
A Lewis Games Loss Decomposition : proofs

We provide all the proofs of the Lewis Games Loss Decomposition. We organize the proofs as
follows:

• Appendix A.1 - Reconstruction game, we provide the proofs of the Decomposition for the
reconstruction game.

– Appendix A.1.1 - log-likelihood reward, we first prove the loss decomposition when
the reward is the reconstruction log-likelihood (case of the main paper).

– Appendix A.1.2 - general reward, we then extend the decomposition to a more general
reward

• Appendix A.2 - Extension to Lewis games, we extend the Loss Decomposition to a more
general class of Lewis games. We first describe the additional formalism (Appendix A.2.1),
then we prove the decomposition when the reward is the listener’s log-likelihood (Ap-
pendix A.2.2) and when the reward is more general (Appendix A.2.3). Eventually, we
show how the classic discrimination game can be expressed under this formalism in Ap-
pendix A.2.4.

• Appendix A.3 - Extension to agents optimizing different rewards, we discuss how the
decomposition is affected when the agents optimize different rewards.

A.1 Proof of the Lewis Reconstruction Game Loss Decompositon

Let’s first recall some notations that we will use throughout the proofs. We consider two agents:
a speaker parameterized by θ and a listener parameterized by ϕ. In the reconstruction game, the
speaker observes objects denoted by x and taken from a set X . The random variable characterizing
the object is denoted by X and its distribution is denoted by p. Based on object x, the speaker then
sends a message m from a message space M according to its policy πθ(.|x). The random variable
Mθ characterizes the message that is sampled from the speaker’s policy πθ. Eventually, the listener
should reconstruct the original object x based on the message m. The probability that the listener
predicts the input x given a message m is denoted by ρϕ(x|m).

For any probability distribution, we denote by Supp the support of the distribution.

In the reconstruction game, the two agents optimize the same loss:

Lθ,ϕ = −Ex∼p,m∼πθ(·|x)[rϕ(x,m)]

We will first prove the decomposition in the case where rϕ(x,m) = log ρϕ(x|m) (reconstruction
log-likelihood) for all x and m and then for a more general form of reward.

A.1.1 Proof of the Decomposition when rϕ(x,m) = log ρϕ(x|m)

We first prove the decomposition in the case described in the main paper: rϕ(x,m) = log ρϕ(x|m)
for all x and m.

Optimal listener For completeness, we recall the proof of Equation 2 of the expression of the listener
that is optimal with respect to Lθ,ϕ.

In the case rϕ(x,m) = log ρϕ(x|m), the listener is optimizing a cross-entropy loss with respect to
the joint variable (X,M) where X follows p and M follows speaker’s policy πθ. The loss can be
rewritten as:

Lθ,ϕ = −Ex∼p,m∼πθ(.|x)[log ρϕ(x|m)]

Lθ,ϕ = −Em∼πθ,x∼ρ∗(θ)(.|m)[log ρϕ(x|m)]

According to Gibbs inequality, the optimal distribution ρϕ∗(·|m) for all m is ρϕ∗(.|m) = ρ∗(θ)(.|m)

where ρ∗(θ)(.|m) is the speaker’s posterior distribution with respect to the prior p and the conditional
distribution πθ(·|x):
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ρ∗(θ)(x|m) :=
p(x)πθ(m|x)

Ex′∼p[p(x′)πθ(m|x′)]
for all x ∈ Supp(p),m ∈ Supp(πθ(·|x))

This concludes the proof of Equation 2.

Loss Decomposition The idea of the proof is to decompose the reward into the optimal reward (when
the listener is optimal), denoted by r∗(θ)(x,m), and the residual that measures the optimality gap,
denoted by rϕ(x,m)− rθ(x,m):

rϕ(x,m) = r∗(θ)(x,m) + (rϕ(x,m)− r∗(θ)(x,m)) for all x ∈ Supp(p),m ∈ Supp(πθ(.|x))

Due to the linearity of the expectation, it follows that:

Lθ,ϕ = −Ex∼p,m∼πθ(.|x)[r
∗(θ)(x,m)]− Ex∼p,m∼πθ(.|x)[rϕ(x,m)− r∗(θ)(x,m)]

In the case where the reward is taken as the listener’s log-likelihood, we have:

Lθ,ϕ = −Ex∼p,m∼πθ(.|x)[r
∗(θ)(x,m)]− Ex∼p,m∼πθ(.|x)[rϕ(x,m)− r∗(θ)(x,m)]

= −Ex∼p,m∼πθ(.|x)[log ρ
∗(θ)(x|m)]− Ex∼p,m∼πθ(.|x)

[
log

ρϕ(x|m)

ρ∗(θ)(x|m)

]
= −Ex∼p,m∼πθ(.|x)[log ρ

∗(θ)(x|m)]− Em∼πθ
Ex∼ρ∗(θ)(.|m)

[
log

ρϕ(x|m)

ρ∗(θ)(x|m)

]
Lθ,ϕ = H(X|Mθ)︸ ︷︷ ︸

Linfo

+Em∼πθ
DKL(ρ

∗(θ)(·|m)||ρϕ(·|m))︸ ︷︷ ︸
Ladapt

where H(X|Mθ) is the conditional entropy of X conditioned on Mθ and DKL(p||q) is the Kullback-
Leiber divergence between two distributions p and q.

