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A Details on the proposed defense DAJAT

The algorithm of the proposed approach is presented in Algorithm-1. In every training iteration,
multiple augmentations are considered for every image xi (L7). We consider one base augmentation
and T complex augmentations. The base augmentation consists of Pad and Crop followed by
Horizontal Flip, while the complex augmentations are a combination of AutoAugment [7] and the
base augmentations. The attack generation for each augmentation (L8-L13) is similar to the ACAT
algorithm discussed in Section-E.2. The DAJAT loss (L16) is a combination of the TRADES loss [25]
(L17) on each augmentation, and a Jensen-Shannon (JS) divergence term between all augmentations.
The JS divergence is a combination of KL divergence terms with respect to the average probability
vector as shown below.

JSD(fθ(xi,base), fθ(xi,auto(1)), . . . , fθ(xi,auto(T))) =
1

T + 1

{
KL(fθ(xi,base,M))+

KL(fθ(xi,auto(1),M)) + · · ·+KL(fθ(xi,auto(T),M))
}

(1)

where M is defined as below,

M =
1

T + 1

{
fθ(xi,base) + fθ(xi,auto(1)) + · · ·+ fθ(xi,auto(T))

}
(2)

As shown in Table-5 of the main paper, the JS-divergence term improves accuracy on clean samples
and training convergence by enabling the joint learning of representations across different aug-
mentations. The model weights are perturbed by θ̃, by maximizing the TRADES loss on the base
augmentations alone within the constraint set M(θ) (L18). This constraint set is chosen such that
||θ̃l|| ≤ γ · ||θl|| for any layer l. The network at θ is then updated using gradients at fθ+θ̃ to minimize
the overall loss LDAJAT(θ + θ̃) (L20).

B Augmentations

While existing works hypothesize that augmentations changing the low-level statistics of images
cannot effectively improve adversarial training [18], we show in this work that with the use of
split Batch-normalization layers and JS divergence term between different augmentations, it is
indeed possible to obtain significant gains using augmentations that modify the low-level statistics
of images as well. In this work, we use an existing augmentation strategy, AutoAugment to obtain
an improvement in performance using the proposed training algorithm DAJAT. AutoAugment uses
Proximal Policy Optimization to find the set of policies that can yield optimal performance on
a given dataset. It consists of 25 unique sub-policies for a given dataset, where each sub-policy
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Algorithm 1 Diverse Augmentation based Joint Adversarial Training (DAJAT)

1: Input: Network fθ, Training Dataset D = {(xi, yi)}, Adversarial Threat model: ℓ∞ bound of
radius ε, number of epochs E, Maximum Learning Rate LRmax, M training mini-batches of
size n, number of attack steps S, Cross-entropy loss ℓCE , Weight perturbation constraint M(θ),
Number of augmented images using autoaugment T , coefficient of KL divergence term β

2: for epoch = 1 to E do
3: εasc = epoch · ε/E
4: LR = 0.5 · LRmax · (1 + cosine((epoch− 1)/E · π))
5: for iter = 1 to M do
6: for i = 1 to n (in parallel) do
7: for a ∈ {base, auto(1), . . . , auto(T)} do
8: for steps = 1 to S do
9: δ = 0.001 · N (0, 1)

10: δ = δ + εasc · sign (∇δKL(fθ(xi,a)||fθ(xi,a + δ)))
11: δ = Clamp (δ,−εasc, εasc)
12: x̃i,a = Clamp (xi,a + δ, 0, 1)
13: end for
14: end for
15: end for

16:

LDAJAT(θ) =
1

T + 1
· 1
n

n∑
i=1

{
LTR(θ, (xi, x̃i)base, yi) +

T∑
t=1

LTR(θ, (xi, x̃i)auto, yi)
}

+
1

n

n∑
i=1

{
JSD(fθ(xi,base), fθ(xi,auto(1)), . . . , fθ(xi,auto(T)))

}
17: where, LTR(θ, (x, x̃), y) = LCE(fθ(x), y) + β ·KL(fθ(x)||fθ(x̃))
18: θ̃ = argmax

θ̂∈M(θ)

1
n

n∑
i=1

{
LTR(θ + θ̂, (xi, x̃i)base, yi)

}
19: θ = θ − LR · ∇θ(LDAJAT(θ + θ̃))
20: end for
21: end for

is a combination of two augmentations chosen from a set of pre-defined augmentations in series.
The pre-defined augmentations include the spatial transformations - shear, rotation and translation,
and augmentations that cause changes in low-level statistics of images - color, posterize, solarize,
brightness, contrast, sharpness, autocontrast, equalize and invert.

We visualize some of the augmentations generated using AutoAugment and Base augmentations
(Pad+Crop, Horizontal Flip) in Fig.1 and Fig.2 respectively. It can be noted that multiple aug-
mentations generated using AutoAugment are significantly more diverse than the augmentations
generated using the base augmentations. The use of multiple diverse augmentations leads to im-
proved generalization on test set as discussed in Section-4 of the main paper. Further we visualize
the perturbations generated using the 2-step attack with KL-divergence loss on CIFAR-10 images
without augmentations, with Base augmentations and with AutoAugment on Trades-AWP [23] model
trained at ε = 8/255 in Fig.3, Fig.4 and Fig.5 respectively. For plotting, one image is selected at
random from each of the ten classes. Because of the increased diversity amongst the images on using
AutoAugment, we observe more diversity in the perturbations as well (Fig.5) when compared to the
Base augmentations (Pad+Crop, Horizontal Flip) (Fig.4) and No augmentations (Fig.3) case.

B.1 Distinction between Simple and Complex Augmentations

We term the augmentations that preserve low-level features of images as simple augmentations, and
those that modify the same as complex augmentations. To distinguish between simple and complex
augmentations, we do not use the difference between two images in pixel-space, since this would
incorrectly show that simple changes like horizontal-flip and crop are far apart. Instead, we use
metrics that better capture low-level features at pixel and patch levels. This can be measured at a
pixel-level using MSE between color histograms, and at a patch-level using patch-wise MSE. To
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Figure 1: CIFAR-10 images in (a), along with
respective random augmentations generated us-
ing AutoAugment [7] shown in columns (b-f)
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Figure 2: CIFAR-10 images in (a), along with
respective random augmentations generated us-
ing Base augmentations (Pad+Crop and Hori-
zontal Flip) shown in columns (b-f)

compute patch-wise MSE between two images x1 and x2 , for every 8× 8 patch in x1 we find the
nearest patch in x2 and a horizontal flip of x2 , and compute an average across all patches in x1. We
report the mean and standard deviation of this value across all images in the test set. We show the
pair-wise distances between three sets of images (Unaugmented, Pad+Crop+HFlip, AutoAugment)
in Table-1. Lower value indicates that the images are more similar. We note that Pad+Crop+HFlip
augmentations have the advantage of being more similar to the distribution of unaugmented images
that are expected during inference, while AutoAugment transformed images are farther away from the
unaugmented images. AutoAugment consists of several augmentations of varying complexity levels,
and may contain augmentations of similar complexity as the Base augmentations (Pad+Crop+HFlip)
as well. This is reflected in the higher variance in pair-wise distances corresponding to AutoAugment.

Table 1: Distinction between Simple and Complex Augmentations in pixel space, in terms of MSE
between Histograms and MSE between Patches.

