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Abstract

Decision-Focused Learning (DFL) is a paradigm for tailoring a predictive model
to a downstream optimization task that uses its predictions in order to perform bet-
ter on that specific task. The main technical challenge associated with DFL is that
it requires being able to differentiate through the optimization problem, which is
difficult due to discontinuous solutions and other challenges. Past work has largely
gotten around this this issue by handcrafting task-specific surrogates to the orig-
inal optimization problem that provide informative gradients when differentiated
through. However, the need to handcraft surrogates for each new task limits the
usability of DFL. In addition, there are often no guarantees about the convexity of
the resulting surrogates and, as a result, training a predictive model using them can
lead to inferior local optima. In this paper, we do away with surrogates altogether
and instead learn loss functions that capture task-specific information. To the best
of our knowledge, ours is the first approach that entirely replaces the optimization
component of decision-focused learning with a loss that is automatically learned.
Our approach (a) only requires access to a black-box oracle that can solve the opti-
mization problem and is thus generalizable, and (b) can be convex by construction

and so can be easily optimized over. We evaluate our approach on three resource
allocation problems from the literature and find that our approach outperforms
learning without taking into account task-structure in all three domains, and even
hand-crafted surrogates from the literature.

1 Introduction

Predict-then-optimize [7, 8] is a framework for using machine learning to perform decision-making.
As the name suggests, it proceeds in two stages—first, a predictive model takes as input features

and makes some predictions using them, then second, these predictions are used to parameterize an
optimization problem that outputs a decision. A large number of real-world applications involve both
prediction and optimization components and can be framed as predict-then-optimize problems—for
e.g., recommender systems in which missing user-item ratings need to be predicted [13], portfolio
optimization in which future performance needs to be predicted [17], or strategic decision-making
in which the adversary behavior needs to be predicted [14].

In addition to wide applicability, this framework also formalizes the relationship between prediction
and decision-making. This is important because such predictive models are typically learned inde-
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pendently of the downstream optimization task in Machine Learning-based decision-making sys-
tems, and recent work in the predict-then-optimize setting [8, 16, 25, 9, 3, 25, 27, 26, 6] has shown
that it is possible to achieve better task-specific performance by tailoring the predictive model to the
downstream task. This is often done by differentiating through the entire prediction and optimiza-
tion pipeline end-to-end, leading to a family of approaches that we will refer to as decision-focused

learning (DFL) [25]. Optimizing directly for the quality of decisions induced by the predictive
model in this end-to-end manner yields a loss function we call the decision loss.

However, training with the decision loss can be challenging because the solutions to optimization
problems are often discontinuous in the predictions (see Section 2.1). This results in an uninfor-
mative loss function with zero or undefined gradients, neither of which are useful for learning a
predictive model. To address this, DFL approaches often leverage handcrafted surrogate optimiza-
tion tasks that provides more useful gradients. These surrogate problems may be constructed by
relaxing the original problem [8, 16, 25, 9], adding regularization to the objective [3, 25, 27], or
even using entirely an different optimization problem that shares the same decision space [26].

Designing good surrogates is an art, requiring manual effort, insight into the optimization problem
of interest. In addition, there are no guarantees that the surrogates induce convex decision losses,
leading to local optima that further complicate training. Instead, we propose a fundamentally dif-
ferent approach: to learn a decision loss directly for a given task, circumventing surrogate problem
design entirely. Our framework represents the loss as a function in a particular parametric family and
selects parameters which provide an informative loss for the optimization task. We call the resulting
loss a locally optimized decision loss (LODL).

Our starting point is the observation that a good decision loss should satisfy 3 properties: it should
(i) be faithful to the original task, i.e., the decision quality is consistent with the original problem; (ii)
provide informative gradients everywhere (i.e., defined and non-zero); and (iii) be convex in predic-
tion space to avoid local minima. These demands are in tension—the first requirement prevents the
loss function from being modified too much to achieve the other two. It is not obvious apriori that
any tractable parametric family should be able to simultaneously satisfy all three properties for the
complex structure induced by many optimization tasks. We resolve this tension by separately model-
ing the loss function locally for the neighborhood around each individual training example. Faithful
representation of the decision loss is easier to accomplish locally in each individual neighborhood
than globally across instances, allowing us to introduce convex parametric families of loss functions
which capture structural intuitions about properties important for optimization. To fit the parame-
ters, we sample points in the neighborhood of the true labels, evaluate the decision loss associated
with these sampled points, and then train a loss function to mimic the decision loss.