This last computation concludes the proof of Equation 5.

Remarks The key ingredients of the loss decomposition are:

1. We isolate two sub losses: Linfo, independent from the listener ; Ladapt optimized both by
the speaker and the listener.

2. Linfo measures the degree of ambiguity in the communication protocol. If Linfo is optimal,
ie. Linfo = 0, messages are unambiguous: each message refers to a unique input. Otherwise,
Linfo > 0 and ambiguities remain.

3. Ladapt measures the gap between the listener and its optimum (here the speaker’s posterior
distribution). When the listener is optimal, Ladapt = 0 and the main loss is limited to its
information part, otherwise Ladapt > 0 and the speaker and listener should adapt to reduce
the optimality gap.

A.1.2 Decomposition with a General Reward

In order to generalize the loss decomposition to more general rewards, we adopt the following
strategy:

• Construction of the reward: we first need to build a general expression of the communica-
tion reward. To do so, we describe the conditions that the cooperative reward should fulfill
in the reconstruction game and then propose a general reward expression. For the sake of
generality, we consider that the environment X and message space M may be continuous
spaces and that all the probability distribution may not be discrete.
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• Examples of usual cases: we show that our proposed general expression covers the rewards
used in most emergent communication papers, e.g. log-likelihood and accuracy.

• Loss decomposition in the general case: we write the loss decomposition with this general
form of reward, showing that the key properties of the loss decomposition still hold.

Construction of the reward The Lewis reconstruction game is a cooperative game: the more the
listener is able to reconstruct the objects seen by the speaker, the better the task is solved both by the
speaker and the listener. Therefore the reward of the Lewis reconstruction game should respect the
following conditions:

• C1: For x ∈ Supp(p) and m ∈ Supp(πθ(.|x)), the expected reward rϕ(x,m) is maximum
when ρϕ(.|m) = 1x, where ie. 1x denotes the indicator function on X taken on x: the
listener predicts x with probability 1 when it receives m.

• C2: For x ∈ Supp(p) and m ∈ Supp(πθ(.|x)), the expected reward rϕ(x,m) is sub-
optimal when ρϕ(.|m) ̸= 1x, ie., the listener has a non-negative probability to predict the
wrong object x′ ̸= x.

Given these assumptions, we propose the following general reward expression:

rϕ(x,m) = −D(1x||ρϕ(.|m)) +K (11)

where D is such that D(p||q) = 0 iff p = q,D(p||q) > 0 otherwise. 1x is the indicator function on
X taken in x and K is a real number that fixes the highest value of the reward. Note that D(p||q) is
close to a divergence, but has less assumptions.

Usual rewards as special instances of the general expression

We show that Equation 11 recovers most rewards used in the emergent communication literature,
specifically:

• Reconstruction log-likelihood [9, 10, 40, 68, 67, 11] This case is the one used in the main
paper and which is standarly used in reconstruction settings. With the following parameters

– D(p||q) = DKL(p||q),
– K = 0·

we have:

rϕ(x,m) = −DKL(1x||ρϕ(.|m)) = log ρϕ(x|m)

• Accuracy [65, 53, 52, 48, 56, 28, 23] Accuracy is the most commonly used reward in
the emergent communication literature. It corresponds to agents receiving reward 1 if
the prediction sampled according to the listener’s output probability ρϕ(·|m) matches the
original object x. The pointwise accuracy depends on the specific sample drawn from the
listener’s distribution. We are interested in how good the listener’s prediction is on average,
and thus in the expected accuracy, which is expressed as in Equation 11 with:

– D(p||q) = 1− Ep[q]

– K = 1

The expected accuracy is then defined as:

rϕ(x,m) = D(1x||ρϕ(.|m)) = ρϕ(x|m)·

Loss Decomposition

With this definition of the reward, the speaker and listener loss can be written:

Lθ,ϕ = −Ex∼p,m∼πθ(·|x)[rϕ(x|m)]

= −K + Ex∼p,m∼πθ(·|x)[D(1x||ρϕ(.|m))]
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We first need to define the optimal listener. Note that the expectation can be re-formulated:

Lθ,ϕ = −K + Em∼πθ,x∼ρ∗(θ)(·|m)[D(1x||ρϕ(.|m))]

The optimal listener is the listener ρϕ that minimizes Ex∼ρ∗(θ)(·|m)[D(1x, ρϕ(.|m))] for all m. In the
general case, there is no close-formed expression of the optimal listener. The optimal listener policy
is dependent of the function D and the posterior distribution ρ∗(θ)(·|m). We next denote the optimal
listener policy ρϕ∗(·|m) that is fully characterized by ρ∗(θ)(·|m) and D and is independent of ϕ.