Image pairs Complexity MSE between Histograms MSE between Patches
Base (Pad+Crop+HFlip), Unaugmented Simple 133.60 ± 94.05 43.68 ± 23.37

AutoAugment, Unaugmented Complex 289.25 ± 405.11 51.39 ± 24.23

DAJAT allows separate function mappings for augmentations that resemble the inference-time distri-
bution (Pad+Crop+HFlip), and those that lead to better diversity (AutoAugment). Base augmentations
have low variation, and are similar to the distribution of unaugmented images, which is important
to obtain performance gains using the batch-norm layer corresponding to these base augmentations
during inference. On the other hand, the high variance of AutoAugment based transformations helps
in improving the robust generalization of the overall model.

B.2 Distribution shift of Natural and Adversarial images due to Augmentations

We compare the distribution shift between (natural-augmented, natural-unaugmented) pairs and
(adversarial-augmented, adversarial-unaugmented) pairs. We consider two types of distances between
image pairs: low-level (MSE between histograms/patches) and feature-level (FID). In terms of
low-level distances, we expect the distances between (natural-augmented, natural-unaugmented) pairs
and the corresponding (adversarial-augmented, adversarial-unaugmented) pairs to be similar, since
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Figure 3: CIFAR-10 images
in (a), along with perturba-
tions of respective images gen-
erated using without any aug-
mentation shown in columns
(b-e). The attack is generated
at ε = 8/255 and the corre-
sponding perturbation’s mag-
nitude is scaled up for better
visibility

(a) (b) (c) (d) (e) (f)

Figure 4: CIFAR-10 images in
(a), along with perturbations
of respective random augmen-
tations generated using Base
augmentations (Pad+Crop and
Horizontal Flip) shown in
columns (b-e). The attack
is generated at ε = 8/255
and the corresponding pertur-
bation’s magnitude is scaled
up for better visibility

(a) (b) (c) (d) (e) (f)

Figure 5: CIFAR-10 images
in (a), along with perturba-
tions of respective random
augmentations generated us-
ing AutoAugment [7] shown
in columns (b-e).The attack
is generated at ε = 8/255
and the corresponding pertur-
bation’s magnitude is scaled
up for better visibility

the perturbed images are only an ε away from natural images. However, as seen in Fig.3, 4 and 5, the
perturbations of Pad+Crop+HFlip look similar to the perturbations of unaugmented images, while the
perturbations of AutoAugment based images look different from those of unaugmented images. This
is a result of larger pixel-level differences between the (natural-AutoAugment, natural-unaugmented)
image pairs when compared to (natural-PadCrop, natural-unaugmented) image pairs, which serves as
a more diverse initialization for the attack. The difference in the absolute perturbations results in a
larger distance in feature space (Fréchet Inception Distance or FID) as shown in Table-2.

Table 2: FID between Augmented and Unaugmented images with Simple and Complex augmentations

Image pairs FID between Natural image pairs FID between Adversarial image pairs
Base (Pad+Crop+HFlip), Unaugmented 24.02 33.41
AutoAugment, Unaugmented 37.62 43.75

For better clarity, we summarize our findings in Table-3. The higher feature level distance be-
tween (adversarial-AutoAugment, adversarial-unaugmented) image pairs when compared to (natural-
AutoAugment, natural-unaugmented) image pairs translates to higher 1

2dF∆F (s, t) in Eq.1 of the
main paper. Based on Conjecture-1(ii), unless this difference is accounted for, complex augmentations
cannot improve the performance of adversarial training.

B.3 Justification on the choice of Simple and Complex Augmentation pipeline

In the proposed method, we use two sets of augmentations - Pad+Crop+HFlip and AutoAugment.
The second set of augmentations (complex augmentations) consists of an autoaugment based trans-
formation followed by the base augmentations (Pad+Crop+HFlip). This has two implications -
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Table 3: Summary of pixel-level and feature-level distances between Augmented and Unaugmented
image pairs for Natural and Adversarial Images. Base refers to the augmentations Pad+Crop+HFlip.

Natural/ Adversarial Distributions Low-level distance Feature-level distance

Natural images Base, Unaugmented Low Low
Autoaugment, Unaugmented High Medium

Adversarial images Base, Unaugmented Low Medium
Autoaugment, Unaugmented High High
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Figure 6: Normalized histogram of pair-wise cosine similarity between the features obtained using a
pretrained Inception-V3 [21] model for different augmentations w.r.t. the respective input images. His-
tograms are plotted for the following pairs, (a) (Unaugmented, AutoAugment+Pad+Crop+Horizontal
flip) and (Unaugmented, Pad+Crop+Horizontal flip), (b) (Unaugmented, AutoAugment) and (Unaug-
mented, Pad+Crop+Horizontal flip). The full test set of CIFAR-10 (10k images) is used for the plots.

firstly, this ensures that the complexity of these augmentations is always greater than or equal to the
base augmentations. Secondly, since AutoAugment returns the unaugmented image as well, with a
certain probability (0.22 for CIFAR-10 policy), the base augmentations form a subset of the complex
augmentations. This trend is indeed reflected in the distribution of pair-wise feature-level similiarities
(Cosine similarity between features obtained from an Inception-V3 network) between the following
pairs: (Unaugmented, Pad+Crop+HFlip (PCHf)) and (Unaugmented, AutoAugment+PCHf) as shown
in Fig.6(a).

When AutoAugment alone is applied, a large fraction of images have a very high cosine similarity,
while others have a more spread out distribution as shown in Fig.6(b). When Pad+Crop+HFlip is
applied in series after AutoAugment, the distribution of these images shifts to the left, leading to an
overlap in the two distributions. Even with such a large overlap the method works well because, the
role of the "complex" batch-norm layer is to allow the learning of a function that minimizes empirical
risk across a wide distribution of data. While the test distribution may be different from these
augmentations, learning from diverse data is known to prevent overfitting and improve generalization.
However, since the task of adversarial training is inherently hard, and the objective of minimizing
loss on a wider distribution of data makes the task harder, we observe a drop in overall accuracy. The
use of a separate batch-norm layer for "simple" augmentations allows the network to specialize on
a select subset that is close to the distribution of test set images, and has a low variance. While the
diversity of simple augmentations is low, it is sufficient to learn the batch-norm statistics and affine
parameters which constitute 0.05% of all parameters, while majority of the parameters are learned
using both distributions, resulting in low overfitting.

B.4 Ablations

We show the impact of some of the important categories of augmentations individually in Table-4.

The robust accuracy improves when the spatial augmentations - shear, rotation and translation are
not used for adversarial training. Amongst the augmentations that modify the low-level statistics of
images, change in color balance gives maximum benefit. Further, it can be noted that although some
augmentations such as change in brightness and contrast lead to a drop in robust accuracy when used
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Table 4: Impact of individual augmentations within AutoAugment [7] on the proposed defense DAJAT.
Performance on CIFAR-10 dataset with ResNet-18 architecture is reported. Robust evaluations are
done against GAMA attack [19]

Augmentation Base + Augmentation + JS
Augmentation Clean Acc Robust Acc Clean Acc Robust Acc
AutoAugment 82.54 48.11 84.94 51.23
AutoAugment (without spatial augs) 83.70 48.80 84.94 51.40
Brightness 82.11 46.42 84.56 50.94
Sharpness 81.78 49.85 84.30 50.54
Color-Balance 82.31 49.87 84.39 51.48
Contrast 82.45 46.54 84.21 50.77

Table 5: Split Batch-Normalization: Impact of using common/ split running statistics and affine
parameters. Using a combination of separate running statistics and affine parameters works the best.

