
Appendix

1 Proofs

In this section, we present the proof of Theorem 1.

Proof. Following the multi-armed bandit literature, we refer to each feature-threshold pair (f, t) as
an arm and refer to its optimization objective µft as the arm parameter. Pulling an arm corresponds to
evaluating the change in impurity induced by one data point at one feature-threshold pair (f, t) (i.e.,
arm) and incurs an O(1) computation. This allows us to focus on the number of arm pulls, which
translates directly to sample complexity.

First, we show that, with probability at least 1− 1
n , all confidence intervals computed throughout the

algorithm are valid, in that they contain the true parameter µft. For a fixed (f, t) and a given iteration
of the algorithm, the (1− δ) confidence interval satisfies

Pr (|µft − µ̂ft| > Cft) ≤ δ.

Let B denote the batch size chosen for MABSplit. Note that there are at most n
B rounds in the

main while loop (Line 6) of Algorithm 1 and hence at most nmT
B ≤ nmT confidence intervals

computed across all arms and all steps of the algorithm. With δ = 1
n2mT , we see that µft ∈

[µ̂ft − Cft, µ̂ft + Cft] for every arm (f, t) and for every step of the algorithm with probability at
least 1− 1

n , by a union bound over at most nmT confidence intervals.

Next, we prove the correctness of Algorithm 1. Let (f∗, t∗) = argminf∈F,t∈Tf
µft be the desired

output of the algorithm. Since the main while loop in the algorithm can only run n
B times, the

algorithm must terminate. Furthermore, if all confidence intervals throughout the algorithm are
correct, it is impossible for (f∗, t∗) to be removed from the set of candidate arms. Hence, (f∗, t∗)
(or some (f, t) with µft = µf∗t∗) must be returned upon termination with probability at least 1− 1

n .
This proves the correctness of Algorithm 1.

Finally, we consider the complexity of Algorithm 1. Let nused be the total number of arm pulls
computed for each arm remaining in the set of candidate arms at a given point in the algorithm.
Notice that, for any suboptimal arm (f, t) ̸= (f∗, t∗) that has not left the set of candidate arms, we

must have Cft ≤ c0

√
log 1/δ
nused

by assumption. With δ = 1
n2mT as above and ∆ft = µft − µf∗t∗ , if

nused >
4c20
∆2

ft
log(n2mT) then

2(Cft + Cf∗t∗) ≤ 2c0
√
log(n2mT)/nused < ∆ft = µft − µf∗t∗ ,

and

µ̂ft − Cft > µft − 2Cft

= µf∗t∗ +∆ft − 2Cft

≥ µf∗t∗ + 2Cf∗t∗

> µ̂f∗t∗ + Cf∗t∗

which means that (f, t) must be removed from the set of candidate arms at the end of that iteration.
Hence, the number of data point computations Mft required for any arm (f, t) ̸= (f∗, t∗) is at most

Mft ≤ min

[
4c20
∆2

ft

log(n2mT) +B, 2n

]
.

Notice that this holds simultaneously for all arms (f, t) with probability at least 1− 1
n . We conclude

that the total number of arm pulls M satisfies

E[M] ≤ E[M | all confidence intervals are correct] +
1

n
(2nMT)

≤
∑

f∈F,t∈Tf

min

[
4c20
∆2

ft

log(n2mT) +B, 2n

]
+ 2mT,

16

where we used the fact that the maximum number of computations for any arm is 2n. As argued
before, since each arm pull involves an O(1) computation, M also corresponds the total number of
computations.

17

2 O(log n) scaling of MABSplit

In Theorem 1, we demonstrated that MABSplit scales logarithmically in dataset size. In this section,
we empirically validate this claim.

Appendix Figure 1 (a) demonstrates the number of data points queried by MABSplit for a single
node split, i.e., a single call to MABSplit, as the dataset size increases, for various subset sizes of
MNIST. For each sample size, a sample is drawn with replacement from the original MNIST dataset.
The model is trained using Gini impurity in for the usual digitr classification task.