As in Appendix A.1.1, we denote r∗(θ)(x,m) the reward of the optimal listener. We can then apply
the same reward decomposition as in Appendix A.1.1:

rϕ(x,m) = r∗(θ)(x,m) + (rϕ(x,m)− r∗(θ)(x,m)) for all x ∈ Supp(p),m ∈ Supp(πθ(.|x))

which is equal to:

rϕ(x,m) = −D(1x||ρϕ∗(.|m))− [D(1x||ρϕ(.|m))−D(1x||ρϕ∗(.|m))]−K

where ρϕ∗(.|m) is the optimal listener distribution that is independent of ϕ.

We can then rewrite the loss by taking the expectation of this reward and isolate an information and
co-adaptation component:

Lθ,ϕ = −Ex∼p,m∼πθ(.|x)[r
∗(θ)(x,m)]− Ex∼p,m∼πθ(.|x)[rϕ(x,m)− r∗(θ)(x,m)]

= Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρϕ∗(·|m))]︸ ︷︷ ︸
Linfo

+ Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρϕ(.|m))−D(1x||ρϕ∗(·|m))]︸ ︷︷ ︸
Ladapt

−K

To be an information/co-adaptation decomposition, this loss decomposition should fulfill the following
conditions:

1. Linfo should be independent from the listener’s weight ϕ; Ladapt should be optimized both
by the speaker and the listener.

2. Linfo should be optimal (Linfo = 0) when the communication protocol is unambiguous, ie.
each message refers to a unique input, sub-optimal (Linfo > 0) otherwise.

3. Ladapt should be 0 when the listener matches its optimum value with respect to the current
object-message joint distribution, otherwise Linfo > 0 and the speaker and listener should
adapt to reduce the optimality gap.

Let’s prove that all those conditions hold:

1. The optimal listener policy ρϕ∗(·|m) is independent of ϕ. It turns out that Linfo is indepen-
dent from the listener. On the contrary, Ladapt is dependent both on θ and ϕ and therefore is
optimized both by the speaker and listener.

2. Let first show that when Linfo = 0, the speaker language is unambiguous. The language is
considered unambiguous iff each message refers to a unique input. Formally, let x be in the
support of p and

Mx = {m ∈ M | ρ∗(θ)(x|m) > 0},

be the set of messages referring to x.
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This set is non empty because Em∼πθ
[ρ∗(θ)(x|m)] = p(x) > 0. The emergent language is

considered unambiguous iff for all x and x′ in the support of p:

x ̸= x′ ⇒ Mx ∩Mx′ = ∅,

This property is equivalent of having a speaker posterior distribution ρ∗(θ)(.|m) being a
Dirac distribution for all m (otherwise, there is at least one message that refers to more than
one object).
Let’s demonstrate that Linfo = 0 iff ρ∗(θ)(.|m) is a Dirac distribution for all m.
First, when the speaker’s posterior distribution is not a Dirac distribution, we have: Linfo > 0.
Let m be a message in the support of πθ. If ρ∗(θ)(·|m) is not a Dirac distribution, there
exists x such that ρ∗(θ)(x|m) > 0 and D(1x||ρϕ∗(·|m)) > 0. Indeed, if there exists x′

such that D(1x′ ||ρϕ∗(·|m)) = 0, we have ρϕ∗(·|m) = 1x′ by definition of D and thus: if
x ̸= x′ ⇒ D(1x||ρϕ∗(·|m)) = D(1x||1x′) > 0 by definition of D. It implies that
when ρ∗(θ)(·|m) is not a Dirac distribution : Ex∼ρ∗(θ)(.|m)[D(1x||ρϕ∗(·|m))] > 0.

Reciprocally, if for all m ∈ Supp(πθ), ρ∗(θ)(·|m) is a Dirac distribution: ρ∗(θ)(·|m) =
1xm (with m referring to xm and all x ∈ Supp(p) covered by the messages) and the
corresponding optimal listener is also the Dirac distribution ρϕ∗(·|m) = 1xm

, we have:

Linfo = Em∼πθ
[D(1xm ||ρϕ∗(·|m))] = Em∼πθ

[D(1xm ||1xm)] = 0

Therefore, Linfo is equal to 0, ie. is minimum, if and only if the speaker has a posterior
which is Dirac distribution, ie. the speaker develops an unambiguous language.

3. When the listener is optimal with respect to its loss, ρϕ(.|m) = ρϕ∗(.|m) for all m and
as a direct consequence, Ladapt = 0. When the listener is not optimal with respect to its
loss, Ladapt > 0 by definition of the optimal listener which is the listener that minimizes
Em∼πθ,x∼ρ∗(θ)(·|m)[D(1x||ρϕ(.|m))].

