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Abstract

In online learning problems, exploiting low variance plays an important role in
obtaining tight performance guarantees yet is challenging because variances are
often not known a priori. Recently, considerable progress has been made by
Zhang et al. (2021) where they obtain a variance-adaptive regret bound for linear
bandits without knowledge of the variances and a horizon-free regret bound for
linear mixture Markov decision processes (MDPs). In this paper, we present
novel analyses that improve their regret bounds significantly. For linear bandits,

we achieve Õ(min{d
√
K,d1.5

√

∑
K
k=1 σ

2
k} + d

2) where d is the dimension of the
features, K is the time horizon, and σ2

k is the noise variance at time step k, and
Õ ignores polylogarithmic dependence, which is a factor of d3 improvement. For
linear mixture MDPs with the assumption of maximum cumulative reward in an
episode being in [0,1], we achieve a horizon-free regret bound of Õ(d

√
K + d2)

where d is the number of base models and K is the number of episodes. This is a
factor of d3.5 improvement in the leading term and d7 in the lower order term. Our
analysis critically relies on a novel peeling-based regret analysis that leverages the
elliptical potential ‘count’ lemma.

1 Introduction

In online learning, variance often plays an important role in achieving low regret bounds. For
example, for the prediction with expert advice problem, Hazan and Kale [11] proposed an algorithm
that achieves a regret bound of O(

√
VARK) where VARK is a suitably-defined variance of the loss

function up to time step K, without knowing VARK ahead of time. The implication is that when
the given sequence of loss functions has a small variance, one can perform much better than the
previously known regret bound O(

√
K). For multi-armed bandits, Audibert et al. [2] proposed an

algorithm that achieves regret bounds that depends on the variances of the arms, which means that,
again, the regret bound becomes smaller as the variances become smaller.

It is thus natural to obtain similar variance-adaptive bounds for other problems. For example, in d-
dimensional stochastic contextual bandit problems, the optimal worst-case regret bound is Õ(σd

√
K)

where Õ hides polylogarithmic dependencies and σ2 is a uniform upper bound on the noise variance.
Following the developments in other online learning problems, it is natural to ask if we can develop
a similar variance-adaptive regret bound. The recent work by Zhang et al. [31] has provided an

affirmative answer. Their algorithm called VOFUL achieves a regret bound of Õ(d4.5
√

∑
K
k=1 σ

2
k+d

5)

where σ2
k is the (unknown) noise variance at time step k. This implies that, indeed, it is possible
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to adapt to the variance and suffer a much lower regret. Furthermore, they show that a similar
variance-adaptive analysis can be used to solve linear mixture Markov decision processes (MDPs)
with the unit cumulative rewards assumption :

∑
h

rkh ∈ [0,1],∀k (1)

where rkh is the reward received at episode k and horizon h. They show a regret bound of Õ(d4.5
√
K+

d9), which does not depend on the planning horizon length H up to polylogarithmic factors. We
elaborate more on the linear bandit and linear mixture MDP problems in Section 2.

However, the regret rates of these problems have a large gap between the known lower and the upper
bounds. For example, in linear bandits, it is well-known that the regret bound has to be Ω(d

√
K) [6],

which rejects the possibility of obtaining o(d
√

∑
K
k=1 σ

2
k), yet the best upper bound obtained so far is

O(d4.5
√

∑
K
k=1 σ

2
k). Thus, the gap is a factor of d3.5, which is quite large.

In this paper, we reduce such gaps significantly by obtaining much tighter regret upper bounds.
Specifically, we show that a slight variation of VOFUL [31] for linear bandits has a regret bound of

Õ(min{d
√
K,d1.5

√

∑
K
k=1 σ

2
k)} without knowledge of the variances. This reduces the gap between

the upper and lower bounds to only
√
d for the leading term in the regret. Furthermore, we employ

a similar technique to show that the algorithm VARLin [31] for linear mixture MDPs with unit
cumulative rewards has a regret bound of Õ(d

√
K+d2). At the heart of our analysis is a direct peeling

of the instantaneous regret terms using an elliptical potential ‘count’ lemma (EPC). EPC bounds,
given q > 0, how many times ∥xk∥

2
V −1
k−1
≥ q happens from time k = 1 to∞ where Vk−1 = ∑

k−1
s=1 xsx

⊺
s .