Appendix Figure 1 (b) demonstrates the same plot for various subset sizes of the Random Linear
Model dataset. The Random Linear Model dataset consists of 200,000 datapoints with 50 features,
6 of which are correlated with the targets and 44 of which are pure noise, using scikit-learn’s
make_regression function [47]; 160,000 datapoints are used for training and the remaining 40,000
for test.

Appendix Figure 1 also shows the best linear and logarithmic fits to each dataset. The relatively
high R2 values of the logarithmic fits (R2 = 0.97 and R2 = 0.82) compared to that of the linear
fits (R2 = 0.66 and R2 = 0.43) suggests that the scaling of MABSplit is logarithmic (and therefore
sublinear) with dataset size.

18

(a)

(b)

Appendix Figure 1: Scaling of MABSplit with different data subset sizes for (a) the MNIST digit
classification task and (b) the Random Linear Model regession task. In both tasks, MABSplit appears
to scale logarithmically, not linearly, with dataset size.

19

3 Mean Estimation and Confidence Interval Constructions

In this section, we discuss the estimation of the means µft and construction of their confidence
intervals via plug-in estimators and the delta method.

Let pL,k, pR,k, p̂L,k, and p̂R,k be the same as defined in Subsection 3.1. Furthermore, let p =
[pL,1, · · · , pL,K , pR,1, · · · , pR,K]T and p̂ = [p̂L,1, · · · , p̂L,K , p̂R,1, · · · , p̂R,K]T . Then, n′p̂ follows a
multinomial distribution with parameters (n′, 2K,p).

Let θ = [pL,1, · · · , pL,K , pR,1, · · · , pR,K−1]
T and θ̂ = [p̂L,1, · · · , p̂L,K−1, p̂R,1, · · · , p̂R,K−1]

T .
Then, by the Central Limit Theorem,

√
n′(θ̂ − θ)

D∼ N (0,Σ), (8)

where Σii = θi(1− θi) and Σij = −θiθj .

Next, we write µft in terms of θ for the impurity metrics as

Gini impurity : µft(θ) = 1−
∑K

k=1 θ
2
k∑K

k=1 θk
−

∑2K−1
k=K+1 θ

2
k + (1−

∑2K−1
k=1 θk)

2

1−
∑K

k=1 θk
, (9)

Entropy : µft(θ) = −
K∑

k=1

θk log2
θk∑K

k′=1 θ
′
k

−
2K−1∑
k=K+1

θk log2
θk

1−
∑K

k′=1 θ
′
k

−

(1−
2K−1∑
k=1

θk) log2
(1−

∑2K−1
k=1 θk)

1−
∑K

k=1 θk
. (10)

For a given impurity metric, let∇µft(θ) be the derivative of µft with respect to θ. From the delta
method,

√
n′(µ̂ft(θ)− µft(θ))

D∼ N (0,∇µft(θ)
TΣ∇µft(θ)), (11)

where the CIs can be constructed accordingly. These CIs are asymptotically valid as n′, n→∞. For
other impurity metrics such as MSE, the CIs can be similarly derived by writing the corresponding
µft in terms of θ and computing∇µft(θ).

20

Model Task and
Dataset

Performance
Metric Test Performance

RF (ours) Classification:
20 Newsgroups Accuracy 74.1 ± 2.8%

RF
(scikit-learn)

Classification:
20 Newsgroups Accuracy 76.2 ± 1.7%

ExtraTrees
(ours)

Classification:
20 Newsgroups Accuracy 66.5 ± 5.1%

ExtraTrees
(scikit-learn)

Classification:
20 Newsgroups Accuracy 62.6 ± 2.8%

RF (ours)
Regression:
California
Housing

MSE 0.679 ± 0.022

RF
(scikit-learn)

Regression:
California
Housing

MSE 0.672 ± 0.028

ExtraTrees
(ours)

Regression:
California
Housing

MSE 0.696 ± 0.055

ExtraTrees
(scikit-learn)

Regression:
California
Housing

MSE 0.695 ± 0.082

Appendix Table 1: Comparison of our re-implementation of baselines with the the implementations
available in scikit-learn. No statistically significant differences are apparent, which suggests that
our re-implementations are accurate.

