
A Preliminaries

Graph and Path. Let p = ÖS = V0, ..., Vk = T ã be a path in a graph G, p is a causal path from S to
T if Vi � Vi+1 for all 0 & i & k � 1. p is a possibly causal path from S to T if no edge Vi ⇥ Vi+1
is in G. Otherwise, p is a non-causal path in G. A (causal, possibly causal, non-causal) cycle is a
(causal, possibly causal, non-causal) path from a vertex to itself.

Ancestral Relations. If there is S � T in G, we say S is a parent of T and T is a child of S, denoted
by pa(T,G) and ch(S,G), respectively. If there is a causal path from S to T , then we say S is an
ancestor of T and T is a descendant of S, denoted by an(T,G) and de(S,G). If there is a possibly
causal path from S to T , then we say S is a possible ancestor of T and T is a possible descendant
of S, denoted by possAn(T,G) and possDe(S,G). As a convention, we regard every node as an
ancestor and a descendant of itself.

MPDAGs Construction. Borrowed from [42], Algorithm 3 summarizes, the way to construct the
maximal PDAG G ¨ from the maximal PDAG G and backgroud knowledge B, by leveraging Meek’s
rule in Figure 4. Specifically, here the background knowledge B is assumed to be the direct causal
information in the form S � T , meaning that S is a direct cause of T . If Algorithm 3 does not return
FAIL, then the background knowledge B and returned maximal PDAG G ¨ are consistent with the
input maximal PDAG G.

Algorithm 3 Construct MPDAG [34, 42]
1: Inputs: MPDAG G and Background knowledge B.
2: Output: MPDAG G ¨ or FAIL.
3: Let G ¨ = G;
4: while B j o do
5: Select an edge {S � T} in B;
6: B = B\{S � T};
7: if {S � T} OR {S � T} is in G ¨ then
8: Orient {S � T} in G ¨;
9: Orienting edges in G ¨ following the rules in Figure 4 until no edge can be oriented;

10: else
11: FAIL;

R1 R2

R3 R4

Figure 4: Meek’s orientation rules: R1, R2, R3 and R4 [34]. For each rule, if the left-hand side
graph is an induced subgraph of a PDAG G, orient the undirected edge on it with the direction on the
right-hand side.

A.1 Existing results

Lemma A.1. [42, Lemma B.1] Let p = ÖV1, ..., Vkã be a b-possibly causal definite status path in an
MPDAG G. If there is a node i " {1, ..., n � 1} such that Vi � Vi+1, then p(Vi, Vk) is a causal path
in G.
Lemma A.2. [42, Lemma 3.6] Let S and T be distinct nodes in an MPDAG G. If p is a b-possibly
causal path from S to T in G, then a subsequence p

ò of p forms a b-possibly causal unshielded path
from S to T in G.

Let X be a variable in an MPDAG G, R L sib(X,G), then we use GR�X to denote the partially
directed graph resulted by orienting R � X and X � sib(X,G)\R in G. Fang & He [15] propose
the following Theorem A.3 to check the existence of GR�X .
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Theorem A.3. [15, Theorem 1] Let G be an MPDAG consistent with a CPDAG Gò. For any vertex
X and R L sib(X,G), the following three statements are equivalent.

• There is a DAG D " [G] such that pa(X,D) = R < pa(X,G) and ch(X,D) = sib(X,G) <
ch(X,G)\R.

• Compared with G, GR�X does not introduce any new V-structure collided on X or any directed
triangle containing X .

• The induced subgraph of G over R is complete, and there does not exist an R " R and a
W " adj(X,G)\(R < pa(X,G)) such that W � R.