In conclusion, in the case of a general reward, we keep the main ingredients of the information/co-
adaptation decomposition.

A.2 General Proof of the Lewis Games Loss Decomposition

In the previous section, we provided a proof of the loss decomposition for the Lewis Reconstruction
Game with a general cooperative reward. The goal of this Section is to extend this decomposition to
a more general definition of Lewis Games:

• Appendix A.2.1 - Formalism: We first describe the additional formalism.

• Appendix A.2.2 - Log-likelihood reward: We prove the decomposition for the general
Lewis Game when the reward is the listener’s log-likelihood.

• Appendix A.2.4 - General cooperative reward We prove the decomposition for the general
Lewis Game with a general cooperative reward.

• Appendix A.2.4 - Discrimination game : Eventually, we show how the widely studied
discrimination game [12, 60, 21, 30, 65, 53, 52, 33, 56, 58] can be expressed under this
formalism.

A.2.1 Formalism

In the general form, we consider inputs x from a set X where x is drawn from pX . We consider a
random feature F of X (in the reconstruction game F = X) that is distributed following pF (.|X).
A draw of F is denoted f and the set of potential features F . We here consider that the listener
may have access to an auxiliary input y. We denote Y the random variable of this auxiliary input
and pY (·|X,F ) its probability distribution. The task is here the communication of the feature f .
To this end, the speaker still sends messages m from the message space M. The random variable
Mθ characterizes the messages that are sampled from the speaker’s policy πθ(·|X). Eventually, the
probability that the listener predicts the correct feature f , given message m and auxiliary features y
is denoted by ρϕ(f |m, y).
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A.2.2 Proof with the log-likelihood reward: rϕ(f,m, y) = log ρϕ(f |m, y)

We first prove the decomposition in the case: rϕ(f,m, y) = log ρϕ(f |m, y) for all f ,m and y, ie. the
reward is the listener’s log-likelihood of predicting the good feature. The agents’ loss becomes

Lθ,ϕ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[log ρϕ(f |m, y)]·

Optimal listener The optimal listener is the listener that optimally minimizes Lθ,ϕ for a fixed speaker
policy πθ. It is obtained by noting that:

Lθ,ϕ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[log ρϕ(f |m, y)]

Lθ,ϕ = −E(m,y)∼pMθ,Y
Ef∼ρ∗(θ)(·|m,y)[log ρϕ(f |m, y)]·

where ρ∗(θ)(f |m, y) =
Ex∼pX

[πθ(m|x)pF (f |x)pY (y|f,x)]
Ex∼pX,f∼pF (.|x)[πθ(m|x)pY (y|f,x)] for all f , m and y and pMθ,Y (m, y) =

Ex∼pX ,f∼pF (.|x)[πθ(m|x)pY (y|f, x)].

It follows from Gibbs inequality that the optimal listener is ρ∗(θ)(·|m, y) for all m and y.

We can apply the reward decomposition of Appendix A.1.1:

rϕ(x,m) = r∗(θ)(f,m, y) + (rϕ(f,m, y)− r∗(θ)(f,m, y)) for all f ∈ F ,m ∈ M, y ∈ Y·

Plugging this decomposed reward in our loss, and applying the exact same steps as in Appendix A.1.1,
we get

Lθ,ϕ = H(F |Mθ, Y )︸ ︷︷ ︸
Linfo

+E(m,y)∼pMθ,Y
DKL(ρ

∗(θ)(·|m, y)||ρϕ(·|m, y))︸ ︷︷ ︸
Ladapt

(12)

which is the Loss Decomposition for a general game.

Remarks You note that the decomposition is close to the Loss Decomposition in the reconstruction
case (Equation 5). Indeed, since the listener should predict a given feature F , the information task
is to build an unambiguous message protocol with respect to this feature and the optimal listener
becomes the posterior distribution of the speaker with respect to this feature. The co-adaptation loss
is once again a Kullback-Leiber distribution between the listener and the speaker’s posterior. Linfo

and Ladapt respects the conditions states in Appendix A.1.1.

A.2.3 Proof with the general reward rϕ(f,m, y) = −D(1f ||ρϕ(.|m, y)) +K

To study the general case, we use the reward definition provided in Appendix A.1.2:

rϕ(f,m, y) = −D(1f ||ρϕ(.|m, y)) +K

where D(p||q) is a function that is null when p = q, greater than 0 otherwise, 1f the indicator
function on F taken in f and K is a real number that fixes the highest value of the reward.