Our lemma is an improved and generalized version of [16, Exercise 19.3], which was originally
used for improving the regret bound of linear bandit algorithms. We provide the proofs of our main
results for linear bandits and linear mixture MDPs in Section 3 and Section 4 respectively. Finally,
we conclude the paper with exciting future directions.

Related work. There are numerous works on linear bandit problems such as [6, 4, 1, 17] where the
information of variance is not used. On the other hand, variance can be exploited to obtain better
regret [2]. Recently, works by [31, 33] proposed ways to infuse the variance information in the regret
analysis which improves the standard regret bound. Reinforcement learning with linear function
approximation has been widely studied to develop efficient learning methods that work for large
state-action space [27, 26, 13, 8, 14, 23, 24, 25, 29, 18, 15, 7, 21, 10, 9, 28]. To our knowledge, all
aforementioned works derived a regret bound that depends on the planning horizon H polynomially.
It was Zhang et al. [31] who first remove the polynomial dependence of H in the linear mixture
MDP problem, achieving a bound of Õ(d4.5

√
K + d9). In contrast, our analysis shows that their

algorithm in fact achieves significantly better bound of Õ(d
√
K +d2). Note that these results assume

the unit cumulative rewards assumption (1) and time-homogeneous transition models. In a similar
setup where rh,k ∈ [0,1] with time-inhomogeneous transition models, Zhou et al. [33] achieve the
regret Õ(

√
d2H + dH3

√
HK + d2H3 + d3H2) and show a lower bound of Ω̃(dH3/2√K). These

problem setups are incompatible to the setup of [31] and ours.

2 Problem Definition

Notations. We denote d-dimensional ℓ2 ball by Bd
2(R) ∶= {x ∈ Rd ∶ ∥x∥2 ≤ R} and define Bd

1(R)
similarly for the ℓ1 ball. Let [N] ∶= {1,2, . . . . ,N} for N ∈ N. Given ℓ ∈ R and x ∈ R, we define the
clipping operator as follows (take 0/0 = 0):

(x)ℓ ∶=min{∣x∣,2−ℓ} ⋅
x

∣x∣
. (2)

Linear bandits. The linear bandit problem has the following protocol. At time step k, the
learner observes an arm set Xk ⊆ Bd

2(1), chooses an arm xk ∈ Xk, pulls it. The learner then
receives a stochastic reward rk = x⊺kθ

∗ + ϵk where θ∗ ∈ Bd
2(1) is an unknown parameter and ϵk

is a zero-mean stochastic noise. Following [31], we assume that (i) ∀k ∈ [K], ∣rk ∣ ≤ [− 1
2
, 1
2
]

almost surely, (ii) E[ϵk ∣Fk] = 0 where Fk = σ(x1, ϵ1, ..., xk−1, ϵk−1, xk), and (iii) E[ϵ2k ∣Fk] = σ
2
k .
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Note that the bound on ∣rk ∣ implies that ∣ϵk ∣ ≤ 1 almost surely. Our goal is to minimize the regret
RK = ∑

K
k=1maxx∈Xk

x⊺θ∗ − x⊺kθ
∗ .

Linear mixture MDPs. We consider an episodic Markov Decision Process (MDP) with a tuple
(S,A, r(s, a), P (s′∣s, a),K,H) where S is the state space, A is the action space, r ∶ S ×A→ [0,1]
is the reward function, P (s′∣s, a) is the transition probability, K is the number of episodes, and H
is the planning horizon. A policy is defined as π = {πh ∶ S → D(A)}

H
h=1 where D(A) is a set of

all distributions over A. For each episode k ∈ [K], the learner chooses a policy πk, and then the
environment executes πk on the MDP by successively following akh ∼ π

k
h(s

k
h) and skh+1 ∼ P (⋅∣s

k
h, a

k
h).