We evaluate LODLs on three resource allocation domains from the literature [12, 25, 24]. Perhaps
surprisingly, we find that LODLs outperform handcrafted surrogates in two out of the three. In
our analysis, we discover a linear correlation between the agreement of the learned LODL with the
decision loss and the decision loss of a predictive model learned using said LODL. Our approach
motivates a new line of research on decision-focused learning.

2 Background

In predict-then-optimize, a predictive model M✓ first takes as input features x and produces predic-
tions ŷ = M✓(x). These predictions ŷ are then used to parameterize an optimization problem that
is solved to yield decisions z⇤(ŷ):

z
⇤(ŷ) = argmin

z
f(z; ŷ)

s.t. gi(z)  0, for i 2 {1, . . . , m} (1)

Note that, unlike typical machine learning problems, the dimensionality of dim(ŷ) = D is likely
to be large as it consists of all predictions needed to parameterize the optimization problem. Given
the large dimensionality, and the similarity in the role of all the predictions, the predictive model
typically predicts individual components of ŷ, i.e. ŷ = [ŷ1, . . . , ŷD] = [M✓(x1), . . . ,M✓(xD)].

Predictions are evaluated with respect to the decision loss (DL) of the decision that they induce, i.e.,
the value under the objective function of the optimization under the ground truth parameters y:

DL(ŷ,y) = f(z⇤(ŷ),y)
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Figure 1: Schematic highlighting how the predictive model M✓ is learned in different approaches.
LODL does not require backpropagating through the optimization problem.

Thus, for a dataset [(x1,y1), . . . , (xN ,yN )], we aim to learn a model M✓ that generates predictions
[ŷ1, . . . , ŷN ] that minimize the decision loss DL:

✓
⇤ = argmin

✓

1

N

NX

n=1

DL(M✓(xn),yn)

This is in contrast with standard supervised learning approaches in which the quality of a prediction
is measured by a somewhat arbitrary intermediate loss (e.g., mean squared error) that does not
contain information about the downstream decision-making task. In this paper, we refer to models
that use an intermediate loss as 2-stage and those that directly optimize for DL as decision-focused

learning (DFL). Figure 1 outlines how a predictive model is learned using these different approaches.

2.1 Motivating Example

Consider an argmin optimization where the goal is to predict the disutility y of 2 agents (A, B),
e.g., y = (0, 1). Now, if these parameters are predicted perfectly, the decision is z = “Pick A”, and
the decision loss DL is the true disutility of agent A, i.e., DL = 0.

On the other hand, consider the set of predictions ŷbad = (1 ± ✏A, 0 ± ✏B) for 0 < ✏A, ✏B < 0.5.
Any prediction in this set will yield the decision ‘Pick B” and a decision loss DL of 1. Given that the
decision loss is constant in this region, the gradients are all zero, i.e., rŷDL(ŷ,y)

��
ŷ2ŷgood

= 0. As
a result, if a predictive model makes such a prediction, it cannot improve its predictions by gradient
descent. Therefore, although DL is what we want to minimize, we don’t want to fit it perfectly.

(a) True Decision Loss (b) Handcrafted Surrogate (c) LODL

Figure 2: Graphs plotting the values of different loss functions (Blue = 1, Red = 0) as a function of
the predictions of different disutilities for A and B.

If instead of minimizing DL directly, we minimized a surrogate loss SL = ŷA � ŷB , gradient
descent would lead to the model to predict ŷ = (�1,1) regardless of the initialization (see Figure
2). While ŷ isn’t the true set of disutilities, it does lead to the optimal decision, i.e., “Pick A” and is
thus effective from a predict-then-optimize perspective.

