
A Proof of Proposition 1502

Our proof follows the standard proof of MAB lower bound. Let ∆ be some constant. Define some
θ1 = (∆, . . . ,∆

T times
, 0, . . . , 0
T (T−1) times

)>. For any algorithm running on this ASD, let T1(n) be the total

number of selections for the first T samples. If T1(n) ≤ T/2, the regret for θ1 is greater than ∆T/2.
Let

k = arg min
t>1

Eθ1Tt(n).

Since
∑
t Eθ1Tt(n) = T , we have Eθ1Tk(n) ≤ T/(T − 1) ≤ 2. Without a loss of generality, we

let k = 2. Define θ̃2 = (0, . . . , 0
T times

, 2∆, . . . , 2∆
T times

, 0, . . . , 0
T (T−2) times

)>. Then consider a uniform prior over

{θ1, θ̃2}. The Bayesian regret is at least

T∆

4
Pθ1(T1(n) ≤ T/2) +

T∆

4
Pθ̃2(T1(n) > T/2)

where Pθ is the probability measure under the ASD problem with parameter θ. Using Lemma 15.1503

[27], we have504

Pθ1(T1(n) ≤ T/2) + Pθ̃2(T1(n) > T/2) ≥ exp
(
−D

(
Pθ1 ,Pθ̃2

))
/2

= exp (−Eθ1 [T2(n)] D(N (0, 1),N (2∆, 1))) /2

≥ exp(−4∆2)/2,

where D(P1, P2) is the KL-divergence of two probability measure P1 and P2. Now choosing505

∆ = 1/2, we have for any algorithm A, BR(T,A) & T .506

B Proof of Lemma 1507

We decompose the Bayesian regret in terms of the instant regret508

BR(T ; IDS) = E[

T∑
t=1

fθ(X
∗
t )−

T∑
t=1

fθ(Xt)]

= E[

T∑
t=1

〈πt,∆t〉]

≤ E[

T∑
t=1

(Ψ?,λg
>
t πt)

1/λ]

= Ψ
1/λ
?,λ E[

T∑
t=1

(g>t πt)
1/λ]

≤ Ψ
1/λ
?,λ T

1−1/λE[

T∑
t=1

(g>t πt)]
1/λ

≤ Ψ
1/λ
?,λ T

1−1/λE[

T∑
t=1

It(X
∗
t,1, . . . , X

∗
t,T−t+1; (Xt, Yt))]

1/λ

(using the fact that {X∗t,1, . . . , X∗t,T−t+1} ⊂ {X∗1 , . . . , X∗T })

≤ Ψ
1/λ
?,λ T

1−1/λE[

T∑
t=1

It(X
∗
1 , . . . , X

∗
T ; (Xt, Yt))]

1/λ

≤ Ψ
1/λ
?,λ T

1−1/λH(X∗1 , . . . X
∗
T )1/λ

C Generalized Linear Model509

We start from proving for the simple linear regression i.e. µ(x) = x.510
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Proof. Let πtst be the Thompson sample policy at the step t, i.e. πtst (x) = Pt(X∗t,1 = x). We have511

Ψt =
(∆>t πt)

2

g>t πt
≤ (∆>t π

ts
t )2

g>t π
ts
t

.

We first write the instant regret in the following form:512

∆>t π
ts
t = Et[θ>X∗t,1]−

∑
x∈Snt

πtst (x)Et[θ>x]

≤
∑
x∈Snt

Pt(X∗t,1 = x)
(
Et[θ>x | X∗1 = x]− Et[θ>x]

)
.