Definition A.4 (Critical Set). [15, Definition 2] Let Gò be a CPDAG. S and T are two distinct
vertices in Gò. The critical set of S with respect to T in Gò consists of all adjacent vertices of S lying
on at least one chordless possibly causal path from S to T .
Theorem A.5. [16, Theorem 1] Suppose that Gò is a CPDAG, S and T are two distinct vertices in
Gò, and C is the critical set of S with respect to T in Gò. Then, T is a definite descendant of S if and
only if C = ch(S,Gò) j o, or C is non-empty and induces an incomplete subgraph of Gò.
Lemma A.6. [32, Lemma 3.1] Given a CPDAG Gò, a variable X , and R L sib(X,Gò), orienting
R � X for each R " R and X � W for each W " sib(S,Gò)\R is consistent with Gò if and only
if new orientations do not introduce v-structures collided on X .

B Detailed proofs

B.1 Proof of Lemma 4.3

Proof. First, we prove the sufficiency. Let D be any underlying DAG D " [G], and C be the critical
set of S with respect to T in G. Suppose C " C is a child of S in D, that is S � C in D. By the
definition of critical set, C lies on a chordless b-possibly causal path ⇡ from S to T in G. Since
S � C in D, by Lemma A.1, the corresponding path ⇡ in D is directed. Therefore, S is an ancestor
of T in the underlying DAG.

Next, we prove the necessity: For another direction, suppose that S is a definite ancestor of T in any
underlying DAG D. Let ⇡ be the shortest causal path from S to T in D, then the corresponding path
of ⇡ in G is a chordless b-possibly causal path, since if ⇡ has any chord in G, ⇡ in D cannot be the
shortest path. Denote the vertex adjacent to S on ⇡ be C, then C " C and C is a child of S in the
DAG D. Therefore, if T is definite descendant of S in G, then C always contains a child of S in
every DAG D " [G].
B.2 Proof of Lemma 4.4

The proof idea of Lemma 4.4 is to find the graphical condition in an MPDAG that when C j o, all
vertices in C or a superset of C can be oriented to X in some Markov equivalent DAG, by utilizing
locally valid orientation rules for MPDAGs (Theorem A.3). The rules are to check whether a set of
variables in an MPDAG can be the parents of a given target.

In this section, we will first introduce some technical lemmas, and then prove Lemma 4.4 in Sec-
tion 4.1.

B.2.1 Technical lemmas

In this section, we introduce some technical lemmas that are useful in the proof of Lemma 4.4.
Lemma B.1. Let G be an MPDAG. For any vertex X in G and R L sib(X,G), if R induces a
complete subgraph of G and there exists a R " R and a W " adj(X,G)\(R < pa(X,G)) such that
W � R, then R <W induces a complete subgraph of G and W " sib(X,G)\R.

Proof. Suppose for a contradiction that R < W induces an incomplete subgraph of G. Since R

induces a complete subgraph of G, that means some vertex R
¨ " R is not adjacent with W . As

W " adj(X,G)\(R < pa(X,G)), the node W can be a child or a sibling of X .
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(1) For the first case, as in Figure 5a, if W is a child of X in G, since W � R, then X �R can be
oriented by Rule 2 in Meek’s criteria as X � R, which contradicts that R is a sibling of X;

(2) For the second case, if W is a sibling of X in G and W � R, then the edge between R and R
¨

can not be an undirected edge in G, since R¨ and W are not adjacent. R � R
¨ can be oriented by

Meek’s Rule 2, or R ⇥ R
¨ and ÖR¨

, R,W ã is a v-structure collided on R. For the former case,
if R � R

¨ is in G as in Figure 5b, then X � R
¨ can be oriented by Rule 4, which contradicts

that R¨ is a sibling of X in G. For the latter case in Figure 5c, if W is a sibling of X in G and
W � R ⇥ R

¨, since R¨ and W are not adjacent, then X �R can be oriented as X � R in G by
Meek’s Rule 3, which contradicts that R is a sibling of X . Therefore, there does not exist any
vertex R

¨ " R not adjacent with W , so R <W induces a complete subgraph of G.

X
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W

R

R
¨

X

W

R

(a) W is a child of X .