The challenge is then coming up with such surrogates. Although it is easy for the problem above,
it becomes more complicated as the number and types of variables and constraints grows. Below,
we propose an approach to automatically learn good surrogates. Figure 2c shows what our method
looks like for the example above.
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3 Related Work

A great deal of recent work on decision-focused learning and related topics aims to incorporate in-
formation about a downstream optimization problem into the training of a machine learning models.
Some optimization problems (especially strongly convex ones) can be directly differentiated through
[7, 2, 1]. For others, particularly discrete optimization problems with ill-defined gradients, a variety
of approaches have been proposed. Most of these construct surrogate loss functions via smoothing
the optimization problem [18, 25, 9, 26, 23, 15]. Alternatively, Elmachtoub and Grigas [8] propose
a closed-form convex surrogate loss with desirable theoretical properties; however, this loss applies
only when the optimization problem has a linear objective function. Similarly, Mulamba et al. [20]
provide a contrastive learning-based surrogate which does not require differentiation through opti-
mization, but which is also developed specifically for linear objectives. When the predictive model
is itself a linear function, Guler et al. [11] propose an approach to search directly for the best model.

Perhaps the most related work to ours is by Berthet et al. [4]. They differentiate through linear opti-
mization problems during training by adding randomized perturbations to smooth the induced loss
function. Specifically, they randomly perturb the predictions ŷ with random noise ✏ and solve for
z⇤(ŷ+ ✏), which can be interpreted as replacing the decision loss with its averaged value in a neigh-
borhood around ŷ, where the averaging smooths the function and ensures differentiability. There
are two key differences between our approach and theirs. First, they apply random perturbations
to optimization in the training loop in order to produce a smoother surrogate loss. By contrast, we
use random perturbations to learn a loss function prior to training; during training optimization is
removed entirely. This allows us to use the same random samples to inform each training iteration
instead of drawing new samples per iteration. Second, their approach applies only to linear objective
functions while ours applies to arbitrary optimization problems.

4 Locally Optimized Decision Losses (LODL)

In this paper, we do away with the need for custom task-specific relaxations of the optimization
problem z

⇤(ŷ) by instead translating task-specific information from the decision loss DL into a loss
function LODL�(ŷ,y) that (i) approximates the behavior of DL, and (ii) is convex by construction.

Our broad strategy to do this is to learn the function LODL� ⇡ DL using supervised machine
learning. Specifically, we proceed in 3 steps:

1. We simplify the learning problem in two ways (Section 4.1). First, we learn a separate LODL
for every ((x,y)) pair in the dataset to make our learning problem easier. Second, we note that
there’s a chicken-and-egg problem associated with learning LODLs—to train the LODL we need
inputs of the form (ŷ,y), but to produce ŷ we need a predictive model trained on said LODL.
To resolve this, we make the assumption that our predictive model M✓ will get us sufficiently
close to the true labels y. This means:

LODL�(ŷ,y) = [LODL�1(ŷ1), . . . , LODL�N (ŷN )], and ŷi ⇡ yi ± ✏

2. Given these simplifications, we propose convex-by-construction parametric forms for

LODL�i (Section 4.2). We subtract a constant DL(yi,yi) from the target to ensure that
the function to be learned has a minima at ŷi = yi and that the result can be modeled well by a
convex function:

LODL�i(ŷi) ⇡ DL(ŷi,yi)�DL(yi,yi) =) DL(ŷi,yi) ⇡ LODL�i(ŷi) +

constantz }| {
DL(yi,yi)

3. We propose different strategies for sampling ŷ (Section 4.3) and also describe the equation
used to learn the optimal LODL parameters �⇤ (Equation 2).

4.1 Local Loss Functions

We introduce a separate set of parameters �n for each [(x1,y1), . . . , (xn,yn), . . . , (xN ,yN )] in the
training set. We take this step because learning a global approximation to DL(ŷ,y) (for arbitrary ŷ)
is hard; it requires learning a closed-form approximation to the general optimization problem z

⇤(ŷ)
which may not always exist. Introducing separate parameters per-instance gives two key advantages.
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1. Learning for a specific yn: Instead of learning a Rdim(y)+dim(ŷ) function LODL�(ŷ,y) to
imitate DL(ŷ,y), we instead learn N different Rdim(ŷ) functions LODL�n(ŷ) that imitate
DL(ŷ,yn) for each n 2 N . Doing this significantly reduces the dimensionality of the learning
problem—this is especially relevant when N is not very large in comparison to dim(y) (as in
our experiments). It also circumvents the need to enforce invariance properties on the global
loss. For example, many optimization problems are invariant to permutations of the ordering of
dimensions in y, making it difficult to measure the quality of ŷ’s across different instances. In a
local loss, the ordering of the dimensions is fixed and so this issue is no longer relevant.