Now we deal with the information gain term. Let Yt,x be the observation at step t when selecting513

input x and εt,x be the noise generated. We have Yt,x = µ(θ>x) + εt,x. The mutual information can514

represented by the Kullback-Leibler divergence between the joint distribution of the two variables515

and the product of their marginal distribution, i.e.516

It(X
∗
t,1;Yt,x) =

∑
x′∈Snt

D(Pt(Yt,x | X∗t,1 = x′)‖Pt(Yt,x)). (3)

Lemma 2 (Fact 9 [34]). For any distribution P and Q such that P is absolutely continuous with
respect to Q, any random variable X : Ω 7→ X and any g : X 7→ R such that sup g − inf g ≤ 1,

EP [g(X)]− EQ[g(X)] ≤
√

1

2
D(P‖Q),

where EP and EQ denote the expectation operators under P and Q.517

By Lemma 2 with g(x) = x and X = Yt,x, the information gain can be lower bounded by:518

g>t π
ts
t ≥ 2

∑
x,x′∈Snt

Pt(X∗t,1 = x)Pt(X∗t,1 = x′)
(
Et[Yt,x | X∗t,1 = x′]− Et[Yt,x]

)2
Let

Mx,x′ =
√
P (X∗t,1 = x)P (X∗t,1 = x′)(E[Yt,x | X∗t,1 = x]− E[Yt,x]).

Then ∆>t π
ts
t = trace(M) and v>t π

ts
t = ‖M‖2F .519

By Fact 2 of [35], we have

∆>t π
ts
t /v

>
t π

ts
t = trace(M)/(2‖M‖2F ) ≤ rank(M) ≤ d/2.

520

C.1 Proof of Theorem 1521

Proof. Using the similar strategy for linear model, we let πtst be the Thompson sample policy at the522

step t.523

Using the fact that µ is Lµ-Lipschitz524

∆>t π
ts
t = Et[µ(θ>X∗t,1)]−

∑
x∈Snt

πtst (x)Et[µ(θ>x)]

=
∑
x∈Snt

Pt(X∗t,1 = x)
(
Et[µ(θ>X∗t,1)]− Et[µ(θ>x)]

)
≤ Lµ

∑
x∈Snt

Pt(X∗t,1 = x)
(
Et[(θ>X∗t,1)]− Et[(θ>x)]

)
≤ Lµ

∑
x∈Snt

Pt(X∗t,1 = x)
(
Et[(θ>x) | X∗t,1 = x]− Et[(θ>x)]

)
.
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The major difference is on the lower bound of the information gain term. We follow a similar525

strategy in [10]. Let f(x) = E[µ−1(x− ε̃)], where ε̃ follows exactly the same distribution of ε. Let526

Ỹt,x = f(Yt,x) = E[µ−1(Yt,x − ε̃) | Yt,x]. Then we have527

E[Ỹt,x | θ] = E[E[µ−1(Yt,x − ε̃) | Yt,x] | θ]
= E[E[µ−1(Yt,x − ε) | Yt,x] | θ]
= E[E[µ−1(θ>x) | Yt,x] | θ]
= θ>x.

Since Ỹt,x is a linear regression outcome, the information gain528

I(X∗1 ; Ỹt,x) ≥ 2
∑
x′∈Snt

Pt(X∗t,1 = x′)(Et[Ỹt,x | X∗t,1 = x′]− Et[Ỹt,x])2

= 2
∑
x′∈Snt

Pt(X∗t,1 = x′)(Et[θ>x | X∗t,1 = x′]− Et[θ>x])2.

To proceed, we notice that Ỹt,x is a deterministic function of Yt,x. Hence, I(X∗1 ; Ỹt,x) ≤ I(X∗1 ;Yt,x).
Then we have

g>t π
ts
t ≥ 2

∑
x,x′∈Snt

Pt(X∗t,1 = x)Pt(X∗t,1 = x′)(Et[θ>x | X∗t,1 = x′]− Et[θ>x])2

From here the same analysis for linear model can be applied.529

D Low-rank Matrix530

We denote a policy at time t by πt ∈ [0, 1]|Ω
c
t | each dimension corresponding to a unlabeled entry.531

Now we derive the instant regret and information gain. We denote an index by a = (a1, a2), where532

a1, a2 are row and column indices.533

Let µ be uniform distribution over Ωct . Using Lemma 3 [34], we have534

〈πt, It〉 ≥
2

B2 + 1

∑
a∈Ωct

µ(a)
∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
(
Et
[
Yt,a | X∗t,1 = a∗