Agents’ loss becomes:

Lθ,ϕ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[rϕ(f,m, y)]

Lθ,ϕ = Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[D(1f ||ρϕ(.|m, y))]−K

Denoting ρϕ∗(.|m, y) the listener that optimally minimises Lθ,ϕ and rθ(f,m, y) the reward of the
optimal listener, the loss can be decomposed:
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Lθ,ϕ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[r
∗(θ)(f,m, y)]

− Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[rϕ(f,m, y)− r∗(θ)(f,m, y)]

Lθ,ϕ = Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[D(1f ||ρϕ∗(.|m, y))]︸ ︷︷ ︸
Linfo

+ Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[D(1f ||ρϕ(.|m, y))−D(1f ||ρϕ∗(.|m, y))]︸ ︷︷ ︸
Ladapt

−K

For the same arguments as in Appendix A.1.2, Linfo is only optimized by the speaker and is optimal
when the speaker develops an unambiguous message protocol with respect to F given Y , Ladapt is
null when the listener is optimal, otherwise it is > 0, ie. sub-optimal. Therefore, we recover the key
ingredients of the Loss Decomposition: when the listener is optimal, speaker’s loss is limited to Linfo,
when the listener is not optimal, the speaker has the additional task to help the listener matching its
optimum.

A.2.4 Case of the Discrimination Game

Recall that in a discrimination game, as in a reconstruction game, the speaker observes an input, x
and sends a message m to the listener. The listener is then provided with both the message m, and a
list of N + 1 candidate inputs, containing input x, along with N other inputs, or distractors. The
goal of the listener is then to give the index of the candidate that corresponds to the actual input.

To formally define discrimination games as instances of the general Lewis game described above, we
define X1, . . . , XN to be i.i.d. samples from the inputs distribution p. These inputs will be used as the
distractors. We additionally set X0 = X . We then define a random permutation Σ, drawn uniformly
from the set of N + 1 element permutations, and independently from all other random variables. We
then set our auxiliary input Y = (XΣ(0), . . . , XΣ(N)), which provides the listener with a permuted
list, containing both the correct input at a random position, as well as the distractors. Finally, we set
the feature to be predicted as F = Σ−1(0). The task of the listener becomes to identify the index of
the correct input among all distractors, and we recover a discrimination game.

A.3 Speaker and Listener Optimizing Different Rewards

In this paper, we only discuss the case where the agents are fully cooperative, ie. they are optimizing
exactly the same reward. When the agents are not aligned on the same objective, the system
should be decoupled and an additional alignement bias is added to the loss of the speaker. For
example, in the reconstruction game where the speaker is optimizing a general reward rϕ(x,m) =
−D(1x, ρϕ(·|m)) +K and the listener a cross-entropy loss, the system becomes:

{
Lθ = Ex∼p,m∼πθ(·|x)[D(1x, ρϕ(·|m))]−K
Lϕ = −Ex∼p,m∼πθ(·|x)[log ρϕ(x|m)]· (13)

where Lθ is the speaker’s loss and Lϕ the listener’s loss.

By denoting ρϕ∗(·|m) the optimal listener for all m with respect to Lθ (which is fully determined by
the speaker’s posterior and D) and ρ∗(θ)(·|m) the optimal listener for all m with respect to Lϕ (in
this case, the speaker posterior), the speaker loss now decomposes into:

Lθ = Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρ∗(θ)(·|m))]︸ ︷︷ ︸
Linfo

+Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρϕ(.|m))−D(1x||ρϕ∗(·|m))]︸ ︷︷ ︸
Ladapt

+ Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρϕ∗(.|m))−D(1x||ρ∗(θ)(·|m))]︸ ︷︷ ︸
alignment bias

−K

Compared to the standard decomposition, there is an additional term, that we name the alignment
bias, linked to the gap between the listener optimum of Lθ and the listener optimum of Lϕ. If those
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optima are close, the amplitude of this term is negligible compared to Linfo and Ladapt. If those
optima are very different (eg. competitive game), the information and co-adaptation terms could
have a significantly smaller amplitude compared to the alignment bias. We leave to future work the
theoretical study of this alignment bias which echoes some empirical studies [61].

B Method: Additional Computations

In Section 3.2, we propose a protocol to balance the importance of the information and co-adaptation
losses in the speaker’s training loss. To do so, we use the probe listener’s estimate of the speaker’s
posterior on the train set ρtrainω∗ (x|m) = log ρtrainω∗ (x|m) and build the following reward:

rϕ(x,m;α) = (1− 2α)× log ρtrainω∗ (x|m)︸ ︷︷ ︸
probe listener reward

+ α× log ρϕ(x|m)︸ ︷︷ ︸
standard listener reward

where α is a weight in [0; 0.5].