Method Clean Accuracy Robust Accuracy
[E1] split running statistics + split affine parameters (Ours) 88.90 57.22
[E2] split running statistics + common affine parameters 88.61 56.91
[E3] common running statistics + split affine parameters 88.86 57.01
[E4] common running statistics + common affine parameters (single Batch-Norm) 89.08 53.86

directly, the use of the same augmentations in the proposed framework results in a significant boost
in accuracy. Therefore there is no need to use carefully selected augmentations with the proposed
framework.

C Split Batch-Normalization

We perform three ablation experiments - first by training with separate running statistics and common
affine parameters, second by training with common running statistics and separate affine parameters,
and third without using split batch-norm at all, as shown in Table-5. Robust Accuracy is reported
against the GAMA attack. As shown in the Table-5, E2 and E3 (having either split running statistics
or split affine parameters) perform similar to the proposed approach, where separate running statistics
and affine parameters are used. This shows that our method learns a different function mapping for
both augmentations, and this can be realized by having different running statistics or different affine
parameters or using a combination of both. We further note that the use of a single batch-norm layer
for both augmentations (E4) degrades the results significantly.

We compare the average cosine similarity of the running statistics across training iterations for both
our method, and the case where we have separate running statistics and common affine parameters in
Fig.7. We note that the scale and trend of the average cosine similarity is similar in both cases. In the
case where common affine parameters are used, the gains in results w.r.t. single batch-norm case can
be attributed to the small drop in cosine similarity over training. This indicates that small changes in
these running statistics can indeed lead to a large impact in the overall results (as shown in Table-5).
We further verify this by noting the large difference in performance of the models when different
batch-norm parameters are used for training, in Table-6. Robust Accuracy is reported against the
GAMA attack.

D Improvements of DAJAT in the low data regime

We compare the performance of the proposed DAJAT defense (using Base, 2*AA) with TRADES-
AWP [23] 2-step baseline across different sizes of the CIFAR-10 training dataset on ResNet-18
architecture in Fig.8. We consider class balanced dataset for each case. We note that across different
settings, the proposed approach achieves 5-9% gains in clean accuracy and an average gain of 1.3%
in robust accuracy. The gain in clean accuracy in the low data regime is significantly high (8.93%)
highlighting the need for augmentations in improving Adversarial Training performance, specifically
in real-world settings where the training data is low.
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Figure 7: Average Cosine Similarity (averaged over all the layers of WideResNet-34-10) of
Running Mean and Variance across training epochs. For the proposed approach DAJAT, and an
ablation experiment that uses common batch-normalization affine parameters, the scale of cosine
similarities are similar, indicating that small changes in running mean and variance can indeed have a
large impact on model outputs.

Table 6: Impact of using different batch-normalization layers (Pad+Crop+HFlip vs AutoAugment)
at inference time.

Method Batch-norm (Inference) Clean Acc Robust Acc
Split running statistics + split affine parameters (Ours) Pad+Crop+HFlip 88.90 57.22
Split running statistics + split affine parameters (Ours) AutoAugment 76.17 44.45
Split running statistics + common affine parameters Pad+Crop+HFlip 88.61 56.91
Split running statistics + common affine parameters AutoAugment 78.69 45.41

E Details on ACAT

E.1 Motivation: Instability of 2-step Adversarial Training

Ascending perturbation radius helps in mitigating gradient masking when lesser steps are used for
attack generation. We present results of ACAT when compared to Fixed constraint AT (TRADES-
AWP with 2 attack steps) on CIFAR-10 dataset using ε = 8/255 with ResNet-18 and WideResNet-
34-10 model architectures in Table-7. Robust Accuracy is reported against the GAMA attack. Best
accuracy is computed using PGD-20 attack, which is not very reliable. Hence, in some cases, best
epoch may have a slightly lower accuracy when compared to the last epoch. On ResNet-18, we
observe that the difference between last and best epochs for both methods is very low. However, on
WideResNet-34-10, we observe the phenomenon of gradient masking in Fixed Constraint AT, with
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Figure 8: Improvements of DAJAT in the
low data regime: Performance of proposed ap-
proach DAJAT (Base, 2*AA) when compared
to the TRADES-AWP [23] 2-step baseline on
ResNet-18 architecture and CIFAR-10 dataset.
The proposed approach achieves improvements
across different sizes of training dataset, with
higher gains in the low data regime.
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Figure 9: Performance of ACAT across varia-
tion in β: Performance of the proposed defense
ACAT against variation in the coefficient of KL
divergence loss between the clean and adversar-
ial samples β. Higher β leads to improved robust
accuracy (against GAMA [19] attack) at the cost
of clean accuracy. ResNet-18 architecture and
CIFAR-10 dataset are used.
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Table 7: Fixed vs ascending ε Adversarial training on ResNet-18 and WRN-34-10 models with
maximum ε = 8/255 on CIFAR-10 dataset with 2 step attack generation during training. Impact of
gradient masking is higher for larger capacity models. This is effectively mitigated with the use of
Ascending ε Adversarial Training
Architecture Method Clean(last) Robust(last) Clean(best) Robust(best) Clean(last - best) Robust(last - best)
ResNet-18 Fixed ε AT 80.63 49.63 80.82 49.61 -0.19 0.02
ResNet-18 Ascending ε AT 82.41 50.00 82.57 49.91 -0.16 0.09

WRN-34-10 Fixed ε AT 86.69 44.87 86.83 54.76 -0.14 -9.89
WRN-34-10 Ascending ε AT 86.71 55.58 86.30 55.46 0.41 0.12

robust accuracy dropping by around 10% towards the end of training. We note that the difference
between last and best epochs is very low for ACAT even on WideResNet-34-10. The main motivation
of using an ascending perturbation radius is to stabilize training and prevent the onset of gradient
masking.

E.2 ACAT training algorithm

The algorithm for the proposed ACAT defense is presented in Algorithm-2. We consider an ℓ∞
threat model of perturbation radius ε. The perturbation bound for attack generation εasc is linearly
increased from 0 to ε during training (L3). The learning rate follows a cosine schedule across the
training epochs as shown in L4. The attack generation (L7-L12) is done for 2 iterations and follows
the TRADES [25] settings. Initially Gaussian noise of magnitude 0.001 is added to every pixel. The
KL divergence loss between the clean and perturbed images is maximized using the perturbation step
size εasc. Further, the perturbation is clipped to remain within the threat model in every iteration.

As shown in L14, the TRADES-AWP [23] loss is used for adversarial training. The loss LTR(θ+ θ̂) is
maximized with respect to θ̂ to find the perturbation θ̃ within the constraint set M(θ) (L15). Further,
the model weights θ are update using gradients at fθ+θ̃ (L16). The defense ACAT does not use any
additional training hyperparameters when compared to the TRADES-AWP defense. We vary the
hyperparameter β to obtain optimal results. We show the trend of model performance across variation
in β in Section-F.2.

E.3 Analysis of the proposed ACAT defense

Conjecture-2: We hypothesize that given a Neural Network fθε that minimizes the TRADES loss
[25] within a maximum perturbation radius of ε, and has sufficient smoothness in weight space within
an ℓ2 radius ψ around θε, there exist ε′ > ε and a model fθε′ where ||θε′ − θε|| ≤ ψ, such that fθε′
has a lower TRADES loss within ε′ when compared to fθε .