2. Learning for only ŷn ⇡ yn: In addition to the simplification above, we don’t try to learn a
faithful approximation 8ŷ 2 Rdim(y)—we instead limit ourselves to learning an approximation
of DL(ŷ,yn) only when ŷ is in the neighborhood of yn. We assume that our predictive model
will always get us in the neighborhood of the true labels, and the utility of LODL is in helping
distinguish between these points.

The combination of these two choices makes the learned LODL�n a “local” surrogate for DL,
rather than a global one.

4.2 Representing the LODL

The key design choice in instantiating our framework is choice of the parametric family used to
represent the LODL. Optimization problems can induce a complex loss landscape which is not easily
summarized in a closed-form function with concise parameterization. Accordingly, we design a set
of families which capture phenomena particularly important for common families of predict-then-
optimize problems.

Parametric families for the local losses Having made the decision to allow separate parameters
for each training instance, the second design choice is how to represent each local loss, i.e., the
specific parametric family to use. Our choice must be sufficiently expressive to capture the local
dynamics of the optimization problem while remaining sufficiently efficient to be replicated across
the N training instances. We propose that the structure of the loss function should capture the
underlying rationale for why decision-focused learning provides an advantage over 2-stage in the
first place; this is the key behavior which will underpin improved decision quality. We identify three
key phenomena which motivate the design of the family of loss functions:

1. Relative importance of different dimensions: Typically, the different dimensions of a pre-
diction problem are given equal weight, e.g., the MSE weights errors in each coordinate of y
equally. However, there may be some dimensions along which DL is more sensitive to local per-
turbations. For example, a knapsack problem may be especially sensitive to errors in the value
of items which are on the cusp of being chosen. In such cases, DFL can capture the relative
importance of accurately predicting different dimensions.

2. Cost of correlation: Given the possibly large dimensionality of y, in practice, the predictive
model M✓ does not typically predict y directly. Instead, the the structure of the optimization
is exploited to make multiple predictions [ŷ1, . . . , ŷK ] that are then combined to create ŷ. For
example, in a knapsack problem, we might train a model which separately predicts the value of
each item (i.e., predicts each entry of ŷ separately) using features specific to that item, instead of
jointly predicting the entire set of values using the features of all of the items. However, Cameron
et al. [5] show that ignoring the correlation between different sub-y scale predictions (as in 2-
stage) can result in poor optimization performance, and that DFL can improve by propagating
information about the interactions between entries of y to the predictive model.

3. Directionality of predictions: In the argmin(ŷ1, ŷ2) example from the introduction, the pre-
diction ŷ1 = 2, ŷ2 = 1 produces the same decision as ŷ1 = 2000, ŷ2 = 1. On the other hand,
the prediction ŷ1 = 0.5, ŷ2 = 1 leads to a different decision. As a result, over-predicting and
under-predicting often have different associated costs for some optimization problems. Predic-
tive models trained with DFL can take into account this behavior while those trained by typical
symmetric 2-Stage losses like MSE cannot.

Given these insights, we propose three corresponding families of loss functions for LODL�, each
of which is convex by design and has a global minima at the true label yn, a desirable property
because DL also has its minima at ŷ = y.
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1. WeightedMSE: To take into account the relative importance of different dimensions, we pro-
pose a weighted version of MSE:

WeightedMSE(ŷ) =
dim(y)X

l=1

wl · (ŷl � yl)
2,

where ‘weights’ wl are the parameters of the LODL, i.e., � = w 2 Rdim(y)
+ (for convexity).

2. Quadratic: To take into account the effect of correlation of different dimensions on each other,
we propose learning a quadratic function that has terms of the form (ŷi � yi)(ŷj � yj):

Quadratic(ŷ) = (ŷ � y)TH(ŷ � y),

where � = H is a learned low-rank symmetric Positive semidefinite (PSD) matrix. This family
of functions is convex as long as H is PSD, which we enforce by parameterizing H = LTL,
where L is a low-rank triangular matrix L of dimension dim(y)⇥ k and k is the desired rank.
This loss function family has an appealing interpretation because learning LODL is similar to
estimating the partial derivative of DL with respect to its first input ŷn. Specifically, consider
the first three terms of the Taylor expansion of DL with respect to ŷn at (yn,yn):

DL(

ŷnz }| {
yn + ✏,yn) =

constantz }| {
DL(yn,yn) +

0 (yn,yn) is a minimaz }| {
rŷnDL(yn,yn) ✏+ ✏

T

Hessian Hz }| {
r2

ŷn
DL(yn,yn) ✏+ . . .