The loss equality defined in Section 3.2 is then recovered with the following computations:

Lθ(α) = −Ex∼p,m∼πθ(.|x)[rϕ(x,m;α)]

= −Ex∼p,m∼πθ(.|x)[(1− 2α)× log ρtrainω∗ (x|m) + α× log ρϕ(x|m)]

= −(1− 2α)Ex∼p,m∼πθ(.|x)[log ρ
train
ω∗ (x|m)]− αEx∼p,m∼πθ(.|x)[log ρϕ(x|m)]

= (1− 2α)L̂train
info + α(L̂train

info + L̂train
adapt)

Lθ(α) = (1− α)L̂train
info + αL̂train

adapt

Remark In the paper, we only consider the case α ∈ [0; 0.5] and do not explore larger values of α.
Indeed, controlling the co-adaptation rate α is made by re-weighting L̂train

info (estimated with a probe
listener). However, two issues occur when α > 0.5:

• First, the goal of computing L̂train
info is to indirectly balance the weight of the training

information loss Ltrain
info . By taking the loss of the probe listener close to optimality, we

get an upper bound estimate L̂train
info of the training information loss Ltrain

info . Therefore, it
theoretically ensures that we minimize Ltrain

info when optimizing L̂train
info . However, when

α > 0.5, the weight of L̂train
info is negative. In this case, since L̂train

info is an upper bound of
Ltrain
info , we do not have the guarantee that the speaker minimizes −Ltrain

info anymore.
• Second, we empirically experimented α > 0.5 even if theoretical conditions are not reached.

In practice, if the system converged for values of α closed to 0.5, the system quickly
became unstable for larger values of α. Our main hypothesis is that the speaker cannot start
structuring its messages when the weight of L̂train

adapt is too strong. Indeed, agents start with
random weights. It implies that, at the beginning of the training, if the weight of L̂train

adapt is
too strong, it pressures the speaker to have an almost uniform posterior, ie. to develop a
fully ambiguous language. In short, if α is too large, the speaker has too little pressure on
developing meaningful messages and therefore succeeding in the communication task.

C Regularization

We here provide:

• the parameters used for the listener’s regularization (Appendix C.1)
• the results obtained when regularizing the speaker (Appendix C.2)

C.1 Parameters of the Listener’s Regularization

Regularization parameters have been tuned in order to get the best average generalization scores
while having a convergence success rate greater or equal to 75%. When regularizing with the layer
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normalization (noted No LN. in Table 1), we remove the layer normalization applied of the listener’s
LSTM cell. Dropout rate is set to 0.2 and weight decay penalty is set to 0.01 both when layer
normalization is kept (noted Weight decay in Table 1) and when layer normalization is removed
(noted No LN. + WD in Table 1).

C.2 Comparison with Speaker’s Regularization

Parameters For the sake of completeness, we also study the impact of regularizing the speaker. Here,
we only report the results with the weight decay penalty. Indeed, removing the layer normalization
makes the training slow and unstable while results with dropout are worse than those with weight
decay. Weight decay penalty has been fine-tuned to 0.005 to get the best average generalization
performances while having > 75% successful experiments.

Results In Table 2, we compare the generalization and compositionality of emergent languages with
and without regularization applied on the speaker. First, when we regularize the speaker without any
regularization on the listener, we see that the gain of generalization and compositionality is negligible
and inferior to the gain obtained when regularizing the listener. Moreover, we note that when we
regularize both the speaker and the listener, scores of generalization and compositionality are similar
to those obtained when only regularizing the listener. It suggests that regularizing the speaker has
little impact on generalization and compositionality.

These results support the claim of Section 5.2: the listener is the main contributor of the co-adaptation
overfitting in the reconstruction game.

No Speaker reg. Gen. ↑ Compo. ↑

Continuous 0.58±0.05 0.22±0.02

No LN. 0.70±0.03 0.24±0.02

Weight decay 0.72±0.03 0.25±0.03

No LN. + WD 0.87±0.07 0.30±0.03

Speaker with WD Gen. ↑ Compo. ↑

Continuous 0.62±0.02 0.22±0.03

No LN. 0.68±0.07 0.23±0.01

Weight decay 0.74±0.05 0.26±0.04

No LN. + WD 0.82±0.07 0.32±0.04

Table 2: Performance comparison: (left) without speaker regularization ; (right) with speaker
regularization. Weight decay penalty on the speaker is set to 0.005. Parameters of regularization
methods for the listener are reported in Appendix C.1.

D Image Discrimination Games

We here complete Section 5.3 by presenting the rules and experimental settings of the image dis-
crimination game (Appendix D.1), reporting the results of compositionality (Appendix D.2) and
completing generalization results of Table 1 with regularization experiments (Appendix D.3).

D.1 Experimental Settings

For the implementation of the image discrimination game, we mostly follow the protocol proposed
by [12].

D.1.1 Game Rules and notations

In the Lewis image discrimination game, the speaker observes an image. Then, the speaker sends a
descriptive message to the listener. Based on this message, the listener should retrieve the correct
image among a set of candidates.