Justification: We first consider Adversarial Training within a perturbation bound ε using the
TRADES-AWP loss shown below.

LAWP,θ,ε = max
θ̂∈M(θ)

1

N

N∑
i=1

LCE(fθ+θ̂(xi), yi)+β· max
x̃i∈Aε(xi)

KL(fθ+θ̂(xi)||fθ+θ̂(x̃i))

(3)

θε = argmin
θ

LAWP,θ,ε (4)

The model fθε which is the minimizer of the above loss, achieves an optimal trade-off between the
cross-entropy loss on clean samples (clean loss, Lclean) and weighted KL divergence between clean
and adversarial images [25] (adversarial loss, Ladv).

Lclean,θ =

N∑
i=1

LCE(fθ(xi), yi), Ladv,θ,ε = β·
N∑
i=1

KL(fθ(xi)||fθ(x̃i)), x̃ ∈ Aε(x)

(5)
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Since the loss attains a minima at θε, a direction of further reduction in both clean and adversarial
losses does not exist (Eq.4). Gradient descent on the adversarial loss at θε to parameter θ′ results in a
reduction in adversarial loss at the cost of a higher clean loss.

θ′ = θε−η ·∇Ladv,θε,ε (6)

Ladv,θ′,ε < Ladv,θε,ε, Lclean,θ′ > Lclean,θε (7)

We assume that Lclean,θε increases by a rate γCE,θε and Ladv,θε,ε decreases by a rate γKLε,θε in the
direction of gradient descent of the adversarial loss ( −∇Ladv,θε,ε). Since θε is a minimizer of loss,

LAWP,θ′,ε > LAWP,θε,ε =⇒ γCE,θε = γKLε,θε+α, α > 0 (8)

Since the Cross-entropy loss is minimized at x, it attains a minima at x within the pixel neighborhood.

LCE(fθε(x), y)) < LCE(fθε(x+ϵ), y) (9)

Since the model fθ is adversarially robust within ε, the loss surface is locally smooth within the open
interval (−ε, ε). The adversarial loss, which measures the KL divergence of the adversarial image
w.r.t. the clean image is least at x and increases monotonically in the ε-neighborhood for adversarially
robust models [3]. Therefore, adversarial loss at ε′ = ε + δ for a small enough δ would be marginally
higher than the loss at ε.

Ladv,θε,ε′ > Ladv,θε,ε (10)

Based on the local smoothness in weight space as well, the same property holds at any θ′ in the
gradient descent direction of Ladv,θε,ε (satisfying Eq.6) such that ||θ′ − θε|| ≤ ψ, as shown below:

Ladv,θε,ε′ = Ladv,θε,ε+δθε (11)

Ladv,θ′,ε′ = Ladv,θ′,ε+δθ′ (12)

Since the adversarial loss at θ′ is lower than the same at θε, the loss surface at θ′ has a lower local
Lipschitz constant when compared to θε leading to the following:

δθ′ < δθε =⇒ Ladv,θ′,ε′−Ladv,θ′,ε < Ladv,θε,ε′−Ladv,θε,ε (13)

Rearranging terms,

Ladv,θε,ε′−Ladv,θ′,ε′ > Ladv,θε,ε−Ladv,θ′,ε

(14)
For small enough gradient descent step size η, the above can be related to the rate of reduction in the
adversarial loss as shown below:

γKLε′ ,θε = γKLε,θε+α
′, α′ > 0

(15)
Since the Cross-entropy loss does not depend on ε, from Eq.8 and Eq.15,

γCE,θε −γKLε′ ,θε = α−α′ (16)

Therefore, the rate of increase in LAWP,θε,ε′ , or α−α′, is less than the rate of increase in LAWP,θε,ε,
or α. For small enough α, α′ > α, so that the overall loss LAWP,θε,ε′ decreases. Based on this, for
small enough η, ∃ θε′ s.t. ||θε′ − θε|| ≤ ψ and LAWP,θε′ ,ε

′ < LAWP,θε,ε′ . Hence, it is possible to
move to θε′ which has a lower overall loss than the loss at θε. ■

E.4 Integrating ACAT with other efficient training methods

The proposed ACAT defense uses the KL divergence loss between clean and adversarial images,
similar to the TRADES adversarial training algorithm [25]. We present results by integrating the
proposed ACAT defense with losses from existing efficient adversarial training algorithms [19, 20]
in Table-8. We obtain a significant boost in performance over the respective baselines, when we
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Algorithm 2 Ascending Constraint Adversarial Training (ACAT)

1: Input: Network fθ, Training Dataset D = {(xi, yi)}, Adversarial Threat model: ℓ∞ bound of
radius ε, number of epochs E, Maximum Learning Rate LRmax, M training mini-batches of size
n, Cross-entropy loss ℓCE , Weight perturbation constraint M(θ), coefficient of KL divergence
term β

2: for epoch = 1 to E do
3: εasc = epoch · ε/E
4: LR = 0.5 · LRmax · (1 + cosine((epoch− 1)/E · π))
5: for iter = 1 to M do
6: for i = 1 to n (in parallel) do
7: for steps = 1 to 2 do
8: δ = 0.001 · N (0, 1)
9: δ = δ + εasc · sign (∇δKL(fθ(xi)||fθ(xi + δ)))

10: δ = Clamp (δ,−εasc, εasc)
11: x̃i = Clamp (xi + δ, 0, 1)
12: end for
13: end for
14: LTR(θ) =

1
n

n∑
i=1

LCE(fθ(xi), yi) + β ·KL(fθ(xi)||fθ(x̃i))

15: θ̃ = argmax
θ̂∈M(θ)

LTR(θ + θ̂)

16: θ = θ − LR · ∇θ(LTR(θ + θ̃))
17: end for
18: end for

use ACAT with GAT [19] and TRADES [25] losses, and a marginal boost when integrated with
the NuAT defense [20]. The adversarial weight perturbation step in the proposed defense results in
an increase in computational time when compared to the respective baselines. We choose the KL
divergence based loss for both proposed defenses ACAT and DAJAT since it results in an optimal
trade-off between performance and training time.

Table 8: Integrating ACAT with different loss formulations on the CIFAR-10 dataset with
WideResNet-34-10 architecture. Robust accuracy is reported against the GAMA attack [19].

Method # Attack Steps Clean Acc Robust Acc Time per epoch (seconds)
TRADES-AWP 2 85.49 41.62 412
ACAT (with TRADES loss) 2 86.71 55.58 412
NuAT2-WA 2 86.32 55.08 334
ACAT (with NuAT loss) 2 86.19 55.91 530
GAT2-WA 2 87.36 50.24 267
ACAT (with GAT loss) 2 87.79 54.70 396

E.5 Analysis of the effect of augmentations on ACAT

We analyze how using different combinations of augmentations affect ACAT in Table-9. From
these results we can say that using hard augmentations like AutoAugment and a mix of base and
AutoAugment each on 50% on the batch leads to a degradation in the performance of the model as
compared to using simple augmentations like Pad+Crop+Horizontal Flip.

