique named softmin, just like BB-ANS [Townsend et al., 2018] achieving ELBO. It is alluring
to apply softmin to MS-NIC, as it closes the multiple-sample training and inference gap. However, it
requires large number of samples (e.g. 4096) to achieve slight improvement for 64×64 images. The
potential sample size required for practical NIC is forbidding. Moreover, we believe the stochastic
lossy encoding scheme [Agustsson and Theis, 2020] that Theis and Ho [2021] is not yet ready to be
applied (See Appendix. A.7 for details).

5 Experimental Results

5.1 Experimental Settings

Following He et al. [2022], we train all the models on the largest 8000 images of ImageNet [Deng
et al., 2009], followed by a downsampling according to Ballé et al. [2018]. And we use Kodak [Kodak,
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1993] for evaluation. For the experiments based on Ballé et al. [2018] (include Tab. 1, Tab. 2), we
follows the setting of the original paper except for the selection of λs, For the selection of λs, we set
λ ∈ {0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045, 0.08} as suggested in Cheng et al. [2020]. And for
the experiments based on Cheng et al. [2020], we follows the setting of original paper. More detailed
experimental settings can be found in Appendix. A.4.

And when comparing the R-D performance of models trained on multiple λs, we use Bjontegaard
metric (BD-Metric) and Bjontegaard bitrate (BD-BR) [Bjontegaard, 2001], which is widely applied
when comparing codecs. More detailed experimental results can be found in Appendix. A.5.

Table 4: Results based on Ballé et al. [2018].

PSNR MS-SSIM

BD-BR (%) BD-Metric BD-BR (%) BD-Metric

Single-sample
Baseline [Ballé et al., 2018] 0.000 0.000 0.000 0.0000

Multiple-sample
IWAE [Burda et al., 2016] 64.23 -2.318 68.67 -0.01648
MS-NIC-MIX -3.847 0.1877 -4.743 0.001618
MS-NIC-DMS -4.929 0.2405 -5.617 0.001976

Table 5: Results based on Cheng et al. [2020]. The BD Metrics of IWAE can not be computed as its
R-D is not monotonously increasing.

PSNR MS-SSIM

BD-BR (%) BD-Metric BD-BR (%) BD-Metric

Single-sample
Baseline [Cheng et al., 2020] 0.0000 0.0000 0.0000 0.0000

Multiple-sample
IWAE [Burda et al., 2016] - - - -
MS-NIC-MIX -1.852 0.0805 2.238 -0.0006764
MS-NIC-DMS -2.378 0.1046 1.998 -0.0006054

5.2 R-D Performance

We evaluate the performance of MS-NIC-MIX and MS-NIC-DMS based on sota NIC methods [Ballé
et al., 2018, Cheng et al., 2020]. Empirically, we find that MS-NIC-MIX works best with sample size
8, and MS-NIC-DMS with sample size 16. The experimental results on sample size selection can be
found in Appendix. A.3. Without special mention, we set the sample size of MS-NIC-MIX to 8 and
MS-NIC-DMS to 16.

For Ballé et al. [2018], MS-NIC-MIX saves around 4% of bitrate compared with single-sample
baseline (See Tab. 4). And MS-NIC-DMS saves around 5% of bitrate. On the other hand, the original
IWAE suffers performance decay as it is not compatible with direct-y trick. For Cheng et al. [2020],
we find that both MS-NIC-MIX and NS-NIC-DMS suppress baseline in PSNR. However, it is not
as evident as Ballé et al. [2018]. Moreover, the MS-SSIM is slightly lower than the baseline. This
is probably due to the auto-regressive context model. Besides, the original IWAE without direct-y
trick suffers from severe performance decay in both cases. The BD metric of IWAE on Cheng et al.
[2020] can not be computed as its R-D is not monotonous increasing, we refer interested readers to
Appendix. A.5 for details.

5.3 Latent Space Representation of MS-NIC

To better understand the latent learned by MS-NIC, we evaluate the variance and coefficient of
variation (Cov) of per-dimension latent distribution mean parameter y(i), z(i), with regard to input
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distribution p(x). As we are also interested in the discrete representation, we provide statistics of
rounded mean ȳ(i), z̄(i). These metrics show how much do latents vary when input changes, and a
large variation in latents means that there are useful information encoded. A really small variation
indicates that the latent is "dead" in that dimension.

As shown in Tab. 10 of Appendix. A.6, the latent of multiple-sample approaches has higher variance
than those of single-sample approach. Moreover, the Cov(y) of multiple-sample approaches is
around 4− 5 times higher than single-sample approach. Although the Cov(z) of multiple-sample
approaches is around 2 times lower, the main contributor of image reconstruction is y, and z only
serves to predict y’s distribution. Similar trend can be concluded from quantized latents ȳ, z̄. From
the variance and Cov perspective, the latent learned by MS-NIC is richer than single-sample approach.
It is also noteworthy that although the variance and Cov of y, ȳ of MS-NIC is significantly higher
than single-sample approach, the bpp only varies slightly.

Table 6: The average of per-dimension latent variance and Cov across Kodak test images. The model
is trained with λ = 0.015.

Var(#) Cov(#) bpp of #

Method ȳ z̄ ȳ z̄ ȳ z̄

Single-sample
Ballé et al. [2018] 1.499 0.3255 19.70 9.944 0.5136 0.01342

Multiple-sample
MS-NIC-MIX 1.906 0.7594 111.1 7.425 0.5108 0.01521
MS-NIC-DMS 1.919 0.7648 95.51 7.243 0.5092 0.01634

6 Limitation & Discussion

A major limitation of our method is that the improvement in R-D performance is marginal, especially
when based on Cheng et al. [2020]. Moreover, evaluations on more recent sota methods are also
helpful to strengthen the claims of this paper. In general, we think that the performance improvement
of our approach is bounded by how severe the posterior collapse is in neural image compression.
We measure the variance in latent dimension according to data in Fig. A.6. And from that figure it
might be observed that the major divergence of IWAE and VAE happens when the variance is very
small. And for the area where variance is reasonably large, the gain of IWAE is not that large. This
probably indicates that the posterior collapse in neural image compression is only alleviated to a
limited extend.

See more discussion in why the result on Cheng et al. [2020] is negative in Appendix. A.9

7 Conclusion

In this paper we propose MS-NIC, a multiple-sample importance weighted target for training NIC. It
improves sota NIC methods and learns richer latent representation. A known limitation is that its R-D
performance improvement is limited when applied to models with spatial context models (e.g. Cheng
et al. [2020]). Despite the somewhat negative result, this paper provides insights to the training of
NIC models from VAE perspective. Further work could consider improving the performance and
extend it into neural video compression.
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