Then, the learner observes the rewards {rkh ∈ [0,1]}k,h and moves onto the next episode. The
key modeling assumption of linear mixture MDPs is that the transition probability P is a linear
combination of a known set of models {P i}, namely, P = ∑d

i=1 θ
∗
i P

i where θ∗ ∈ Bd
1(1) is an

unknown parameter. We follow [31] and make the following assumptions:

• The reward at each time step h and episode k is rkh = r(skh, a
k
h) for some known function

r ∶ S ×A→ [0,1].
• Unit cumulative rewards:∑H

h=1 r
k
h ∈ [0,1] for any policy πk.

For a policy π, V π
h (s) ∶= maxa∈AQπ

h(s, a) where Qπ
h(s, a) = r(s, a) + Es′∼P (⋅∣s,a)V

π
h+1(s

′) and
V π
H+1(s) ∶= 0. Denoting V π(s1) = V π

1 (s1) and V ∗(s1) = V π∗(s1), our goal is to minimize the
regret

R
K
=

K

∑
k=1

V ∗(sk1) − V
k
(sk1) .

3 Variance-Adaptive Linear Bandits

In this section, we show that VOFUL of Zhang et al. [31] has a tighter regret bound than what was
reported in their work. Our version of VOFUL, which we call VOFUL2, has a slightly different
confidence set for ease of exposition. Specifically, we use a confidence set that works for every
µ ∈ Bd

2(2) rather than over an ϵ-net of Bd
2(2) (but we do use an ϵ-net for the proof of the confidence

set).

The full pseudocode can be found in Algorithm 1. VOFUL2 follows the standard optimism-based arm
selection [3, 6, 1]. Let ϵs(θ) ∶= rs − x⊺sθ and ϵ2s(θ) ∶= (ϵs(θ))

2. With L and ι defined in Algorithm 1,
we define our confidence set after k time steps as

Θk ∶= ∩
L
ℓ=1Θ

ℓ
k (3)

where

Θℓ
k ∶=

⎧⎪⎪
⎨
⎪⎪⎩

θ ∈ Bd
2(1) ∶

RRRRRRRRRRRR

k

∑
s=1
(x⊺sµ)ℓϵs(θ)

RRRRRRRRRRRR

≤

¿
Á
ÁÀ

k

∑
s=1
(x⊺sµ)

2

ℓ
ϵ2s(θ)ι + 2

−ℓι,∀µ ∈ Bd
2(2)

⎫⎪⎪
⎬
⎪⎪⎭

and the clipping operator (z)ℓ is defined in (2). The role of clipping is two-fold: (i) it allows us

to factor out ∑s=1 ϵ
2
s(θ) by ∑s (x

⊺
sµ)

2

ℓ
ϵ2s(θ) ≤ (2

−ℓ)2∑s=1 ϵ
2
s(θ) and (ii) the lower order term is

reduced to the order of 2−ℓ. Both properties are critical in obtaining variance-adaptive regret bounds
as discussed in [31]. The true parameter is contained in our confidence set with high probability as
follows.

Lemma 1. (Confidence set) Let L, ι, and δ be given as those in Algorithm 1. Then,

P(E1 ∶= {∀k ∈ [K], θ∗ ∈ Θk}) ≥ 1 − δ .

In fact, in our algorithm, we use the confidence set of ∩k−1s=1Θs at time step k for a technical reason.
VOFUL2 has the following regret bound.