X
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¨

W

R
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¨

X

W
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(b) W is a sibling of X and R � R¨.

X

R
¨

W

R

R
¨

X

W

R

(c) W is a sibling of X and R ⇥ R¨.

Figure 5: The three cases discussed in the proof of Lemma B.1. For each case, the the blue undirected
edge on the left-hand side subgraph will be oriented as the blue edge on the right-hand side subgraph.

Lemma B.2. In an MPDAG G, for any vertex X , there exists H N sib(X,G) that induces a complete
subgraph of G if and only if there exists some R that H N R N sib(X,G), such that there is a DAG
D " [G] that pa(X,D) = R < pa(X,G) and ch(X,D) = sib(X,G) < ch(X,G)\R.

Proof. According to Theorem A.3, in an MPDAG G, for any vertex X and R L sib(X,G), the
following two statements are equivalent:

(1) There is a DAG D " [G] such that pa(X,D) = R < pa(X,G) and ch(X,D) = sib(X,G) <
ch(X,G)\R.

(2) The induced subgraph of G over R is complete, and there does not exist an R " R and a
W " adj(X,G)\(R < pa(X,G)) such that W � R.

Therefore, Lemma B.2 can also be stated as: In an MPDAG G, for any vertex X , there exists
H N sib(X,G) that induces a complete subgraph of G if and only if there exists some R that
H N R N sib(X,G), such that the induced subgraph of G over R is complete, and there does not
exist an R " R and a W " adj(X,G)\(R < pa(X,G)) such that W � R.

The proof of sufficiency is straightforward. That set R induces a complete subgraph can ensure that
any subset of R induces a complete subgraph of G.

Next, we prove the necessity. If H N R is complete and there does not exist an H " H and a
W " adj(X,G)\(H < pa(X,G)) such that W � H , then H satisfies the condition and we are done.
Otherwise, if H is complete and there exists an H " H and a W " adj(X,G)\(H < pa(X,G)) such
that W � H , by Lemma B.1, (H<W ) N R induces a complete subgraph of G. Similarly, if H<W

is complete and there does not exist an H
¨ " H<W and a W ¨ " adj(X,G)\(H <W < pa(X,G))

such that W ¨ � H
¨, then H<W satisfies the condition and we are done. Otherwise, (H<W<W

¨) N
R induces a complete subgraph of G. Following this derivation, either we are done or we will end
with the result that sib(X,G) is complete. For the latter situation, by Theorem A.3, since orienting
every vertex in sib(X,G) towards X does not introduce any new V-structure collided on X or any
directed triangle containing X . In this case, R = sib(X,G) meets the left hand side and we are
done.
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B.2.2 Proof of Lemma 4.4

Proof. We first show the necessity. By Definition 4.2, C N sib(S,G) < ch(S,G). Let D " [G] be
an arbitrary DAG. If C = ch(S,D) = o and C j o, then C N pa(S,D), and thus C N sib(S,G).
Denote by R = sib(S,G) = pa(S,D), we have C N R N sib(S,G) and C N R N pa(S,D).
Theorem A.3 proved that a non-empty subset R of sib(S,G) can be a part of S’s parent set in some
equivalent DAG if and only if R induces a complete subgraph of G, and there does not exist a set
R " R and a W " adj(S,G)\(R < pa(S,G)) such that W � R. Therefore, as a subset of R, C
induces a complete subgraph of G. This completes the proof of necessity.

We next prove the sufficiency. If C = o, then it is straightforward that C = ch(S,D) = o for
some D " [G]. Now assume C j o and C = ch(S,G) = o. As C N sib(S,G) < ch(S,G),
we have C N sib(S,G). Since C induces a complete subgraph of G, by Lemma B.2, there exists
R, C N R N sib(S,G), that there is a DAG D " [G] such that pa(S,D) = R < pa(S,G) and
ch(S,D) = sib(S,G) < ch(S,G)\R. As R N pa(S,D) and C N R, C N pa(S,D) and thus
C = ch(S,D) = o.