4 Comparison of baseline implementations and scikit-learn

In this section, we compare our re-implementation of common baselines to those in popular packages
to verify the accuracy of our re-implementation. Specifically, we compare our implementations
of Random Forest Classifiers, Random Forest Regressors, Extremely Random Forest Classifiers,
and Extremely Random Forest Regressors to those of scikit-learn. We omit comparisons of the
Random Patches models because their correctness is implied by that of the Random Forest model, as
the Random Patches model consists of applying the Random Forest model to subsampled data and
features.

For classification, we compare our implementations on the 20 newsgroups dataset filtered to two
newsgroups, alt.atheism and sci.space. The dataset is embedded via TF-IDF and projected
onto their top 100 principal components, following standard practice [47]. The train-test split is the
standard one provided by scikit-learn.

For all classification problems, we average the predicted probabilities of each tree in the forest ("soft
voting") as opposed to only allowing each tree to vote for a single class ("hard voting"), following the
implementation in scikit-learn [47].

For regression, we compare our implementations on the California Housing dataset, subsampled
to 1,000 points as performing the regression on the full dataset of approximately 20,000 points is
computationally prohibitive. The train-test split is the standard one provided by scikit-learn [47].

Table 1 presents our results. In all cases, our re-implemented baselines do not present a statistically
significant difference in performance from the models present in scikit-learn, which suggests
that our re-implementations are correct. Performance is measured over 20 random seeds to compute
averages and standard deviations.

21

5 Profiles

In this work, we focused on the reducing the runtime at the algorithmic level, i.e., reducing the
complexity of computing the best feature-threshold split. In this section, we justify this choice by
demonstrating that most of the time spent in our re-implementation of the baseline algorithms is spent
in computing the best feature-threshold split.

Appendix Figure 2 demonstrates the wall-clock time spent inside various functions when fitting a
Random Forest classifier without MABSplit on two subsets of the MNIST dataset of sizes 5,000
and 10,000. Most of the time is spent inside the computation of the best feature-threshold split,
which scales approximately as dataset size and motivates our focus on improving the performance
of the split-identification subroutine. When using MABSplit, the time spent to identify the best
feature-threshold split is reduced significantly (Appendix Figure 3).

Appendix Figure 4 also contains an example callgraph demonstrating callers and callees for the fitting
procedure of a Random Forest, for easier interpretation of Appendix Figures 2 and 3.

(a)

(b)

Appendix Figure 2: Profiles for the node-splitting algorithm using the exact solver/naïve computation,
the canonical algorithm for computing the best feature-threshold split, for 5,000 (top) and 10,000
(bottom) data point subsets of MNIST. The "Function" column is the name of the called function, the
"Incl." column is the time spent in the function and any called subroutines, and the "Self" column
is the time (in nanoseconds) spent in only the function and not in any callees. All times are in
nanoseconds. When increasing the dataset size, the overhead spent outside of the solve_exactly
function grows negligibly from about 0.5 seconds to about 1 second. However, the time spent in
the solve_exactly function and any called subroutines grows from about 28 seconds to about 61
seconds and constitutes approximately 98% of the increase in wall-clock time. This observation
motivates our focus on improving the subroutine used to identify the best feature-threshold split. This
profile was generated with cProfile and visualized with pyprof2calltree [37].

22

(a)

(b)

Appendix Figure 3: Profiles for the node-splitting algorithm using MABSplit, for 5,000 (top) and
10,000 (bottom) datapoint subsets of MNIST. The "Function" column is the name of the called
function, the "Incl." column is the time spent in the function and any called subroutines, and the
"Self" column is the time (in nanoseconds) spent in only the function and not in any called sub-
routines. All times are in nanoseconds. When increasing the dataset size, the time spent in the
solve_mab function and any called subroutines only grows from approximately 20 seconds to
approximately 35 seconds to identify the best feature-threshold split. This profile was generated with
cProfile and visualized with pyprof2calltree [37].