Theorem 1. VOFUL2 satisfies, with probability at least 1 − 2δ,

R
K
= Õ
⎛
⎜
⎝
d1.5

¿
Á
ÁÀ

K

∑
k=1

σ2
k ln(1/δ) + d

2 ln(1/δ)
⎞
⎟
⎠
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Algorithm 1 VOFUL2

1: Initialize: L = 1 ∨ ⌊log2(K)⌋ where ι = 128 ln((12K2L)d+2/δ) and δ ≤ e−1.
2: for k = 1,2, . . . ,K do
3: Observe a decision set Xk ⊆ Bd

2(1).
4: Compute the optimistic arm as following: xk = argmaxx∈Xk

maxθ∈∩k−1s=1Θs
x⊺θ where Θs is

defined in (3).
5: Receive a reward rk.
6: end for

where Õ hides poly-logarithmic dependence on {d,K,∑
K
k=1 σ

2
k, ln(1/δ)}.

Note that one can also show that VOFUL2 can be slightly modified to achieve the regret bound

of Õ (min{d
√
K ln(1/δ), d1.5

√

∑
K
k=1 σ

2
k ln(1/δ)} + d

2 ln(1/δ)), thus being no worse than OFUL.
We postpone the proof of this to Section A.4 to avoid clutter.

Properties of the confidence sets and implications on the regret. Before presenting the proof of
Theorem 1, we provide some key properties of our confidence set (Lemma 3) and the intuition behind
our regret bound. First, let us describe a few preliminaries. Define

Wℓ,k−1(µ) ∶= 2
−ℓI +

k−1
∑
s=1

⎛

⎝
1 ∧

2−ℓ

∣x⊺sµ∣

⎞

⎠
xsx

⊺
s .

Let θk be the maximizer of the optimization problem at line 4 of Algorithm 1 and define µk = θk − θ
∗.

For brevity, we use a shorthand of

Wℓ,k−1 ∶=Wℓ,k−1(µk) = 2
−ℓI +

k−1
∑
s=1

⎛

⎝
1 ∧

2−ℓ

∣x⊺sµk ∣

⎞

⎠
xsx

⊺
s .

Finally, we need to define the following event regarding the concentration of the empirical variance
around the true variance:

E2 ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∀k ∈ [K],
k

∑
s=1

ϵ2s(θ
∗
) ≤

k

∑
s=1

8σ2
s + 4 log(

4K(log2(K) + 2)

δ
)

⎫⎪⎪
⎬
⎪⎪⎭

,

which is true with high probability as follows.

Lemma 2. We have P(E2) ≥ 1 − δ

Proof. The proof is a direct consequence of Lemma 13 in our appendix.

Let ℓk be the integer ℓ such that x⊺kµk ∈ (2 ⋅ 2
−ℓ,2 ⋅ 2−ℓ+1] and define Ak ∶= ∑

k
s=1 σ

2
s . Lemma 3 below

states the properties of our confidence set.

Lemma 3. Suppose the events E1 and E2 are true. Then, for any k with ℓk = ℓ,

(i) For some absolute constant c1,

∥µk∥
2
Wℓ,k−1 ≤ 2

−ℓ√128Ak−1ι + 11 ⋅ 2
−ℓι ≤ c12

−ℓ
(
√
Ak−1ι + ι),

(ii) There exists an absolute constant c2 such that x⊺kµk ≤ c2∥xk∥
2
W−1

ℓ,k−1
(
√
Ak−1ι + ι).