B.3 Proof of Theorem 4.5

Theorem 4.5 is closely related to Theorem A.5 for CPDAGs from [16]. Since CPDAG is a special
case of MPDAG, all results for MPDAGs works for CPDAGs. Although the condition provided by
these two theorems are the same, they based on different theoretical results on locally valid orientation
rules for CPDAGs and MPDAGs. The one for CPDAGs is mainly based on Lemma A.6 and for
MPDAGs, it is mainly based on Theorem A.3.

Proof. Figure 6 shows how all lemmas fit together to prove the Theorem 4.5. To decide whether
T is a definite descendant of S in an MPDAG G, Lemma 4.3 provides a sufficient and necessary
condition on a graphical characteristic of C on every DAG D " [G], which is then further explored
by Lemma 4.4 to a graphical characteristic of C on the corresponding MPDAG G. Following from
Lemma 4.3 and Lemma 4.4, we have the desired sufficient and necessary condition to check whether
T is a definite descendant of S in an MPDAG G on the graphical characteristic of C.

Theorem 4.5 Lemma 4.3Lemma 4.4Lemma B.2Lemma B.1

Figure 6: Proof structure of Theorem 4.5

B.4 Proof of Lemma 4.6

Proof. Suppose p = ÖS = V0, ..., Vk = T ã is a chordless path from S to T . We will show that p is of
definite status by showing that every vertex on p is of definite status. Any triple ÖVi�1, Vi, Vi+1ã on p

with i " {1, ..., k � 1} can be in the form: (1) Vi�1 � Vi ⇥ Vi+1; or (2) Vi � Vi+1 or Vi�1 � Vi
on p or Vi�1 � Vi � Vi+1 is a subpath of p and Vi�1 is not adjacent with Vi+1. In the former case,
Vi is a collider; in the latter case, Vi is a definite non-collider. The triple cannot be in the form
Vi�1 � Vi � Vi+1 or Vi�1 � Vi ⇥ Vi+1, since the undirected edge can be oriented departs Vi by Rule
1 in Meek’s criterion. Therefore, every vertex on p is of definite status. Thus, we completes the proof
that p is of definite status.

B.5 Proof of Proposition 4.7

Proof. If all definite status b-possibly causal path from S to T are chordless, then by Lemma 4.6,
FST is exactly CST. Suppose that there are definite status b-possibly causal path from S to T with
chords. We first prove that CST N FST. By the definition of critical set, for any C " CST, there is
a chordless possibly causal path p from X to Y on which C is adjacent to S. By Lemma 4.6, p is
also a definite status b-possibly causal path from S to T without any chord. Therefore, as an adjacent
vertex of S on p, C " FST as well. Since C is an arbitrary vertex in CST, CST N FST. Then we
prove FST N CST. For any F " FST, there is a definite status b-possibly causal path p

ò from S to
T in G that there is no chord with S as an endpoint, on which F is adjacent to X . By Lemma A.2,
some subsequence of pò forms a chordless b-possibly causal path p

òò from S to T . As on p
ò, there

is no chord with S as an endpoint, the chordless b-possibly causal path p
òò must start with the edge
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S � F... or S � F.... Therefore, F " CST. Since F is an arbitrary vertex in FST, FST N CST.
This completes the proof of Proposition 4.7.

B.6 Proof of Proposition 5.2

Proof. Suppose there is a possible descendant of A in G, which is denoted by B. Then there is a
b-possibly causal path p from A to B. By Lemma A.2, a subsequence p

ò of p forms a b-possibly
causal unshielded path from A to B. Suppose p

ò = ÖA = V0, ..., Vk = Bã, Assumption 5.1 implies
A � V1. By Lemma A.1, pò is a causal path from A to B in G. Therefore, B is a definite descendant
of A.