⇡ DL(yn,yn) + (ŷn � yn)
TH(ŷn � yn)

Quadratic LODL� can be seen as a 2nd-order Taylor-series approximation of DL at (yn,yn)
where the learned H approximates the Hessian of DL. Note that WeightedMSE is a special case
of this Quadratic loss when H = diag(w).

3. DirectedWeightedMSE and DirectedQuadratic: To take into account the fact that overpre-
dicting and underpredicting can have different consequences, we propose modifications to the
two loss function families above. For WeightedMSE, we redefine the weight vector w as below,
and learn both w+ and w�. Similarly for Quadratic, we define 4 copies of the parameter L
based on the directionality of the predictions.

wl =

⇢
w+, if ŷi � yi � 0
w�, otherwise

Lij =

8
>>><

>>>:

L++
ij , if ŷi � yi � 0 and ŷj � yj � 0

L+�
ij , if ŷi � yi � 0 and ŷj � yj < 0

L�+ij , if ŷi � yi < 0 and ŷj � yj � 0

L��ij , otherwise

4.3 Learning LODL�

Given families proposed in Section 4.1, our goal is to learn some �
⇤
n for every n 2 N such that

LODL�n(ŷn) ⇡ DL(ŷn,yn) for ŷn “close” to yn. We propose a supervised approach to learning
�

⇤
n which proceeds in two steps (Figure 1): (1) we build a dataset mapping ŷn ! DL(ŷn,yn) in

the region of yn, and then (2) we use this dataset to estimate �
⇤
n by minimizing the mean squared

error to the true decision loss:

�
⇤
n = argmin

�n

1

K

KX

k=1

(LODL�n(y
k
n)�DL(yk

n,yn))
2 (2)

This framework has the key advantage of reducing the design of good surrogate tasks (a complex
problem requiring in-depth knowledge of each optimization problem) to supervised learning (for
which many methods are available). Indeed, future advances, e.g. in representation learning, can
simply be plugged into our framework.

The major remaining step is to specify the construction of the dataset for supervised learning of �⇤
n.

We propose to construct this dataset by sampling a set of K points [y1
n, . . . ,y

K
n ] in the vicinity of y

and calculate DL(yk
n,yn) for each. In this paper, we consider three sampling strategies:

1. All-Perturbed: Add zero-mean Gaussian noise to the true label yn:
y
i
n = yn + ✏

k = yn + ↵ · N (0, I),

where ↵ is a normalization factor and I is a dim(y)⇥ dim(y) identity matrix.

6



2. 1-Perturbed or 2-Perturbed: Estimating the behavior of DL(yn + ✏i,yn) for small ✏ can
alternatively be interpreted as estimating ( �

�ŷn
)dim(yn)DL(ŷn,yn) (i.e., the dim(yn)th partial

derivative of DL w.r.t. its first input ŷn) at (yn,yn) because all the dimensions of ŷn are being
varied simultaneously. While computing ( �

�ŷn
)dim(yn) is computationally challenging, it can be

estimated using the simpler 1st or 2nd partial derivatives. This corresponds to perturbing only
one or two dimensions at a time.

4.4 Time Complexity of Learning LODLs

The amount of time taken by each of the methods using gradient descent is:

• 2-Stage = ⇥(T · N · TM ), where TM is the amount of time taken to run one forward and back-
wards pass through the model M✓ for one optimization instance, N is the number of optimization
instances, and T is the number of time-steps M✓ is trained for.

• DFL = ⇥(T ·N · (TM + TO + T 0O)), where TO is the time taken to solve the forward pass of one
optimization instance and T 0O is the time taken to compute the backward pass.

• LODL = ⇥(K · N · TO + N · (T · K · TLODL) + T · N · TM ), where K is the number of
samples needed to train the LODL, and TLODL is the amount of time taken to run one forward
and backwards pass through the LODL. The three terms correspond to (i) generating samples, (ii)
training N LODLs, and (iii) training M✓ using the trained LODLs.