The key difference between Lemma 3 and the results of Zhang et al. [31] is that we use the norm
notations, although the norm involves a rather complicated matrix Wℓ,k−1. This opens up possibilities
of analyzing the regret of VOFUL2 with existing tools such as applying Cauchy-Schwarz inequality
and the elliptical potential lemma [1, 5, 16]. In particular, Lemma 3(ii) seems useful because if we
had such a result with Wℓ,k−1 replaced by Vk−1 = λI +∑

k−1
s=1 xsx

⊺
s , then we would have, ignoring the

additive term ι,

x⊺kµk ≤ ∥xk∥
2
V −1
k−1

¿
Á
ÁÀ

k−1
∑
s=1

σ2
s ι .
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Together with the optimism and the standard elliptical potential lemma (see Section 3.1 for details),
this leads to

R
K
≤

K

∑
k=1

x⊺kµk ≤ c2
K

∑
k=1
∥xk∥

2
V −1
k−1

¿
Á
ÁÀ

k−1
∑
s=1

σ2
s ι ≤ c2 ⋅O(d log(T /d)) ⋅

¿
Á
ÁÀ

K

∑
s=1

σ2
s ι .

Since ι is linear in d, we would get the regret bounded by the order of d1.5
√

∑
K
k=1 σ

2
k, roughly

speaking. However, the discrepancy between Wℓ,k−1 and Vk−1 is not trivial to resolve, especially
due to the fact that Lemma 3(ii) has µk on both left and the right hand side. That is, µk is the key
quantity that we need to understand, but we are bounding xkµk as a function of µk. The novelty of
our analysis of regret is exactly at relating Wℓ,k−1 to Vk−1 via a novel peeling-based analysis, which
we present below.

3.1 Proof of Theorem 1

Throughout the proof, we condition E1 and E2 where each one is true with probability at least 1 − δ,
as shown in Lemma 1 and 2 respectively. For our regret analysis, it is critical to use Lemma 4
below, which we call the elliptical ‘count’ lemma. This lemma is a generalization of Lattimore and
Szepesvári [16, Exercise 19.3], which was originally used therein to improve the dependence of the
range of the expected rewards in the regret bound. Similar lemmas have been used in parallel studies
[12, 22]. In particular, He et al. [12] employ a lemma similar to elliptical potential count and peeling
technique for the regret analysis for the linear MDP as well, which we compare in detail in Section C
due to space constraint. We remark that a similar strategy appears in disguise in Russo and Van Roy
[20, Proposition 3] as well.

Lemma 4. (Elliptical potential count) Let x1, . . . , xk ∈ Rd be a sequence of vectors with ∥xs∥2 ≤X

for all s ∈ [k]. Let Vk = τI +∑
k
s=1 xsx

⊺
s for some τ > 0. Let J ⊆ [k] be the set of indices where

∥xs∥
2
V −1s−1
≥ q. Then,

∣J ∣ ≤
2

ln(1 + q)
d ln(1 +

2/e

ln(1 + q)

X2

τ
) .

As the name explains, the lemma above bounds how many times ∥xs∥
2
V −1s−1

can go above a given value

q > 0, which is different from existing elliptical potential lemmas that bound the sum of ∥xs∥
2
V −1s−1

.
Let θk be the θ that maximizes the optimization problem at line 4 of Algorithm 1. We start by the
usual optimism-based bounds: due to E1, we have

R
K
=

K

∑
k=1
(max
x∈Xk

(x⊺θ∗ − x⊺kθ
∗
)) ≤

K

∑
k=1
( max
x∈Xk,θ∈Θk

x⊺θ − x⊺kθ
∗
) = ∑

k=1
x⊺k(θk − θ

∗
) = ∑

k=1
x⊺kµk .

We now take a peeling-based regret analysis that is quite different from existing analysis techniques:

R
K
≤

K

∑
k=1

x⊺k(θk − θ
∗
) ≤ 2−LK +

L

∑
ℓ=1

2−ℓ+2
K

∑
k=1

1{x⊺kµk ∈ (2 ⋅ 2
−ℓ,2 ⋅ 2−ℓ+1]} ,

where L is defined in Algorithm 1. Given ℓ and k, let nk,ℓ be such that maxv∶k≤v≤K,ℓv=ℓ ∣x
⊺
kµv ∣ ∈

(2−ℓ+n,2−ℓ+n+1] if such n satisfies n ≥ 1. Otherwise, set nk,ℓ = 0, which means
maxv∶k≤v≤K,ℓv=ℓ ∣x