C An illustration example for Theorem 4.5

Example. Consider the MPDAG G in Figure 7 and the node A. We show the ancestral relations
between A and any other nodes. In G, it is obvious that B,C,D and H are possible descendants of
A. That is because B is adjacent with A, and the critical set of B with respect to A is itself, which
induces a complete subgraph of G. The same conclusion can be drawn for C,D, and H . Node E is
also a possible descendant of A, since the chordless possibly causal path from A to E are A�B �E

and A � C � E, the critical set of A with respect to E is {B,C}. As the induced subgraph of G
over {B,C} is complete, by Theorem 4.5, E is not a definite descendant of A, so it is a possible
descendant of A. For F , the chordless possibly causal path from A to F are A�B � F , A�C � F

and A �D � F , thus the critical set of A with respect to F is {B,C,D}. Since the corresponding
induced subgraph is incomplete, by Theorem 4.5, F is a definite descendant of A.

A

B

C

DE

F

H

Figure 7: An MPDAG G for illustrating ancestral relations of the node A with any other nodes. The
node B,C,D,E and H are possible descendants of A; node F is a definite descendant of A.

D Algorithm 1 and detailed explanation

In Algorithm 1, every b-possibly causal path of definite status (Line 12-13) on the way starting
from S to ⌧ without any chord ending in S (Line 14) is recorded in a queue Q as a triple (↵,�, ⌧),
where ↵ is the node lying immediately after S and � is the node that lie immediately before ⌧ on the
path. If ⌧ is exactly Y , we add ↵ to the critical set C and remove from Q all triples where the first
element is ↵, that is, we stop enumerating the required paths on which the node adjacent with S is ↵
(Line 8-9). Otherwise, we extend the path to the adjacencies of ⌧ , �, so that the path from S to � is
still a b-possibly causal path of definite status without any chord ending in S and then we add the
corresponding triples to the queue Q (Line 11-16). In this algorithm, H is introduced to store the
visited triples, and to avoid visiting the same triple twice.

E Algorithm in Section 5.1

20



Algorithm 4 Identify the type of ancestral relation of S with respect to all the other vertices in an
MPDAG

1: Input: MPDAG G, a variable S in G.
2: Output: The type of ancestral relation between S and all the other vertices in G.
3: for each node W in G do
4: Identify the type of ancestral relation of S with respect to W in G by Algorithm 2.
5: Return the set of definite descendants, possible descendants and definite non-descendants of S

in G.

F Supplementary experimental results

F.1 Causal graphs for one simulation
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(a) DAG D
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(c) MPDAG G

Figure 8: (a) is one of the generated DAG D with 10 nodes and 10 directed edges; (b) is the
corresponding CPDAG Gò; (c) is the corresponding MPDAG G following Meek’s rule, with the
background knowledge that E is a direct cause of K. The randomly selected sensitive attribute
is represented by A and the outcome attribute is Y . Algorithm 4 detects the ancestral relations
in MPDAG G: the definite non-descendants of the sensitive attributes are {B,D,F}, the possible
descendants are {C,H,E,K, I}, and there is no definite descendants of A in G.
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F.2 Causal graphs for the Student Dataset
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(a) CPDAG Gò.
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(b) MPDAG G ¨ without the root assumption.
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(c) MPDAG G with the root assumption.
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(d) An arbitrary DAG D in Markov equivalence class of G.

Figure 9: The causal graphs for Student dataset. The attribute information can be found at https:
//archive.ics.uci.edu/ml/datasets/Student+Performance. (a) is the learnt CPDAG C;
(b) Given the background knowledge that the age is the parent of schoolsup and school, without any
other assumption, we can have the MPDAG G ¨ by applying Meek’s rule; (c) With the additional root
node assumption, we can obtain the MPDAG G; (d) is an arbitary DAG D in the Markov equivalent
class of G.

.