In practice, we find that (T 0O > TO) >> (TM > TLODL). As a result, the difference in complexity
of DFL and LODL is roughly ⇥(T ·N · TO) vs. ⇥(K ·N · TO +N · T ·K · TLODL). Further, the
calculation above assumes that LODLs are trained in the same way as M✓. However, in practice,
they can often be learned much faster, sometimes even in closed form (e.g., WeightedMSE and
DirectedWeightedMSE), leading to an effective runtime of ⇥(K · N · TO + N · K · TLODL) ⇡
⇥(K · N · TO). Then, the difference between DFL and LODL boils down to T vs. K, i.e., the

number of time-steps needed to train M✓ vs. the number of samples needed to train the LODL.

While our approach can be more computationally expensive, it typically isn’t for two reasons:

• Amortization: We need only sample candidate predictions once, to then train any number of
LODLs (e.g., WeightedMSE, DirectedQuadratic) without ever having to call an optimization or-
acle. Once the LODLs have been learned, you can train any number of predictive models M✓

based on said LODLs—in contrast to DFL, which requires calling the oracle to train each model.
DFL is thus more expensive when training a large number of models (e.g., for hyperparame-
ter/architecture search, trading-off performance vs. inference time vs. interpretability, etc.). In

the future, we imagine that datasets could be shipped with not only features and labels, but also

LODLs associated with downstream tasks!

• Parallelizability: The sample generation process for LODL is completely parallelizable, result-
ing in an ⌦(TO) lower-bound wall-clock complexity for our approach. In contrast, the calls to
the optimization oracle in DFL are interleaved with the training of M✓ and, as a result, cannot be
parallelized with respect to T , resulting in an ⌦(T · TO) wall-clock complexity.

We demonstrate this empirically in Section 5.3.

5 Experiments

To validate the efficacy of our approach, we run experiments on three resource allocation tasks from
the literature. We use the term decision quality DQ (higher is better) instead of DL because these
are all maximization problems.

Linear Model This domain involves learning a linear model when the underlying mapping be-
tween features and predictions is cubic. Such problems are common in the explainable AI litera-
ture [21, 10, 12] where predictive models must be interpretable.

• Predict: Given a feature xn ⇠ U [0, 1], use a linear model to predict the utility ŷ of resource n,
where the true utility is yn = 10x3

n � 6.5xn. Combining predictions yields ŷ = [ŷ1, . . . , ŷN ].
• Optimize: Choose the B = 1 out of N = 50 resources with highest utility: z⇤(ŷ) = arg topk(ŷ)
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Table 1: The decision quality achieved by each approach—higher is better. DirectedQuadratic
consistently performs well.

Loss Function
Normalized DQ On Test Data

Linear Model Web Advertising Portfolio Optimization

Random 0 0 0
Optimal 1 1 1

2-Stage (MSE) -0.95 ± 0.00 0.48 ± 0.15 0.32 ± 0.02
DFL 0.83 ± 0.38 0.85 ± 0.10 0.35 ± 0.02

NN 0.96 ± 0.00 0.81 ± 0.14 -0.11 ± 0.08
WeightedMSE -0.93 ± 0.06 0.58 ± 0.15 0.31 ± 0.02

DirectedWeightedMSE 0.96 ± 0.00 0.53 ± 0.14 0.32 ± 0.02
Quadratic -0.75 ± 0.38 0.93 ± 0.04 0.27 ± 0.02

DirectedQuadratic 0.96 ± 0.00 0.91 ± 0.04 0.33 ± 0.01

• Surrogate: Because the argmax operation is piecewise constant, DFL requires a surrogate—we
use the soft Top-K proposed by Xie et al. [27]. Although this surrogate is convex in the decision
variables, it is not convex in the predictions.

Web Advertising This is a submodular optimization task taken from Wilder et al. [25]. The aim
is to determine on which websites to advertise given features about different websites.

• Predict: Given features xm associated with some website m, predict the click-through rates
(CTRs) for a fixed set of N = 10 users on M = 5 websites ŷm = [ŷm,1, . . . , ŷm,N ]. To ob-
tain the features xm for each website m, true CTRs ym from the Yahoo! Webscope Dataset [28]
are scrambled by multiplying with a random N ⇥N matrix A, i.e., xm = Aym.