]
− Et [Yt,a]

)2
=

2

B2 + 1

∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
∑
a∈Ωct

µ(a)
(
Et
[
Ma | X∗t,1 = a∗

]
− Et [Ma]

)2
=

2

B2 + 1

∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
∑
a∈Ωct

µ(a)
(
Et
[
Ma | X∗t,1 = a∗

]
− Et [Ma]

)2
=

2

B2 + 1

∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
1

|Ωct |
‖M t,a∗‖2F

≥ 2

B2 + 1

∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
1

m2
‖M t,a∗‖2F

≥ 2

B2 + 1

∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
1

Rm2
trace2(M t,a∗).

where M t,a∗ := Et
[
M | X∗t,1 = a∗

]
− Et [M ].535
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To upper bound the instant regret, let πtst be the Thompson Sampling policy. We have536

〈πt,∆t〉 =
∑
a

Pt(X∗t,1 = a)
(
Et
[
MX∗1

]
− Et [Ma]

)
=
∑
a

Pt(X∗t,1 = a)
(
Et
[
Ma | X∗t,1 = a

]
− Et [Ma]

)
≤
√∑

a

Pt(X∗t,1 = a) (Et [Ma | X∗1 = a]− Et [Ma])
2

≤
√∑

a

Pt(X∗t,1 = a) max
a′

(M t,a
a′ )2

(Using Assumption 2)

≤
√∑

a

Pt(X∗t,1 = a)(4
γr

m
)2 trace2(M t,a).

Now we consider a mixed policy: πt = pµ+ (1− p)πPSt for some p ∈ [0, 1].537

〈πt, It〉 ≥ p 〈µ, It〉 ≥
2p

B2 + 1

∑
a∗∈Ωct

Pt(X∗t,1 = a∗)
1

Rm2
trace2(M t,a).

〈πt,∆t〉 ≤ pB + (1− p)
〈
πPSt ,∆t

〉
≤ pB + (1− p)

√∑
a

Pt(X∗t,1 = a)(4
γr

m
)2 trace2(M t,a)

By optimizing p, we have
〈πt,∆t〉3

〈πt, It〉
≤ 4B(B2 + 1)r3γ2.

Combined with Lemma 1, we have the following Bayesian regret bound

BR(T, IDS) . (4B(B2 + 1)r3γ2H(M)T 2)1/3.

E Graph538

Proof. The
√
T term in the maximization can be achieved by replacing πIS with πTS and use the539

fact that each complete subgraph can be treated as a single node.540

Let Ct be the smallest maximum independent set at the step t. To prove the T 2/3 term, we consider a541

mixture policy πmixt = γπCt + (1− γ)πTSt for some γ > 0, where πCt is the uniform distribution542

over Ct.543

We have
∆t(π

mix
t ) ≤ γB + (1− γ)∆t(π

TS
t ).

For information gain, we have
gt(π

mix
t ) ≥ γgt(πtC).

Since each node in Snt has an edge to at least one node in the maximum independent set (otherwise544

they have to be added to the set), we have545

gt(π
C
t ) ≥ 1

|Ct|
∑
x∈Ct

It(X
∗
t,1;Ot(x)) ≥ 1

|Ct|
∑
x∈Snt

It(X
∗
t,1;Yt,x).
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Figure 2: An illustration of graphs with rich structural information. Each dashed circle represent a
complete subgraph. The graph on the left hand side has X (G) = 4, while N = 28. The graph on the
right hand side is a illustration of the star graph, in which each node outside the dashed circle has an
edge to every node inside of the circle. This graph has C(G) = 1, while X (G) = 8 and N = 15.

Using (3) and Lemma 2 again, we have∑
x∈Snt

It(X
∗
t,1;Yt,x) ≥

∑
x∈Snt

Pt(X∗t,1 = x)
(
Et
[
Yt,x | X∗t,1 = x′

]
− Et [Yt,x]

)2
.