F Details on Experiments and Results

F.1 Details on Datasets

We perform evaluations of the proposed defenses ACAT and DAJAT on the CIFAR-10, CIFAR-100
[13] and ImageNette-10 [12, 8] datasets, comprising of 10, 100 and 10 classes respectively. The
resolution of images in the CIFAR-10 and CIFAR-100 datasets is 32x32, while it is 128x128 in
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Table 9: Impact of augmentations: Performance (%) of ACAT models on Base augmentations and
AutoAugment (Auto). Clean and robust accuracy against GAMA attack [19] are reported. The use of
AutoAugment results in ∼ 1.5 - 2% drop in robust accuracy. The use of Base Augmentations alone
(Pad+Crop+HFlip) gives the best overall performance on the unaugmented test set.

Architecture Train set No-Aug (Clean) No-Aug (Robust) AutoAug (Clean) AutoAug (Robust)
No-Augmentation 73.50 43.64 44.98 18.50

Base (Pad+Crop+HFlip) 82.41 50.00 63.79 37.07
ResNet-18 AutoAugment 82.54 48.11 76.40 43.22

Base (50% batch) + AutoAugment (50% batch) 81.15 50.01 70.89 40.93

No-Augmentation 80.34 47.98 54.66 26.44
Base (Pad+Crop+HFlip) 86.71 55.58 68.24 40.83

WideResNet-34-10 AutoAugment 86.80 53.99 82.64 48.98
Base (50% batch) + AutoAugment (50% batch) 86.52 54.15 75.90 45.56
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Figure 10: Performance of DAJAT across variation in hyperparameters: Performance of the
proposed defense DAJAT (Base, 2*AA) on ResNet-18 architecture and CIFAR-10 dataset across
variation in (a,b) coefficient of KL divergence loss between softmax outputs of clean and adversarial
images. (c,d) coefficient of the JS divergence loss between the representations of different augmenta-
tions. Robust accuracy against GAMA [19] attack is shown.

ImageNette dataset. We use ResNet-18 [11] and WideResNet-34-10 [24] architectures for the CIFAR-
10 and CIFAR-100 datasets and ResNet-18 architecture for ImageNette. While CIFAR-10 is the
most popular dataset used for benchmarking adversarial defenses, CIFAR-100 has a larger number
of classes with one-tenth the number of images in each class, making it a more challenging setting.
ImageNette dataset is used to show the performance of the proposed method on higher resolution
images. We consider an ℓ∞ threat model with ε = 8/255 for the primary evaluations across all
datasets. We use TRADES-AWP [23] 2 as the base code for most of our analysis. For analysis in
Table-17 we use HAT [17] 3 and OAAT [1]4 as the base codes. For cutmix analysis in Table-15 we
use [16] 5 as the base code. The license for each of these codes are available on their respective github
repositories. Since the datasets used in this work are public, commonly used for research purposes
and do not contain any objectionable content, we find no need to take any consent from the authors of
these datasets.

F.2 Details on Training Settings

The training for the baseline methods and the proposed approach is done for 110 epochs as is common
in literature [15]. We use SGD optimizer along with cosine learning rate schedule for the proposed
method with a momentum of 0.9. We fix the maximum learning rate to 0.2 and weight decay to 5e-4
for the proposed approach across all datasets and model architectures. For the baselines, we use the
training settings from the official codes released by the authors. We performed all the experiments on
two NVidia V100 GPUs, two RTX-2080 GPUs and one RTX-3090 GPU. We use a validation split
of 1000 images from the train dataset both for CIFAR-10 and CIFAR-100 images, except for the
results reported in Table-4 of the main paper, where we use the full dataset to compare against the
state-of-the-art defenses on the RobustBench leaderboard [6].

2https://github.com/csdongxian/AWP
3https://github.com/imrahulr/hat
4https://github.com/val-iisc/OAAT
5https://github.com/imrahulr/adversarial_robustness_pytorch

11



Table 10: Performance gains obtained using DAJAT on CIFAR-100 using larger capacity models
Training Algorithm Architecture Clean Accuracy Robust Accuracy (GAMA) Robust Accuracy (AutoAttack)

TRADES-AWP 62.73 29.92 29.59
DAJAT (Ours) WRN-34-10 68.74 31.58 31.30

Gains using DAJAT 6.01 1.66 1.71
TRADES-AWP 63.12 30.15 29.83
DAJAT (Ours) WRN-34-20 70.49 32.91 32.55

Gains using DAJAT 7.37 2.76 2.72

Table 11: Comparison of DAJAT with Fixed-ε and Ascending-ε schedules on ResNet-18 and
WideResNet-34-10 architectures on CIFAR-10 and CIFAR-100 datasets.

Model
architecture Dataset Epsilon

schedule Clean Acc Robust Acc Clean Acc
(with Weight Averaging)

Robust Acc
(with Weight Averaging)

CIFAR-10 Fixed ε 86.57 51.17 86.25 51.44
CIFAR-10 Varying ε (DAJAT) 86.13 51.37 85.99 51.71

ResNet-18 CIFAR-100 Fixed ε 66.03 26.24 65.50 26.55
CIFAR-100 Varying ε (DAJAT) 66.50 27.12 66.84 27.61

CIFAR-10 Fixed ε 91.46 31.01 90.09 47.30
CIFAR-10 Varying ε (DAJAT) 89.12 56.98 88.90 57.22

WRN-34-10 CIFAR-100 Fixed ε 71.04 19.90 70.60 25.97
CIFAR-100 Varying ε (DAJAT) 68.82 30.75 68.74 31.58

For the proposed approaches ACAT and DAJAT (Base, 2*AA), we vary the value of β to achieve
an optimal trade-off between the clean and adversarial accuracy. As shown in Fig.9 and Fig.10(a,b),
as we increase β, robust accuracy improves and clean accuracy degrades initially, with a saturating
trend in robust accuracy at higher values of β. For the ResNet-18 model and CIFAR-10 dataset, the
optimal value of β is 8 and 9 for ACAT and DAJAT respectively.

We further fix the value of β to the optimal setting of 9 and vary the coefficient of the JS divergence
term in Fig.10(c,d). This term leads to a boost in the clean accuracy at the cost of a slight degradation
in the robust accuracy. The optimal setting of the coefficient of JS divergence term is 2 in the given
setting (Base, 2*AA) and ranges from 1 to 3 across all settings, datasets and model architectures.

We consider the Base, 2*AA as the main setting of DAJAT since its computational complexity
matches with that of TRADES-AWP. However, we show the result of Base, 3*AA as well to highlight
that the performance improves with a further increase in diversity. In this case, since the weight of the
Base augmentations is considerably low in the overall loss (L16 in Algorithm-1), we give a weight of
1/3 to the TRADES loss on base augmentations and 2/3 to the TRADES loss on the AutoAugment
based images. This mimics the setting of Base, 2*AA in terms of loss weighting, while introducing
additional diversity due to the presence of a larger number of complex augmentations, yielding a
small boost in performance.

F.3 Performance on Larger Capacity Models

We find that the performance gains obtained using DAJAT are indeed higher on larger capacity models.
In Table-10, we present results on CIFAR-100 dataset, on WideResNet-34-10 and WideResNet-34-20
model architectures using 110 epochs of training. We note that the improvements in clean accuracy
increase from 6.01% to 7.37%, while the improvements in robust accuracy against AutoAttack
increase from 1.71% to 2.72%.