• Optimize: Given the matrix of CTRs, determine on which B = 2 (budget) websites to advertise
such that the expected number of users that click on the ad at least once is maximized, i.e.,
z
⇤(ŷ) = argmaxz

PN
j=0(1�

QM
i=0(1� zi · ŷij)), where all the zi 2 {0, 1}.

• Surrogate: Instead of requiring that zi 2 {0, 1}, the multi-linear relaxation from Wilder et al.
[25] allows fractional values. The DL induced by the relaxation is non-convex.

Portfolio Optimization This is a Quadratic Programming domain [7, 24] in which the aim is
to choose a distribution over N stocks that maximizes the expected profit minus a quadratic risk
penalty. We choose this domain as a stress test—it is highly favorable for DFL because the opti-
mization problem naturally provides informative gradients and thus requires no surrogate.

• Predict: Given historical data xn about stock n, predict the future stock price yn. We use histori-
cal data from 2004 to 2017 for a set of N = 50 stocks from the QuandlWIKI dataset [22].

• Optimize: Given a historical correlation matrix Q between pairs of stocks, choose a distribution
z over stocks that maximizes zT

y � � · ŷTQŷ, where � = 0.1 is the risk aversion constant.

More experimental setup details are provided in Appendix A.

5.1 Results

We train either a linear model (for the Linear Model domain) or a 2-layer fully-connected neural
network with 500 hidden units (for the other domains) using LODLs and compare it to:

1. Random: The predictions are sampled uniformly from [0, 1]dim(y).
2. Optimal: The predictions are equal to the true labels y.
3. 2-Stage: The model is trained on the standard MSE loss ( 1

N

PN
n=1 ||ŷn � yn||2).

4. DFL: Decision-focused learning using the specified surrogate.
5. NN: To determine how important convexity is for LODL we define LODL� = NN�(ŷ) in

which NN� is a 4-layer fully-connected Neural Network (NN) with 100 hidden units.

Table 1 shows the main results. We find that, in all domains, training predictive models with LODL
outperforms training them with a task-independent 2-stage loss. Surprisingly, it also outperforms
DFL, which has the benefit of handcrafted surrogates, in two of the three. This is strong evidence
in favor of our hypothesis that we can automate away the need for handcrafting surrogates. We first
analyze the results in terms of the domains:
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Figure 3: Figure (a) shows that the time taken to train a single model M✓ reduces with the number
of cores used. Figure (b) shows that this time is further reduced when the cost of learning LODLs
is amortized across different predictive models M✓ .

(a) Parallelizability (b) Amortization

1. Linear Model: In this domain, the directionality of predictions is very important. As we de-
scribe in Section 2.1, predicting values higher than the true utilities for the B resources with
highest utility, does not change the decision. However, if their predicted utility is lower than
that of the B � 1th best resource, the decision quality is affected. As a result, we see that the
“Directed” methods perform significantly better than their competition.

2. Web Advertising: In this domain, Wilder et al. [25] suggest that the decision quality is linked to
being able to predict the quantity

P
j ŷij (the sum of CTRs across all users j for a given website

i). However, because the input features for every ŷij are the same xi, the errors can be correlated
and so the sum can be biased. As a result, the ability to penalize the correlations between two
predictions ŷij and ŷjk is important to being able to perform well on this task—which results in
the Quadratic methods outperforming the others.

3. Portfolio Optimization: Given that this stress-test domain was built to be favorable to DFL, it
outperforms all other approaches with statistical significance. While the directed LODL methods
do not outperform DFL, they nonetheless significantly outperform 2-stage at p < 0.05.

We now analyze the results in terms of the methods:

1. Our DirectedQuadratic LODL consistently does well: In addition to consistently high ex-
pected values (always better than 2-stage), the associated variance is lower as well.

2. Lack of convexity can cause inconsistent results: While NN does well in the first two domains,
it fails catastrophically in the Portfolio Optimization domain.

3. DFL has a large variance in performance: In both the ”Web Advertising” and ”Linear Model”
domain, DFL has higher variation than the best performing LODLs. We posit that this is also
because of the lack of convexity of the surrogates that DFL uses in these two domains.