We also have

(∆>t π
TS
t )2 ≤

∑
x∈Snt

Pt
(
X∗t,1 = x

)
(Et

[
Yt,x | X∗t,1 = x′

]
− Et [Yt,x])

2

.

Therefore, we have

gt(π
t
C) ≥ 1

|Ct|
(∆t(π

TS
t ))2 ≥ 1

CT (G)
(∆t(π

TS
t ))2.

Henceforth,546

∆t(π
mix
t )3/g(πmixt ) ≤ (γB + (1− γ)(CT (G)1/2g

1/2
t )/γ1/2)3

gt

≤ (γB + (CT (G)1/2g
1/2
t )/γ1/2)3

gt
.

By optimizing γ, we have
∆t(π

mix
t )3/g(πmixt ) ≤ BC(G).

547

F Generic results548

The proof is analogous to the above proof for matrix and graph models. Consider a mixed policy549

π̃t = pµ+ (1− p)πtst .550

We have
g>t π̃t ≥ pg>t µ ≥ pφ(∆>t π

ts
t )2

and
∆>t π̃t ≤ (1− p)∆T

t π
ts
t + pB

Thus
(∆>t π̃t)

3

g>t π̃t
≤ ((1− p)∆T

t π
ts
t + pB)3

pφ(∆>t π
ts
t )2

≤ (∆T
t π

ts
t + pB)3

pφ(∆>t π
ts
t )2

.

The proof is finished by optimizing p.551
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G Sparse linear model552

Consider a linear regression problem
Y = X>θ + ε,

where θ ∈ Rd and ‖θ‖0 = s is the sparsity and ε is the zero-mean noise. In general, we expect553

d� T , in which case, any dependence on d would lead to a linear regret.554

Similarly to [14], we need to assume an exploratory unlabeled set.555

Assumption 4. Let Cmin(Sn) = maxµ∈D(Sn) σmin(Ex∼µ[xx>]). If Cmin(SnT ) ≥ 1 almost surely556

for any algorithm, then we say that Sn is exploratory.557

Theorem 4 (Theorem 5.3 in [14]). The following regret holds for IDS with λ = 3, if Sn is exploratory

BR(T, IDS) .
(
s2T 2∆

)1/3
,

where
∆ = min

(
log(n), 2s log

(
CdT 1/2/s

))
for some constant C > 0.558

The proof in [14] on sparse linear bandit is also applicable here. The only difference is that we make559

a stronger assumption on the exploratory set stating that the unlabeled dataset is still exploratory560

after eliminating any T elements. This is to guarantee the exploratory set for any step during the561

decision-making process.562

H Experiments563

H.1 Approximate algorithm564

The approximate algorithm, SampleVIDS is given in Algorithm 2.565

Algorithm 2 SampleVIDS (Sample Variance-based IDS)

Input: Unlabeled dataset Snt , prior distribution φ, total number of steps T , number of posterior
samples M , constant λ.
Initialize history F0 = {}.
for t = 1 to T do

Sample θ1, . . . , θM from φ(· | Ft−1).
Calculate instant regret by ∆t(x) =

∑M
i=1 maxx′∈Snt fθi(x

′)− fθi(x) for all x ∈ Snt .
Let Θ(x) = {θi : x ∈ arg maxx′∈Snt fθi(x

′)} and f̄(x) =
∑M
i=1 fθi(x)/M .

Calculate variance-based information ratio for all x ∈ Snt by

vt(x) =
∑
x′∈Snt

|Θ(x′)|
M

(
1

|Θ(x′)|
∑

θ∈Θ(x′)

fθ(x)− f̄(x))2.