F.4 Impact of Ascending Perturbation Radius in DAJAT

We present an ablation of DAJAT without ascending perturbation radius (DAJAT+Fixed-ε), where
attacks are constrained within a fixed perturbation bound of 8/255 during training. Table-11 shows
results on CIFAR-10 and CIFAR-100 datasets with WideResNet-34-10 and ResNet-18 architectures.
Robust Accuracy is reported against the GAMA attack. As seen in the first half of the table, on
ResNet-18 architecture, there is no gradient masking even with DAJAT+Fixed-ε. However, on the
WideResNet-34-10 architecture, DAJAT+Fixed-ε results in a large drop in robust accuracy due to
gradient masking. Although the use of weight averaging improves results, its robust accuracy is
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Figure 11: Train and test Accuracy plots of DAJAT and DAJAT+Fixed-ε to show impact of
varying ε training schedule: The train and test plots of DAJAT are compared with an ablation
experiment where a fixed ε training schedule is used (DAJAT+Fixed-ε). Clean and Robust accuracy
against PGD-20 [14] attack are plotted on CIFAR-10 dataset using ResNet-18 (a,b) and WideResNet-
34-10 (c,d) architectures. Although DAJAT+Fixed-ε is stable at lower model capacities (ResNet-18),
there is a sudden drop in the robust accuracy due to Gradient masking on WideResNet-34-10 (c,d)
after epoch 87, indicating the need for using varying ε schedule in DAJAT. Evaluations are done
using an attack perturbation bound of ε = 8/255.

Table 12: Variance across reruns: Variation in performance (%) of the proposed defenses ACAT
and DAJAT on CIFAR-10 dataset and ResNet-18 architecture across three reruns. Based on the
low standard deviation across runs, we note that both approaches are stable across reruns. Robust
accuracy is evaluated against GAMA PGD-100 attack [19].

ACAT DAJAT
Clean Acc Robust Acc Clean Acc Robust Acc

Run-1 82.41 50.00 86.13 51.37
Run-2 82.49 50.08 85.96 51.51
Run-3 82.54 50.12 85.94 51.48

Average 82.48 50.07 86.01 51.45
Standard Deviation 0.07 0.06 0.1 0.07

still lower by around 5-10% when compared to DAJAT. The phenomenon of gradient masking in
DAJAT+Fixed-ε can also be observed in Fig.11, where its robust accuracy suddenly drops after
epoch 87 accompanied by an increase in clean accuracy on CIFAR-10 with WideResNet-34-10
architecture. We note that even with respect to the best epoch accuracy on DAJAT+Fixed-ε, we obtain
an improvement of 2.57% on robust accuracy using DAJAT.

F.5 Variance across reruns

We present the variation across three reruns for the proposed defenses ACAT and DAJAT (Base,
2*AA) on CIFAR-10 dataset and ResNet-18 architecture in Table-12. Since weight averaging is
known to improve the stability of the base method [20], we present results without the use of weight
averaging to highlight the inherent variance of the base algorithm. The standard deviation of robust
accuracy across reruns is low (0.06-0.07) across both approaches indicating stability of the proposed
method. It can be noted that the standard deviation of clean accuracy in the proposed defense DAJAT
is slightly higher (0.1) due to the randomness in the complex augmentations, which impacts clean
accuracy more than the robust accuracy. Overall, we note that the standard deviation of clean and
robust accuracy for both proposed defences ACAT and DAJAT is low .

F.6 Analysis on Compute, Flops and Performance

We present the FLOPs, number of parameters and training time on a single Nvidia RTX-3090 GPU
along with our results when compared to the TRADES-AWP baseline on the CIFAR-10 dataset for
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Table 13: Comparison of compute, FLOPs (per iteration) and performance of the proposed
approaches DAJAT and ACAT when compared to TRADES-AWP on CIFAR-10 dataset.

Model Method gigaFLOPS (GFLOPS) Parameters (Million) Train Time Clean Acc Robust Acc
Training Inference Training Inference /epoch(sec) (%) (%)

TRADES-AWP 2707.6 71.251 11.174 11.174 299 80.47 49.87
ResNet18 ACAT (Ours) 997.52 71.251 11.174 11.174 108 82.41 49.80

DAJAT (Ours) 2422.5 71.251 11.184 11.174 264 85.99 51.48

TRADES-AWP 32417 853.08 46.160 46.160 1633 85.10 55.87
WRN-34-10 ACAT (Ours) 11943 853.08 46.160 46.160 472 86.71 55.36

DAJAT (Ours) 29005 853.08 46.183 46.160 1381 88.90 56.96

Table 14: Comparison of the proposed augmentation scheme with CutMix based augmentations
[18]: Performance (%) of the proposed defense DAJAT (Base, 2*AA) when compared to the use of
CutMix based augmentation proposed by Rebuffi et al. [18] against PGD 40-step attack [14]

Method Clean Acc Robust Acc (PGD-40)
TRADES [25] 84.72 56.92
Rebuffi et al. [18] 87.24 57.60
TRADES-AWP [23] 85.35 59.13
DAJAT (Ours) (Base, 2*AA) 88.90 60.97

ResNet18 and WRN-34-10 models in Table-13. Robust accuracy is reported against AutoAttack. We
discuss our observations below:

• FLOPs and number of parameters during inference are identical among the three training
methods (TRADES-AWP, ACAT, DAJAT), since we use only a single batch-normalization
layer (corresponding to Pad+Crop) during inference. As expected, these values are higher
for WideResNet-34-10 model architecture when compared to ResNet-18.

• Since we use split batch-norm layers in DAJAT, the number of parameters increases by
0.05% during training, while it remains the same during inference.

• We compute FLOPs during training by considering that a single backward pass requires
twice the number of FLOPs when compared to a forward pass. We also provide the number
of forward and backward passes in each method for reference.

• Using ACAT, we achieve 63% reduction in FLOPs (training) and training time when
compared to the TRADES-AWP baseline, while achieving 1.6-1.9% higher clean accuracy
and comparable robust accuracy.

• The use of ACAT strategy in the proposed DAJAT defense enables us to achieve similar
computational complexity as TRADES-AWP defense, while obtaining gains in performance.
Using DAJAT, we achieve 10% reduction in FLOPs (training) and training time, while
obtaining 3.8-5.5% higher clean accuracy and 1-1.6% higher robust accuracy.

F.7 Comparison against CutMix based augmentation

While we compare the performance of the proposed approach against various base adversarial training
algorithms [23, 14, 15, 20] in the main paper, we additionally compare with a recent augmentation
scheme that uses CutMix augmentations [18] to improve performance in this section. The authors
of [18] show a significant boost in performance using 400 epochs of training and large model
architectures. However, to ensure a fair comparison, we report the result of 110 epochs of training on
WideResNet-34-10 architecture and CIFAR-10 dataset that has been shared by the authors with us
upon request. We report the PGD 40-step accuracy as shared by the authors. As shown in Table-14,
we obtain a significant boost in performance over the CutMix based augmentation as well as the
TRADES-AWP [23] baseline using the proposed defense DAJAT.

Additionally, contrary to the claims by Rebuffi et al. [18], we show that it is indeed possible to
effectively use augmentations that modify the low-level statistics of images for obtaining improved
performance in Adversarial Training by using the proposed defense DAJAT.
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Table 15: Performance (%) by using [16] on CIFAR-10 dataset with Preact-ResNet18 model with
Swish Activation trained using varying epsilon schedule and cosine learning rate unless specified
otherwise.