⊺
kµv ∣ ≤ 2

−ℓ+n+1 with n = 0. We then define Gℓ,n ∶= {s ∈ [K −1] ∶ ℓs = ℓ, ns,ℓ = n}
and let Gℓ,n[k] ∶= Gℓ,n ∩ [k]. Then,

K

∑
k=1

1{x⊺kµk ∈ (2 ⋅ 2
−ℓ,2 ⋅ 2−ℓ+1]} =

K

∑
k=1

1{ℓk = ℓ} ≤ 1 +∑
n
∑

s∈Gℓ,n

1 .

Letting Vℓ,n,k−1 ∶= 2
−ℓI +∑s∈Gℓ,n[k−1] xsx

⊺
s , a comparison between two matrices W and V is given

as follows for every v ∈ {k, . . . ,K}:

Wℓ,k−1(µv) = 2
−ℓI +

k−1
∑
s=1

⎛

⎝
1 ∧

2−ℓ

∣x⊺sµv ∣

⎞

⎠
xsx

⊺
s ⪰ 2

−ℓI + ∑
s∈Gℓ,n[k−1]

⎛

⎝
1 ∧

2−ℓ

2−ℓ+n+1
⎞

⎠
xsx

⊺
s

⪰ c ⋅ 2−nVℓ,n,k−1 . (4)
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For k ∈ Gℓ,n[K − 1] and u = arg maxv∶k≤v≤K,ℓv=ℓ ∣x
⊺
kµv ∣, we have

2−ℓ+n < ∣xkµu∣ ≤ ∥xk∥W−1
ℓ,k−1(µu)∥µu∥Wℓ,k−1(µu)

≤ ∥xk∥W−1
ℓ,k−1(µu)∥µu∥Wℓ,u−1(µu) (u ≥ k)

≤ c
√
2n∥xk∥V −1

ℓ,n,k−1

√

2−ℓ(
√
AKι + ι) . ((4) and Lemma 3(i))

Consequently, ∥xk∥
2
V −1
ℓ,n,k−1

≥ c 2−ℓ+n√
AKι+ι . Thus, using Lemma 4 with τ = 2−ℓ,

1 +
ℓ

∑
n=0

∑
k∈Gℓ,n

1 ≤ 1 +∑
n
∑

k∈Gℓ,n

1

⎧⎪⎪
⎨
⎪⎪⎩

∥xk∥
2
V −1
ℓ,n,k−1

≥ c
2−ℓ+n
√
AKι + ι

⎫⎪⎪
⎬
⎪⎪⎭

≤ 1 + c∑
n

2ℓ−n(
√
AKι + ι)d ln (1 + c4ℓ(

√
AKι + ι))

≤ c2ℓ(
√
AKι + ι)d ln (1 + c4ℓ(

√
AKι + ι)) .

where we use the fact that 1/ ln(1+ q) ≤ c/q for an absolute constant c if q is bounded by an absolute
constant. Finally,

K

∑
k=1

x⊺kµk ≤ 2
−LK + c

L

∑
ℓ=1

2−ℓ2ℓ(
√
AKι + ι)d ln (1 + c4ℓ(

√
AKι + ι))

= 2−LK + cL(
√
AKι + ι)d ln (1 + c4L(

√
AKι + ι)) .

We choose L = 1∨ ⌊log2(K)⌋, which leads toRK ≤ c (
√
AK−1ι + ι)d ln

2
(1 + cK2(

√
AK−1ι + ι)).

This concludes the proof.