23

Appendix Figure 4: Example call graph of the fit subroutine for the forest-based models in our
re-implementation when the forest includes a single tree to be split only once. The fit method of
the forest calls the fit method of its only tree, which calls calculate_best_split method of
the root node, which calls the respective solver (solve_exactly for the brute-force algorithm or
solve_exactly for MABSplit), where the majority of wall-clock time is spent.

24

6 Experiment Details

Here we provide full details for the experiments in Section 5. All experiments were run on 2021
MacBook Pro running MacOS 12.5.1 (Monterey) with an Apple M1 Max processor, and 64 GB
RAM.

6.1 Datasets

Classification Datasets: We use the MNIST [38], APS Failure at Scania Trucks [25, 20], and Forest
Cover Type [13, 20] datasets. The MNIST dataset consists of 60,000 training and 10,000 test images
of handwritten digits, where each black-and-white image is represented as a 784-dimensional vector
and the task is to predict the digit represented by the image. The APS Failure at Scania Trucks dataset
consists of 60,000 datapoints with 171 features and the task is to predict component failure. The
Forest Covertype dataset consists of 581,012 datapoints with 54 feature and the task is to predict the
type the forest cover type from cartographic variables.

Regression Datasets: We use the Beijing Multi-Site Air-Quality [64, 20] and the SGEMM GPU
Kernel Performance [8, 44, 20] datasets. The Beijing Multi-Site Air-Quality dataset consists of
420,768 datapoints with 18 features and the task is to predict the level of air pollution. The SGEMM
GPU Kernel Performance dataset consists of 241,600 datapoints and the task is to predict the running
time of a matrix multiplication.

For all datasets except MNIST (which has predefined training and test datasets), all datasets were
randomized into 9:1 train-test splits. All datasets are publicly available.

6.2 Runtime Experiments

For the runtime experiments presented in Tables 1, all performances were measured from 5 random
seeds. For all datasets, the maximum depth was set to 1 except for the MNIST dataset, in which the
maximum depth was set to 5. The number of trees in each model was set to 5. All experiments used
the Gini impurity criterion and the minimum impurity decrease required from performing a split was
set to 0.005. For the Random Patches (RP) model, αn was set to 0.7 and αf was set to 0.85.

For the regression runtime experiments presented in Table 2, all performances were measured from 5
random seeds. For the Beijing Multi-Site Air-Quality Dataset, the maximum depth was set to 1 and
for the SGEMM GPU Kernel Performance Dataset, the maximum number of leaf nodes was set to 5.
The number of trees in each model was set to 5. All experiments used the MSE impurity criterion and
the minimum impurity decrease required from performing a split was set to 0.005. For the Random
Patches (RP) model, αn was set to 0.7 and αf was set to 0.85.

6.3 Budget Experiments

For the classification budget experiments presented in Table 3, all performances were measured from
5 random seeds. The budget for each model on the MNIST, APS Failure at Scania Trucks, and Forest
Covertype datasets were set to 10,192,000, 784,000, and 9,408,000, respectively. For the Random
Patches (RP) model, αn was set to 0.6 and αf was set to 0.8. The maximum number of trees in any
model was set to 100 and the maximum depth of each tree was set to 5.

For the regression budget experiments presented in Table 4, all performances were measured from 5
random seeds. The budget for each model on the Beijing Multi-Site Air-Quality Dataset was set to
76,800,000 and the budget for each model on the SGEMM GPU Kernel Performance Dataset was set
to 24,000,000. For the Random Patches (RP) model, αn was set to 0.8 and αf was set to 0.5. The
maximum number of trees in any model was set to 100 and the maximum depth of each tree was set
to 5.

6.4 Stability Experiments

Two metrics for calculating feature importance are used in Table 5: out-of-bag Permutation Impor-
tance (OOB PI) and Mean Decrease in Impurity (MDI) [42, 49]. For a feature f , the OOB PI is
calculated by measuring the difference between the trained model’s out-of-bag error on the original
data with its out-of-bag error on all the data with all out-of-bag datapoints’ f values shuffled. The

25

MDI for a feature f is the average decrease in impurity of all nodes where f is selected as the splitting
criterion.