Method Clean GAMA
[C1]: Cutmix - step schedule + fixed eps 81.67 49.18
[C2]: Cutmix 83.34 49.24
[C3]: Ours(Base, Cutmix) 82.67 51.99
[C4]: Ours(Base, Cutmix, Cutmix) 83.05 52.22
[C5]: C1 with Relu 81.03 46.6
[C6]: C1 with Weight decay for BN 70.66 36.36

Table 16: Performance of the proposed defense DAJAT when compared to some concurrent works
on CIFAR-10 and CIFAR-100 datasets for ResNet18 and WideResNet-34-10 models. Robust
evaluations are performed on Auto-Attack [5].

CIFAR-10, ResNet-18 CIFAR-10, WRN-34-10 CIFAR-100, ResNet-18 CIFAR-100, WRN-34-10
Method Clean AA @ 8/255 Clean AA @ 8/255 Clean AA @ 8/255 Clean AA @ 8/255
AWP [23] 81.99 51.45 85.36 56.17 59.88 25.81 62.73 29.59
HAT [17] 85.63 49.54 86.21 51.46 59.19 23.26 59.95 24.55
SEAT [22] 83.7 51.3 86.44 55.67 56.28 27.87 - -
SEAT+Cutmix [22] 81.53 49.1 84.81 56.03 - - - -
TRADES + TE [9] 83.86 49.77 - - 59.35 25.27 - -
UDR + TRADES [4] 84.4 49.9 84.93 54.45 - - - -
DAJAT (Ours) 85.71 52.50 88.71 57.81 65.45 27.69 68.75 31.85

As present in the github repository 6 of [18] we note that naively using cutmix doesn’t give good
results as shown in Table-6 of the main paper, therefore as suggested we use [16] as the base code
and incorporate cutmix into it. We present the results for 200 epochs training with learning rate drop
of 0.1 at 100 and 150 epochs, using the PreActResNet-18 model with Swish Activation and batch
size of 128 in Table-15(C1). We observe significantly improved results as compared to Table-6 of the
main paper on using [16] as the base code. We observe that the key differences in [16] as compared
to [25] are:

• Use of swish activation function in the PreActResNet18 model

• Weight decay not used for batch normalization layers

To study the impact of these changes, we investigate the use ReLU instead of Swish activation
(Table-15(C5)) and the use of weight decay for all the parameters of the model including the batch
normalization layers (Table-15(C6)). In both cases, we observe a significant drop with respect to
C1. Thus based on this ablation, the use of swish activation, and avoiding weight decay for batch
normalization layers seems important to obtain benefits using Cutmix.

Further we incorporate linearly increasing varying epsilon schedule along with cosine learning rate
schedule and get improved results in Table-15(C2). Next we incorporated our method DAJAT with
C2 and present the results in Table-15(C3,C5), where we can observe significant gains over C2, thus
showing the effectiveness of DAJAT.

F.8 Comparison of DAJAT with Concurrent Works

Here we compare the proposed approach DAJAT trained for 200 epochs with recent works that
appeared at ICLR 2022. The comparison of the proposed method DAJAT with AWP [23], HAT [17],
Self Ensemble Adversarial Training (SEAT) [22] with (SEAT+cutmix) and without cutmix (SEAT),
Unified distributional robustness for TRADES (UDR + TRADES) [4], temporal ensembling with
TRADES (TRADES + TE) [9] on CIFAR10 and CIFAR100 datasets for ResNet18 and WideResNet-
34-10 models is shown in Table-16. Since these are very recent works, we only present results
reported in the paper, and leave the remaining entries in the table blank.

6https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness/pytorch
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Table 17: Performance (%) of DAJAT when combined with other Adversarial training methods,
OAAT [1] and HAT [17] on CIFAR-10 and CIFAR-100 with 110 epochs of training. Robust
evaluations are performed on Auto-Attack(AA) [5] at ε = 8/255 and 16/255.

CIFAR-10, ResNet-18 CIFAR-10, WRN-34-10 CIFAR-100, ResNet-18 CIFAR-100, WRN-34-10
Method Clean AA, 8/255 AA, 16/255 Clean AA, 8/255 AA, 16/255 Clean AA, 8/255 AA, 16/255 Clean AA, 8/255 AA, 16/255
AWP [25, 23] 80.47 49.87 19.23 85.10 55.87 23.27 59.88 25.81 8.28 62.73 29.59 11.04
AWP+DAJAT 85.99 51.48 16.33 88.90 56.96 19.73 66.84 27.32 8.97 68.74 31.30 9.91

OAAT [1] 80.24 50.88 22.05 85.67 55.93 24.05 61.70 26.77 9.91 65.73 30.35 12.01
OAAT+DAJAT 82.05 52.21 22.78 86.22 57.64 24.56 62.50 28.47 10.67 66.03 31.15 12.67
HAT [17] 85.63 49.54 14.96 86.21 51.46 16.76 59.19 23.26 6.96 59.95 24.55 7.13
HAT+DAJAT 86.68 51.47 16.38 86.71 53.85 16.50 62.78 26.49 8.72 64.88 27.37 8.71

0 20 40 60
Perturbation size (ε/255) 

 
 (a) ACAT (Accuracy)

0

20

40

60

80

Ro
bu

st
 A

cc
ur

ac
y(

%
)

0 4 8 12 16
Perturbation size (ε/255) 

 
 (b) ACAT (Loss)

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e 

Lo
ss

0 20 40 60
Perturbation size (ε/255) 

 
 (c) DAJAT (Accuracy)

0

20

40

60

80

Ro
bu

st
 A

cc
ur

ac
y(

%
)

0 4 8 12 16
Perturbation size (ε/255) 

 
 (d) DAJAT (Loss)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Av
er

ag
e 

Lo
ss

Figure 12: Robust Accuracy and Loss on FGSM attack against variation in perturbation size:
(a,c) Robust accuracy (%) of the proposed defenses ACAT and DAJAT against PGD 7-step attacks
across variation in attack perturbation bound. Attacks within larger perturbation bounds are able to
bring down the robust accuracy of the model to 0, indicating the absence of gradient masking. (b,d)
Cross-entropy loss on FGSM adversarial samples across variation in attack perturbation bound. The
linearly increasing trend of loss indicates the absence of gradient masking. The models are trained on
CIFAR-10 dataset using ResNet-18 architecture.

F.9 Combining the proposed approach with different adversarial training methods

We explore combining the proposed defense DAJAT with some existing methods like [23], [1] and
[17] in Table-17. We observe that combining DAJAT with all three existing works leads to significant
gains both in clean as well as adversarial accuracies (AA, 8/255), especially on CIFAR-100 where
the number of images per class is low. Although OAAT [1] shows improved results over AWP
[23], combining DAJAT with OAAT leads to further gains of ∼ 1.5% in both clean and adversarial
accuracy on CIFAR10 and 1 − 1.5% gains in both clean and adversarial accuracy on CIFAR100.
Further, since OAAT [1] claims to achieve robustness at larger epsilon bounds, we evaluate using
Auto-Attack at ε = 16/255. Using OAAT+DAJAT we observe gains over OAAT on AutoAttack
with ε = 16/255 as well, which further confirms the effectiveness of DAJAT. Finally we combine
DAJAT with HAT [17] and we observe consistent gains over HAT [17] on all models and datasets.
While HAT [17] proposes to improve the robustness-accuracy trade-off, combining DAJAT with HAT
further improves this trade-off and shows gains of ∼ 1% on clean accuracy and ∼ 2% on robust
accuracy for CIFAR-10, and 3− 5% on clean accuracy and ∼ 3% on robust accuracy for CIFAR-100
dataset.