Formally, the image observed by the speaker is denoted by x and belongs to a set X . The intermediate
message sent by the speaker is denoted by m and belongs to a set a potential messages M. The speaker
follows a policy πθ which samples a message m with probability πθ(m|x) conditioned on image
x. The listener encodes the message m into a representation tϕ(m). The set of candidates received
by the listener are denoted C and the listener encodes each candidates x′ ∈ C by a representation
tϕ(x

′). The probability of a candidate x′ to be the correct image is : ρϕ(x′|m, C). It is obtained by
comparing the message encoding tϕ(m) with the image encoding tϕ(x

′) of all candidates.
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D.1.2 Environment

Datasets We perform the discrimination game on ImageNet [19, 69] and CelebA [57]. We work with
image pre-processed encodings f(x) of size 2048 that have been open-sourced by [12]. In the two
datasets, each image has been center-cropped and processed by a ResNet-50 encoder pretrained on
ImageNet with the self-supervised method BYOL [29].

Train/val/test splits For building our custom training sets, we first considered the splits provided by
[12]. From the respective 1400k and 200k labelled images of ImageNet and CelebA, they slitted the
dataset in train, validation and test with the ratio 80/10/10.

To test agents generalization capacities, we also build subsets of the training set provided by [12]:
ImageNet 1

20 , ImageNet 1
100 , CelebA 1

20 and CelebA 1
100 . For each of those sub-training sets, we

randomly selected a small fraction of the training set, approximatively corresponding to 1/20-th and
1/100-th of the total training set. The corresponding number of samples are reported in Table 3.

Training samples

CelebA 1/20 1/100

8492 2123

Training samples

ImageNet 1/20 1/100

50732 12683

Table 3: Number of training samples for the four training subsets considered: ImageNet 1
20 , ImageNet

1
100 , CelebA 1

20 and CelebA 1
100

All our experiments on images are run with those 4 small training sets. We keep the original validation
and test sets from [12].

D.1.3 Agent Models

Speaker model The speaker is a neural network that takes the pre-processed representation of an
image f(x) as input of size 2048 and returns a message m = (mi)1≤i≤T of length T .

The speaker follows a recurrent policy: given the image representation f(x), it samples for all
t ∈ [1, T ] a token mt with probability πθ(mt|m<t, f(x)). The image representation f(x) is first
projected by a linear layer to get an object embedding of size 256 that is used to initialize a LSTM of
size 256 with layer normalization. At each time step, the LSTM’s output is fed into a linear layer of
size |V|, followed by a softmax, to produce πθ(mt|m<t, f(x)).

In our experiments, the following parameters have been chosen: T = 10, |V | = 10 meaning that the
message space is of size 1010 preventing any channel capacity bottleneck.

Listener model The listener is a neural network that takes the speaker’s message m and a set of
image candidates C containing the target image x and outputs the probability for each candidate
x′ ∈ C to be the target image x.

The listener is composed of two modules: one that encodes the message ; the other that encodes
images. For a message m = (m1, ...,mT ), the listener passes each symbol mt through an embedding
layer of dimension 256 followed by a LSTM of size 256 with layer normalization. The final recurrent
state h1

T is then passed to a linear layer that produces the image encoding tϕ(m) of size 256. In
parallel, each candidate x′ is first pre-processed by f and then passed through a linear layer producing
an image encoding tϕ(x

′) of size 256.

The message representation tϕ(m) is then compared to each candidate representation tϕ(x
′) with the

following score function: score(m,x′, ϕ) := tϕ(m)tϕ(x
′)T . Note that contrary to [12], we rather

use a dot-product score function [53] instead of a cosine similarity because we empirically got better
results and more stable trainings. The probability distribution over the candidates C of being the target
image x is then obtained by normalizing the scores with a softmax. This probability distribution is
denoted by ρϕ(·|m, C) and the listener guess is x̂ = argmax

x′
ρϕ(x

′|m, C).

In our experiments, the number of candidates is |C| = 1000.
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D.1.4 Agents Training

We follow the same principle as in the reconstruction game: the listener is trained to best predict the
target image among the set of candidates, while the speaker takes the opposite of the listener’s loss as
reward:

Listener loss The listener is trained to predict the target image among the set of candidates C. When
receiving a batch of inputs x, a set of candidates C is sampled for each input x. The sampling is
uniform without replacement over X − {x} meaning that the target image x cannot be duplicated
into the candidates. The listener is then trained to optimized the average InfoNCE loss [62]:

Lϕ =
∑

x∈batch

− log ρϕ(x|m, C)

Speaker loss When the speaker observes an image x, sends a message m and the listener has to
choose among a set of candidates C, the speaker’s reward is defined as:

rϕ,C(x,m) = log ρϕ(x|m, C)

The speaker is trained to maximize its cumulative reward: Ex,m,C [log ρϕ(x|m, C)] which means that
the speaker and the listener have the same loss.