5.2 Ablations

We study the impact of the sampling strategy and number of samples on the performance of the
LODL methods in the Web Advertising domain in Table 3. We find:

1. Sampling strategy (Table 3a): The best sampling strategy is loss family-specific. Specifically,
NN and DirectedWeightedMSE perform best with the “2-Perturbed” strategy, while the remain-
ing LODLs perform best with the “All-Perturbed” strategy.

2. Number of samples (Table 3b): All models perform better with more samples. In addition, the
variance reduces as the number of samples increases (especially for Quadratic), suggesting that
better approximations of DL lead to more consistent outcomes.

5.3 Computational Cost of Learning with LODLs

We measure the time taken to learn predictive models M✓ with LODLs in the Web Advertisement
domain. We train each LODL for 100 gradient descent steps using 5000 samples and train the
predictive model for 500 steps (the same as the setup as Table 1). We find:

1. Learning LODLs is parallelizable: Figure 3a shows that the cost of training a predictive model
using LODLs decreases near-linearly in the number of cores used. With more than 20 cores,
training with LODLs can be cheaper than training with DFL for this domain.
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2. If LODLs can be reused, their (already low) overhead quickly diminishes: From Figure 3b
we see that even for a modest amount of amortization (over 5-10 predictive models), the training
time using LODLs converges to that of two-stage (shown using parallelization with 40 cores).

5.4 Correlation between the ‘quality’ of LODL and decision quality

Recall that LODL losses are fit using a Gaussian sampling strategy centered around the true labels.
It is natural to ask how well this proxy loss correlates with the decision quality on test data. We do
this by measuring the mean absolute error (MAE) of LODL relative to the ground truth decision loss
for points in the Gaussian neighborhood around the true labels.

This Gaussian neighborhood is only an approximation of the true distribution of interest—the dis-
tribution of predictions generated by the predictive model that is trained using the LODL loss. We
can measure the MAE on this distribution, which we call the empirical neighborhood.

Table 2: A table showing the relationship between the quality of the learned loss for different classes
of LODLs, and the performance of a model trained on said loss. The Empirical Neighborhood MAE
is linearly correlated with DQ while the Gaussian Neighborhood MAE is not.

Approach

MAE in Gaussian MAE in Empirical Normalized DQ

Neighborhood Neighborhood on Test Data

(x 10�2) (x 10�2)

NN 0.94± 0.06 2.22± 1.73 0.80± 0.16
WeightedMSE 1.04± 0.00 4.48± 1.71 0.58± 0.15

DirectedWeightedMSE 0.92± 0.00 5.58± 1.64 0.50± 0.13
Quadratic 0.96± 0.00 0.86± 0.52 0.92± 0.05

DirectedQuadratic 1.06± 0.00 1.91± 0.79 0.85± 0.08

Table 2 shows the results for the Budget Allocation domain, while the remaining graphs are in
Appendix B.3. All methods are able to approximate the DL comparably well in the Gaussian neigh-
borhood, but this does not correlate well with decision quality. In contrast, the error on the empirical
neighborhood is tightly linearly correlated with decision quality. Furthermore, if we extrapolate the
line of best fit to where the MAE is 0, i.e., when there is no discrepancy LODL and DL, we find
that the trend predicts the normalized DQ would be 1.

6 Discussion and Conclusion

Our work proposes a conceptual shift from hand-crafting surrogate losses for decision problems to
automatically learning them, and demonstrates experimentally that the LODL paradigm enables us
to learn high-quality models without such manual effort. Nevertheless, our current instantiation of
this framework has limitations which are areas for future work.

We considered LODLs that additively decompose across the dimensions of y, allowing us to isolate
the effects of fit to DL from the generalization performance across the dimensions of y. Future
work may learn models that generalize across dimensions, allowing for even greater scalability.

We demonstrate that the fit of a LODL to the empirical neighborhood around the ground truth label is
highly correlated with the eventual decision quality. While the Gaussian neighborhood method does
yield models that perform well, it does not correlate well with the decision quality across LODL
parameterizations. It would be valuable to study the empirical neighborhood to better understand
the reasons for this discrepancy and potentially develop LODLs with even stronger performance.

In summary, LODL provides an alternate framework for machine learning which informs decision
making, opening up new avenues towards models which are both high-performing and easily trained.
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