(a) Normal Training (b) TRADES-AWP (c) ACAT (Ours) (d) DAJAT (Ours)

Figure 13: Loss Surface Plots: Plot of cross-entropy loss in the local neighborhood of images
along the gradient direction (δ1) and a random direction perpendicular to the gradient (δ2). The
loss surface of the proposed defenses ACAT and DAJAT are smooth similar to the TRADES-AWP
defense, indicating the absence of gradient masking.
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Table 18: Evaluation against Black-Box and White-Box FGSM [10] attacks and multi-step PGD
attacks [14]: Performance (%) of the proposed DAJAT (Base + 2*AA) defense on CIFAR-10 dataset
with ResNet-18 architecture

Method Clean Acc BB FGSM FGSM PGD-20 PGD-100 PGD-500
NuAT2-WA 86.32 84.71 63.48 58.09 57.74 57.74
ACAT 86.71 85.29 64.08 58.76 58.64 58.53
TRADES-AWP 85.36 83.93 63.49 59.22 59.11 59.08
DAJAT(Base, 3*AA ) 88.64 87.19 66.99 61.09 60.80 60.74

Table 19: Evaluation against multi-step Targeted and Untargeted PGD attacks [14] with single
and multiple random restarts: Performance (%) of the proposed defense DAJAT (Base, 2*AA)
across different datasets with ResNet-18 architecture

CIFAR-10 CIFAR-100 IN-10
Attack 500-step 1000-step 500-step 1000-step 500-step 1000-step

PGD-Targeted (Least Likely Class) 85.01 85.01 66.02 65.98 85.06 85.01
PGD-Targeted (Random Class) 80.56 80.55 63.96 63.96 80.13 80.13
PGD-Untargeted 55.21 55.20 32.89 32.89 65.07 65.07

1-RR 1000-RR 1-RR 1000-RR 1-RR 1000-RR

PGD 50-step, r-RR 55.30 54.55 32.98 32.09 65.20 65.02

F.10 Sanity checks to verify the absence of gradient masking

We perform several sanity checks as recommended by Athalye et al. [3] to ensure the absence of
gradient masking in the proposed defenses ACAT and DAJAT.

• From Table-18 we note that Black-Box attacks are weaker than White-Box attacks, indicating
that the gradients from the model are reliable.

• We further note from Table-18 that attacks with higher number of steps are stronger than
those with lower steps. Further, PGD multi-step attacks are stronger than FGSM white-box
attacks.

• From Table-19 we note that robust accuracy against targeted and untargeted attacks saturates
as the number of attack steps increase from 500 to 1000, indicating that the evaluation is
robust.

• We also note from Table-19 that the drop in accuracy with 1000 random restarts is marginal.
• We note from Fig.12 that an increase in perturbation bound increases the effectiveness of

PGD 7-step attacks, and is able to bring down the accuracy of the model to 0 at large bounds.
Further, the loss on FGSM samples monotonically increases in the vicinity of the data
samples. These trends indicate the absence of gradient masking.

• We present results against AutoAttack [5] in Tables-2 and 3 of the main paper. AutoAttack
is an ensemble of several gradient-based attacks and a gradient-free attack Square [2]. The
robust accuracy against AutoAttack is similar to the accuracy against gradient-based attack
GAMA [19] indicating that gradient-free attacks are not significantly stronger than gradient
based attacks.

• We show the loss surface plots of the proposed defenses ACAT and DAJAT in the vicinity of
data samples in Fig.13. We note that the loss surface of the proposed defenses is smooth
similar to the TRADES-AWP defense, indicating the absence of gradient masking.

We finally compare the robust accuracy against various attacks in Tables-18 and 19 with the robust
accuracy against GAMA attack [19] and AutoAttack [5] in Tables-2 and 3 of the main paper. The
latter evaluations are significantly stronger, indicating that the evaluation presented in the main paper
is robust.

17



References
[1] S. Addepalli, S. Jain, G. Sriramanan, and V. B. Radhakrishnan. Scaling adversarial training to large

perturbation bounds. In The European Conference on Computer Vision (ECCV), 2022. 11, 16

[2] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square attack: a query-efficient black-box
adversarial attack via random search. In The European Conference on Computer Vision (ECCV), 2020. 17

[3] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Conference on Machine Learning (ICML), 2018. 9, 17

[4] A. T. Bui, T. Le, Q. H. Tran, H. Zhao, and D. Phung. A unified wasserstein distributional robustness
framework for adversarial training. In International Conference on Learning Representations (ICLR),
2022. 15

[5] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-
free attacks. In International Conference on Machine Learning (ICML), 2020. 15, 16, 17

[6] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chiang, P. Mittal, and
M. Hein. Robustbench: a standardized adversarial robustness benchmark. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. 11

[7] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 1, 3, 4, 6

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009. 10

[9] Y. Dong, K. Xu, X. Yang, T. Pang, Z. Deng, H. Su, and J. Zhu. Exploring memorization in adversarial
training. In International Conference on Learning Representations (ICLR), 2022. 15

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations (ICLR), 2015. 17

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015. 11

[12] J. Howard and S. Gugger. Fastai: a layered api for deep learning. Information, 11(2):108, 2020. 10

[13] A. Krizhevsky et al. Learning multiple layers of features from tiny images. 2009. 10

[14] A. Madry, A. Makelov, L. Schmidt, T. Dimitris, and A. Vladu. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learning Representations (ICLR), 2018. 13, 14, 17

[15] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu. Bag of tricks for adversarial training. International
Conference on Learning Representations (ICLR), 2021. 11, 14

[16] R. Rade. PyTorch implementation of uncovering the limits of adversarial training against norm-bounded
adversarial examples, 2021. URL https://github.com/imrahulr/adversarial_robustness_
pytorch. 11, 15

[17] R. Rade and S.-M. Moosavi-Dezfooli. Reducing excessive margin to achieve a better accuracy vs.
robustness trade-off. In International Conference on Learning Representations (ICLR), 2022. 11, 15, 16

[18] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. A. Mann. Data augmentation can
improve robustness. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021. 1, 14, 15

[19] G. Sriramanan, S. Addepalli, A. Baburaj, and R. Venkatesh Babu. Guided Adversarial Attack for Evaluating
and Enhancing Adversarial Defenses. In Advances in Neural Information Processing Systems (NeurIPS),
2020. 6, 7, 9, 10, 11, 13, 17

[20] G. Sriramanan, S. Addepalli, A. Baburaj, and R. Venkatesh Babu. Towards Efficient and Effective
Adversarial Training. In Advances in Neural Information Processing Systems (NeurIPS), 2021. 9, 10, 13,
14

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2818–2826, 2016. 5

18

https://github.com/imrahulr/adversarial_robustness_pytorch
https://github.com/imrahulr/adversarial_robustness_pytorch


[22] H. Wang and Y. Wang. Self-ensemble adversarial training for improved robustness. In International
Conference on Learning Representations (ICLR), 2022. 15

[23] D. Wu, S.-T. Xia, and Y. Wang. Adversarial weight perturbation helps robust generalization. Advances in
Neural Information Processing Systems (NeurIPS), 2020. 2, 6, 7, 8, 11, 14, 15, 16

[24] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016. 11

[25] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. I. Jordan. Theoretically principled trade-off
between robustness and accuracy. In International Conference on Machine Learning (ICML), 2019. 1, 8,
9, 10, 14, 15, 16

19