Once feature importances have been calculated, the top k most important features for the model are
selected and the stability of these k features is measured via standard stability formulas [43].

The results of the stability experiments are shown in Table 5. The Random Classi-
fication dataset is generated via scikit-learn’s datasets.make_classification func-
tion with n_samples=10000, n_features=60, and n_informative=5. The Random
Regression dataset is generated by scikit-learn’s datasets.make_regression with
n_samples=10000, n_features=100, and n_informative=5.

26

MNIST Dataset (Classification, N = 60, 000, maximum depth = 8)
Model Wall-clock Training Time (s) Accuracy (%)

scikit-learn Decision Tree Classifier 34.665 ± 1.266 91.061 ± 0.0
Histogrammed decision tree (Exact solver, ours) 86.514 ± 2.839 90.923 ± 0.0

Histogrammed decision tree (MABSplit solver, ours) 8.538 ± 0.079 90.629 ± 0.234

Appendix Table 2: Comparison of accuracy and wall-clock training time of scikit-learn’s De-
cision Tree Classifier with our implementation on the MNIST digit classification task. Our imple-
mentation of the histogrammed decision tree is slower than scikit-learn’s, but our optimized
implementation is about 4x faster than scikit-learn’s. The slight performance degradation is likely
due to discretization of the data during histogramming; this effect is also seen when histogramming
the data and using the exact solver (i.e., when not using MABSplit). A more heavily optimized
version of our histogrammed decision tree when using MABSplit would likely result in even lower
training times. Performance was measured over 5 random seeds.

7 Limitations

7.1 Theoretical Limitations

Crucial to the success of MABSplit are the assumptions described before and after Theorem 1. In
particular, we assume that their is reasonable heterogeneity amongst the true impurity reductions of
different feature-value splits. Such assumptions are common in the literature and have been validated
on many real-world datasets [5, 63, 7, 58, 4, 6].

We also note that the assumptions that each CI scales as
√

log 1/δ
n′ may be violated when using certain

impurity metrics. For example, the derivative of the entropy impurity criterion with respect to some
pk approaches∞ when pk → 0. In this case, we cannot apply the delta method from Appendix 3 to
compute finite CIs that scale in the way we require. In such settings, it may be necessary to compute
the CIs in other ways, e.g., following [46] or [9].

We note that in the worst case, even when all assumptions are violated, MABSplit is never worse
than the naïve algorithm in terms of sample complexity. In the worst case, it is a batched version of
the naïve algorithm.

7.2 Practical Limitations

We note that MABSplit may perform worse than naïve node-splitting on very small datasets, where
the overhead of sampling the data in batches outweighs any potential benefits in sample complexity
(see Appendix 8 for further discussion).

In this work, we avoided a direct runtime comparison with scikit-learn because scikit-learn
utilizes a number of low-level implementation optimizations that would make the comparison
unfair. To provide a brief comparison to the popular scikit-learn implementation, however, we
attempted to optimize our implementation using numba [36], a package that translates Python code to
optimized machine code. Our numba-optimized implementation is 4x faster than scikit-learn’s
DecisionTreeClassifier and achieves comparable performance on the MNIST dataset; see
Appendix Table 2.

In order for practitioners to take full advantage of MABSplit, however, it may be necessary to
implement MABSplit within the scikit-learn library. In doing so, it may be possible that
MABSplit makes it difficult or impossible to use existing optimizations in the scikit-learn
library. An example of this is vectorization: because the naïve node-splitting algorithm queries
the data in a predictable way, each datapoint can be queried more quickly than in MABSplit.
Despite MABSplit’s advantages in sample complexity, the disadvantages of being unable to use
implementation optimizations like vectorization may outweigh MABSplit’s benefits. Many of these
risks may be ameliorated by addressed MABSplit into existing RF implementations such as the one
in scikit-learn. We anticipate that many optimizations will still apply: for example pre-fetching
data to have it in caches close to the CPU, manual loop unrolling, etc. We leave an optimization
implementation of MABSplit inside the scikit-learn library to future work.