F.3 Training details on real data

We assume the linear causal model in the obtained MPDAG G. To test the counterfactual fairness
of the baseline methods, as in Section 6.1, we first generate the counterfactual data. Since the
ground-truth DAG is unknown, we generate the counterfactual data from a DAG sampled from the
Markov equivalence class of MPDAG G.4 Then we fit the parameters of the model using the original
data and generate samples from the model given the counterfactual sex and the same noise in the
original data for each individual. We fit baseline models to both the original and counterfactual
sampled data and measure the unfairness in the same way as in Section 6.1. This procedure is carried
out 10 times and the average unfairness and RMSE results for five models are reported in Table 2.

4On this dataset, all the possible true DAGs give the same results as the nodes with uncertain edge directions
are not related to the sensitive attribute.
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F.4 Experiment based on more complicated structural equations

To show the generality of our method, we generate each variable Xi from the following non-linear
structure equation:

Xi = gi(fi(pa(Xi) + ✏i)), i = 1, ..., n, (2)
where the causal mechanism fi is randomly chosen from linear, sin, cos, tanh, sigmoid function and
their combinations; gi, which represents the post-nonlinear distortion in variable Xi, is randomly
chosen from linear function, absolute and reciprocal function; ✏i is the noise term, sampling from
Gaussian, Exponential and Gumbel distributions. With the same basic settings and evaluation metrics
as Section 6.1, we fit a SVM regression model for the baselines and our proposed models. The average
unfairness and RMSE achieved on 100 causal graphs is reported in Table 3. The corresponding
boxplot is shown in Figure 10 as well. We can see that it yields the same trend on counterfactual
fairness as the linear case, while the accuracy in this dataset does not necessarily decrease with the
increase in fairness. More discussion on accuracy-fairness tradeoff can be referred to Appendix H.

Table 3: Average unfairness and RMSE for synthetic datasets generated by nonlinear structural
equations on held-out test set. For each graph setting, the unfairness gets decreasing from left to right,
while there is no obvious increase in RMSE.

Node Edge Full Unaware FairRelax Oracle Fair

U
nf

ai
rn

es
s 10 20 0.575 ± 0.431 0.218 ± 0.262 0.028 ± 0.115 0.000 ± 0.000 0.000 ± 0.000

20 40 0.491 ± 0.358 0.143 ± 0.210 0.017 ± 0.080 0.000 ± 0.000 0.000 ± 0.000
30 60 0.388 ± 0.309 0.126 ± 0.208 0.010 ± 0.044 0.000 ± 0.000 0.000 ± 0.000
40 80 0.388 ± 0.384 0.094 ± 0.139 0.009 ± 0.057 0.000 ± 0.000 0.000 ± 0.000

R
M

SE

10 20 4.033 ± 4.675 4.024 ± 4.663 4.095 ± 4.638 4.098 ± 4.649 4.101 ± 4.646
20 40 3.921 ± 4.532 3.881 ± 4.467 3.921 ± 4.497 3.920 ± 4.495 3.927 ± 4.491
30 60 3.370 ± 3.960 3.371 ± 3.958 3.437 ± 4.024 3.438 ± 4.025 3.442 ± 4.023
40 80 3.457 ± 3.999 3.451 ± 3.983 3.474 ± 3.956 3.478 ± 3.960 3.479 ± 3.963
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(a) Average unfairness for each model and graph setting.
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(b) Average RMSE for each model and graph setting.

Figure 10: Average unfairness and RMSE for synthetic datasets generated by nonlinear structural
equations on held-out test set.

F.5 Experiment analyzing fairness performance with varying amount of given domain
knowledge

Prediction using Fair method results in a strictly fair model regardless of how much domain
knowledge is given. Prediction using FairRelax method will show different fairness performance
with different amount of domain knowledge, since some definite descendants X of the sensitive
attribute may be possible descendants when less domain knowledge is given, thus the unfair feature
X will be involved to make predictions. At this point we do not know, theoretically, how different
amounts or even types of domain knowledge will affect the performance of FairRelax. However,
we can explore this experimentally.