Calculate the information ratio Ψt(x) = ∆t(x)λ/vt(x) and label Xt = arg maxx Ψt(x).
Update history Ft = Ft−1 ∪ {(Xt, Yt)}.

end for

H.2 Complete graph for simulation studies566

We provide the complete simulation results in Figure 3.567

H.3 Additional information for reaction condition discovery568

Additional information on two datasets. The complete library of informer molecules for Pho-569

toredox Nickel Dual-Catalysis (PNDC) and the structure of reactions for C-N Cross-Coupling with570

Isoxazoles (CNCCI) are provided in Figure 4 and 5. For PNDC, note that we only report the results571
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(d) Regret at T = 100
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Figure 3: Cumulative regret curves for linear regression (row 1), logistic regression (row 2), random
graph, star graph (row 3, 4) and low-rank matrix (row 5). The left three columns are the regret curves
for different dimensions d = 20, 50, 100 in linear and logistic regression simulations and for different
noise levels in graph and low-rank matrix simulations. The last column is the early-stage cumulative
regret. The confidence ranges are given by the standard deviation of 10 independent runs.
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for X2, X3, X4, X5, X6, X8, X11, X12, X13, X14, X15 in PNDC due to very low yields across all572

reaction conditions for the remaining molecules. Additionally, while the original dataset considers 12573

photocatalysts (total 96 reaction conditions) for each molecule, we consider 10 photocatalysts (80574

reaction conditions), due to the unavailability of descriptors that we intended to use. For CNCCI,575

only pairs of catalyst and base with datapoints of all 330 combinations of 15 aryl halides and 22576

isoxazoles were considered. The features used for CNCCI is a subset of those prepared in [2], with577

highest feature importance values in models presented in the original work.578

The two datasets are included in PNDC.xlsx and CNCCI.xlsx under data folder in the code. Each579

file has two sheets for yield and descriptors respectively.580

Figure 4: Complete library for PNDC (Figure 2 in [11]).

Response distribution. Figure 6 provides the distributions of the response variables in two dataset.581

582

Complete regret curves for PNDC. The complete regret curves for PNDC is given in Figure 7.583

Complete regret curves for CNCCI. The complete regret curves for CNCCI is given in Figure 8.584

I Comparison to ENS585

In this section, we briefly compare IDS with ENS (efficient nonmyopic search).586

We observed that ENS tends to over explore in the experiments on linear models. See our new Figure587

9 in the appendix. We believe this is because ENS assumes that the labels of all remaining unlabeled588

points are conditionally independent. That is the extra gain by observing the new label yt is uniform589

across all the remaining T − t points. This is over estimating the gain, because in the later stage when590

the estimates on Pr(y = 1 | x,Ft) are more accurate the extra gain from observing a single label is591

also much less. ENS thus weighs too much on the exploration side. We highly believe that this will592

lead to linear regret instead of T regret that can be achieved by IDS. This is also reflected in Figure593

9, where ENS performs worse than IDS when noise level of the problem is low and we need more594

exploitation. In general, IDS provides a more flexible balance between exploration and exploitation.595

We compare IDS with ENS on linear models with different level of noise. In general, a more noisy596

model requires more exploration. In Figure 9, ENS performs worse in the low-noise models while597

outperform IDS in higher noise settings.598

I.1 Computation resources and implementation assets.599

All the computation are done on MacBook Pro with 1.4 GHz Quad-Core Intel Core i5 Processor and600

16GB Memory. Part of the code is from [39].601
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Figure 5: Complete library for CNCCI (Figure 3 in [2]).

(a) PNDC (b) CNCCI

Figure 6: The distribution of the response variables in PNDC and CNCCI dataset. x-axes are response
variables (yield rate) and each panel corresponds to one target molecule.
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Figure 7: The whole horizon regret curves for PNDC dataset that corresponds to Table 1. The
confidence interval are the standard deviation calculated from 10 independent runs.
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Figure 8: The whole horizon regret curves for CNCCI dataset that corresponds to Table 1. The
confidence interval are the standard deviation calculated from 10 independent runs.
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Figure 9: Comparing IDS with ENS on linear models with σ = 0.1, 1, 5, 10.
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