27

8 Comparison on Small Datasets

In this section, we investigate the performance of MABSplit on small datasets. Appendix Figure 5
demonstrates the performance of MABSplit, both in wall-clock training time and sample complexity,
for various subset sizes of MNIST. Our results that RF+MABSplit outperforms the standard RF algo-
rithm, in both sample complexity and wall-clock time, when the dataset size exceeds approximately
1100 datapoints.

However, we also note that the main use case for MABSplit is when the data size is large and it is
computationally challenging to run standard forest-based algorithms. Indeed, the use of big data in
many applications that necessitate sampling was the primary motivation for our work [11, 54, 18, 57,
41, 1].

28

(a)

(b)

Appendix Figure 5: (a) Wall-clock training times and (b) sample complexities of a random forest
model with and without MABSPlit, for various subset sizes of MNIST. For dataset sizes below
approximately 1000, the exact random forest model performs better in terms of sample complexity
and wall-clock time. Above 1100 datapoints, the MABSplit version demonstrates better sample
complexity and wall-clock time. Error bars were computed over 3 random seeds. Test performances
were not different at a statistically significant level.

29

9 Description of Other Node-Splitting Algorithms

For completeness, we provide a brief description of various baseline models’ node-splitting algorithms
here to enable easier comparison with MABSplit.

Consider a node with n datapoints each with m features, and T possible thresholds at which to split
each feature. We discuss the classification setting for simplicity, though the same arguments apply to
regression.

A very naïve approach would be to iterate over all mT feature-value splits, and compute the proba-
bilities pL,k and pR,k from all n datapoints. This results in complexity O(mTn), which is O(mn2)
when T = n (for example, T = n in the un-histogrammed setting).

Instead, the usual RF algorithm sorts all n datapoints in O(nlogn) time for each of the m features,
resulting in total computational cost O(mnlogn). Then the algorithm scans linearly from lowest
value to highest value for each feature and update the parameters pL,k and pR,k via simple counting
to find the best impurity reduction for each of the T potential splits. The complexity of this step
is O(mT + mn), where the “+mn” comes from the allocations of each data point to the left or
right node during the scan (each data point is re-allocated only once per feature). Thus the total
complexity of this approach is O(mnlogn+mT +mn) = O(mnlogn+mT). This is O(mnlogn)
when T = n.

The binned (a.k.a. histogrammed) method does not require the per-feature sort and avoids the
O(mnlogn) computation when T < n,. Instead, each of the n points must be inserted into the correct
bin (which can be done in O(1) time for each datapoint if the bins are equally spaced) for each of the
m features, incurring total computational cost O(mn). Then, the same linear scanning approach as
in the “standard” algorithm is performed with complexity O(mT +mn). The total complexity of
this approach is O(mn+mT +mn) = O(m(n+ T)). This is O(mn) when T = n.

In general, we do not assume T = n, i.e., that every feature value is a potential split point, unless
otherwise specified. In our paper, the “standard” approach refers to the unbinned approach which
requires an O(mnlogn) sort and “linear” refers to the binned approach that is O(m(n+ T)), which
is O(mn) when T = O(n).

Crucially, when T = o(N) (as is often the case in practice, e.g., for a constant number of bins) and
the necessary gap assumptions are satisfied, MABSplit scales as O(mT logn). In many cases, this
is much better than O(m(n+ T)), e.g., for large datasets, because the dependence on n is reduced
from linear to logarithmic. More concretely, treating T as a constant and ignoring the dependence
on m, we reduce the complexity of the binned algorithm from O(n), what we refer to as “linear,” to
O(logn).

30

	Discussions and Conclusions
	Mean Estimation and Confidence Interval Constructions
	Profiles
	Experiment Details
	Datasets
	Runtime Experiments
	Budget Experiments
	Stability Experiments

	Limitations
	Theoretical Limitations
	Practical Limitations

	Comparison on Small Datasets

	Description of Other Node-Splitting Algorithms