For a given CPDAG, only the fairness performance of FairRelax model among all models will be
affected by the amount of background knowledge. The more background knowledge, the fairer the
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FairRelax. For example, in the setting ‘10nodes20edges’, when the proportion of the undirected
edges’ true orientation is increased from 0.1, 0.3, 0.6 to 1, the unfairness for FairRelax are 0.075,
0.023, 0.018, 0.0, respectively. The same trend can be found in other graph settings, see Table 4.
The ‘ BK (%)’ represents how much the undirected edges’ true orientation is given as background
knowledge.

Table 4: Average unfairness for synthetic datasets with varying amount of given domain knowledge.
For each graph setting, the more domain knowledge, the fairer the model FairRelax becomes.

Node Edge BK(%) Full Unaware FairRelax Oracle Fair

10 20

10 0.707 ± 1.144 0.587 ± 1.093 0.075 ± 0.334 0.0 ± 0.0 0.0 ± 0.0
30 0.707 ± 1.144 0.587 ± 1.093 0.023 ± 0.178 0.0 ± 0.0 0.0 ± 0.0
60 0.707 ± 1.144 0.587 ± 1.093 0.018 ± 0.174 0.0 ± 0.0 0.0 ± 0.0
100 0.707 ± 1.144 0.587 ± 1.093 0.000 ± 0.174 0.0 ± 0.0 0.0 ± 0.0

20 40

10 0.326 ± 0.640 0.280 ± 0.624 0.032 ± 0.189 0.0 ± 0.0 0.0 ± 0.0
30 0.326 ± 0.640 0.280 ± 0.624 0.018 ± 0.136 0.0 ± 0.0 0.0 ± 0.0
60 0.326 ± 0.640 0.280 ± 0.624 0.014 ± 0.132 0.0 ± 0.0 0.0 ± 0.0
100 0.326 ± 0.640 0.280 ± 0.624 0.000 ± 0.000 0.0 ± 0.0 0.0 ± 0.0

30 60

10 0.442 ± 1.176 0.433 ± 1.191 0.080 ± 0.329 0.0 ± 0.0 0.0 ± 0.0
30 0.442 ± 1.176 0.433 ± 1.191 0.076 ± 0.321 0.0 ± 0.0 0.0 ± 0.0
60 0.442 ± 1.176 0.433 ± 1.191 0.056 ± 0.307 0.0 ± 0.0 0.0 ± 0.0
100 0.442 ± 1.176 0.433 ± 1.191 0.000 ± 0.000 0.0 ± 0.0 0.0 ± 0.0

40 80

10 0.221 ± 0.646 0.199 ± 0.647 0.042 ± 0.220 0.0 ± 0.0 0.0 ± 0.0
30 0.221 ± 0.646 0.199 ± 0.647 0.019 ± 0.176 0.0 ± 0.0 0.0 ± 0.0
60 0.221 ± 0.646 0.199 ± 0.647 0.001 ± 0.010 0.0 ± 0.0 0.0 ± 0.0
100 0.221 ± 0.646 0.199 ± 0.647 0.000 ± 0.000 0.0 ± 0.0 0.0 ± 0.0

F.6 Experiment analyzing model robustness on causal discovery algorithms

In Section 6.1, we obtain the ture CPDAG from the true DAG without running the causal discovery
algorithm. However, in practice, with the true DAG unknown, the CPDAG can only be obtained from
causal discovery algorithms. In order to test the model robustness on causal discovery algorithms, we
learn the corresponding CPDAG from the synthetic data by the Greedy Equivalence Search (GES)
procedure [5]. The prediction performance and fairness results are reported in Table 5 and Figure 11,
from which, we can see the same trend on five models as the one in Section 6.1. Moreover, there is
not much difference on fairness and prediction performance on FairRelax model between the case
that the CPDAG is induced directly from the true DAG and the case that the CPDAG is learnt from
the observational data by a causal discovery algorithm.