Optimization The agents are optimized using Adam [42] with β1 = 0.9 and β2 = 0.999. The
speaker’s learning rate is 5 · 10−4 while the listener’s learning rate is 1 · 10−3. Agents are trained on
batches of size of 2048. For the speaker, we use policy gradient [76], with a baseline computed as the
average reward within the minibatch, and we add an entropy regularization of 0.01 to the speaker’s
loss [82].

D.2 Topographic Similarity Results

We report results of topographic similarity for experiments of Section 5.3. To be complete, we add
the scores when applying listener regularization (corresponding generalization performances are
reported in Appendix D.3).

Scores of topographic similarity are reported in Table 4. Here, the distance used to compare images
is the cosine distance between the vector representations of the ResNet-50 encoder pretrained on
ImageNet. The distance used to compare messages remains the edit-distance. As mentioned in the
main paper, we can see that there is not any compositionality trend when agents communicate about
images. Moreover, when comparing with Table 6 that reports generalization performances, we see
that gains of generalization do not correlate with gains of topographic similarity. It suggests that the
topographic similarity does not capture agents’ language structure in image based settings, as already
observed in previous work [12, 1].

Topographic similarity ↑

CelebA 1/20 1/100

Continuous 0.28±0.03 0.32±0.03

No LN. 0.26±0.04 0.29±0.03

No LN. + WD – 0.30±0.03

Weight decay 0.27±0.03 0.28±0.04

Early stopping 0.27±0.04 0.30±0.03

Topographic similarity ↑

ImageNet 1/20 1/100

Continuous 0.17±0.03 0.17±0.03

No LN. 0.18±0.01 0.16±0.02

No LN. + WD 0.19±0.03 0.21±0.03

Weight decay 0.17±0.02 0.15±0.02

Early stopping 0.18±0.04 0.20±0.03

Table 4: Topographic similarity of emergent languages in the image discrimination game where
images are compared with a cosine similarity. No LN. refers to the removal of the layernorm on
the listener’s LSTM cell ; Weight decay to the addition of weight decay on the listener with penalty
equal to 0.01 ; No LN. + WD refers to the removal of layernorm and addition of weight decay on
the listener. No result for No LN. + WD are reported with Celeba 1

20 because experiments did not
converge with the regularization parameters chosen.

In addition, we also test whether scores of topographic similarities are improved when using another
distance to compare images. In Table 5, we use the attributes provided in CelebA to compare the
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images. The distance between two images is computed as 1− (propotion of common attributes). For
the message comparison, we keep the edit-distance. Once again, no topographic similarity trends
emerge, sustaining results already observed in [12].

Topographic similarity (with attributes) ↑

CelebA 1/20 1/100

Continuous 0.13±0.02 0.15±0.03

No LN. 0.14±0.02 0.14±0.03

No LN. + WD – 0.15±0.04

Weight decay 0.14±0.02 0.15±0.01

Early stopping 0.13±0.02 0.15±0.02

Table 5: Topographic similarity of emergent languages in the image discrimination game where
images are compared with CelebA attributes. No LN. refers to the removal of the layer normalization
on the listener’s LSTM cell ; Weight decay to the addition of weight decay on the listener with penalty
equal to 0.01 ; No LN. + WD refers to the removal of layer normalization and addition of weight
decay on the listener. No result for No LN. + WD are reported with Celeba 1

20 because experiments
did not converge with the regularization parameters chosen.

D.3 More Results with Listener Regularization

To complete the generalization scores of Table 1 in the main paper, we report in Table 6 the
generalization scores in the image discrimination game for various regularization methods applied on
the listener. We observe the same trends as in the reconstruction game. Indeed, listener regularization
consistently improves the performances. It means, that a large gain of performance can be obtained
in those games by regularizing the listener. The Early stopping listener remains a top line in image
based experiments.

Generalization ↑

CelebA 1/20 1/100

Continuous 0.67±0.02 0.39±0.07

No LN. 0.67±0.03 0.44±0.02

No LN. + WD – 0.50±0.07

Weight decay 0.77±0.04 0.60±0.06

Early stopping 0.80±0.03 0.69±0.04

Generalization ↑

ImageNet 1/20 1/100

Continuous 0.77±0.01 0.51±0.03

No LN. 0.77±0.01 0.53±0.03

No LN. + WD 0.75±0.01 0.59±0.04

Weight decay 0.79±0.03 0.62±0.02

Early stopping 0.81±0.01 0.64±0.01

Table 6: Comparison of generalization performances between the Continuous listener, Early stopping
listener and listeners with regularization on the image discrimination game. No LN. refers to the
removal of the layer normalization on the listener’s LSTM cell ; Weight decay to the addition of
weight decay on the listener with penalty equal to 0.01 ; No LN. + WD refers to the removal of layer
normalization and addition of weight decay on the listener. No result for No LN. + WD are reported
with Celeba 1

20 because experiments did not converge with the regularization parameters chosen.
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