Table 5: Average unfairness and RMSE for synthetic datasets on held-out test set when the corre-
sponding CPDAG is learned by GES search procedure. For each graph setting, the unfairness gets
decreasing from left to right and the RMSE gets increasing from left to right.

Node Edge Full Unaware FairRelax Oracle Fair

U
nf

ai
rn

es
s 10 20 0.264 ± 0.343 0.203 ± 0.318 0.084 ± 0.215 0.000 ± 0.000 0.079 ± 0.215

20 40 0.191 ± 0.312 0.150 ± 0.283 0.067 ± 0.243 0.000 ± 0.000 0.066 ± 0.243
30 60 0.157 ± 0.301 0.143 ± 0.308 0.066 ± 0.219 0.000 ± 0.000 0.061 ± 0.216
40 80 0.096 ± 0.190 0.074 ± 0.183 0.038 ± 0.109 0.000 ± 0.000 0.024 ± 0.075

R
M

SE

10 20 0.616 ± 0.255 0.631 ± 0.262 1.071 ± 0.739 1.079 ± 0.788 1.112 ± 0.767
20 40 0.597 ± 0.252 0.601 ± 0.250 1.029 ± 0.736 0.862 ± 0.564 1.037 ± 0.734
30 60 0.592 ± 0.232 0.595 ± 0.235 0.992 ± 0.771 0.907 ± 0.894 1.097 ± 0.955
40 80 0.595 ± 0.273 0.596 ± 0.272 0.928 ± 0.738 0.746 ± 0.433 0.947 ± 0.753

G Additional related works on ancestral relations identifiability

A basic task in causal reasoning on an MPDAG G is to identify the ancestral relations between two
distinct nodes in G. The first intuitive method is to list all DAGs in G and then read off the ancestral
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(a) Average unfairness for each model and graph setting.
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Figure 11: Average unfairness and RMSE for synthetic datasets on held-out test set when the
corresponding CPDAG is learned by GES search procedure. For each graph setting, the unfairness
gets decreasing from left to right, while RMSE has the opposite trend.

relations in each DAG. However, this method is computationally burdensome. The second approach
is to measure the possible causal effect [15, 21, 30, 31, 41, 42] from the source variable to the target
variable in an MPDAG. The target is a definite descendant (or non-descendant) of the source if and
only if all possible causal effect are non-zero (or zero). The third approach is to analyse the path
from the source to target in an MPDAG G. Perković et al. [42] propose that the target is a definite
non-descendant of the source if and only if there is no b-possibly causal path from the source to target.
There is also a sufficient and necessary graphical condition [16, Theorem 1] to identify whether a
variable is a definite descendant of another variable in CPDAGs. The authors in [36, 47] 5 extend
the sufficiency of this condition to other kinds of causal graphs as well. However, to the best of our
knowledge, such graphical criterion to determine the definite descendants for MPDAGs has not been
examined before.

H Discussion on accuracy-fairness trade-off

The accuracy-fairness trade-off is pointed out in a great number of existing algorithmic fairness works
[2, 33, 35, 56, 70, 71]. Yet, accuracy may not be doomed to decrease as fairness increases depending
on the data setting [13, 18, 61]. For example, in the synthetic dataset in Section 6.1, we do happen
to observe an accuracy-fairness trade-off, while it seems that such trade-off does not exist in the
synthetic dataset generated by the nonlinear structure equations in Appendix F.4. The authors in
[13, 50, 57] describe when such trade-off exists and when it does not theoretically or empirically.
Future work may take the fairness-accuracy trade-off into more consideration.

5Although Theorem 3.1 in [47] proved the necessity, their proof is incomplete as mentioned by [36]. Proving
the necessity for more general types causal graphs remains an open problem [62].
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