4 Linear Mixture MDP

As linear bandits and linear mixture MDPs have quite a similar nature, we bring the techniques in
our analysis of VOFUL2 to improve the regret bound of VARLin of Zhang et al. [31]. A key feature
of linear mixture MDP setting is that one can estimate the upper bound of the variance as it is a
quadratic function of θ∗ while linear bandits do not have a structural assumption on the variance.
Thanks to such a structural property, we obtain a slightly better dependence on the dimension d. The
confidence set derived for our proposed algorithm is slightly different from that of VARLin as ours is
defined with ∀µ ∈ Bd

1(2) rather than an ϵ-net. Our version of VARLin, which we call VARLin2, is
described in Algorithm 2. Given skh and akh, let us define Psk

h
,ak

h
(V k

h+1) ∶= Es′∼P
sk
h
,ak

h

[V k
h+1(s

′)] and

xm
k,h ∶= [P

1
sk
h
,ak

h

(V k
h+1)

2m , ..., P d
sk
h
,ak

h

(V k
h+1)

2m]⊺ and let L, ι, and δ be given as define Algorithm 2.

Let ϵmv,u(θ) ∶= θ
⊺xm

v,u−(V
v
u+1(s

v
u+1))

2m for (v, u) ∈ [K]×[H], m ∈ {0,1, ..., L} where L is defined
in Algorithm 2.

We construct our confidence set as

Θk ∶=
L

⋂
m=0

⋂
i∈[L]

⋂
ℓ∈[L]

Θm,i,ℓ
k (5)

where we define Θm,i,ℓ
k below, based on the data collected up to episode k − 1 . First, let

ηmk,h ∶=max
θ∈Θk

{θ⊺xm+1
k,h − (θ

⊺xm
k,h)

2
}

and T m,i
k,h ∶= {(v, u) ∈ ([k] × [H]) ∪ ({k} × [h]) ∶ η

m
v,u ∈ (2

−i,21−i])} .

We naturally define T m,L+1
k,h ∶= {(v, u) ∈ T m,i

k,h ∶ η
m
v,u ≤ 2

−L}. With ι defined in Algorithm 2, define

Θm,i,ℓ
k−1 ∶=

⎧⎪⎪
⎨
⎪⎪⎩

θ ∈ Bd
1(1) ∶

RRRRRRRRRRRRRRRR

∑

(v,u)∈Tm,i
k−1,H

((xm
v,u)

⊺µ)
ℓ
ϵmv,u(θ)

RRRRRRRRRRRRRRRR

≤
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Algorithm 2 VARLin2

1: Initialize: L = ⌊log2HK⌋ + 1, ι = 3 ln((2HK)2(d+3)/δ), δ ≤ e−1.
2: for k = 1,2, . . . ,K do
3: for h =H, ...,1 do
4: For each (s, a) ∈ S ×A, define Qk

h(s, a) = min{1, r(s, a) +maxθ∈Θk−1 ∑
d
i=1 θiP

i
s,aV

k
h+1}

where Θk−1 is defined in Lemma 5
5: For each state s, V k

h (s) =maxa∈AQk
h(s, a).

6: end for
7: for h = 1, ...,H do
8: Choose akh = arg maxa∈AQk

h(s
k
h, a).

9: Observe a reward rkh and the next state skh+1.
10: end for
11: end for

4

¿
Á
Á
ÁÀ ∑

(v,u)∈Tm,i
k−1,H

((xm
v,u)

⊺µ)
2

ℓ
ηmv,uι + 4 ⋅ 2

−ℓι,∀µ ∈ Bd
1(2)

⎫⎪⎪
⎬
⎪⎪⎭

(6)

We show that the confidence set is correct w.h.p. in the following lemma.

Lemma 5. (Confidence set for MDP) P(∀k ∈ [K], θ∗ ∈ Θk) ≥ 1 − δ.

The consequence is that the Q values computed in VarLin2 is optimistic with high probability due to
the following property:

Lemma 6. For every k ≥ 1, θ∗ ∈ Θk Ô⇒ ∀h, s, a ∶ Q
k
h(s, a) ≥ Q

∗(s, a).

Now with the confidence set defined above we state our main result.

Theorem 2. With probability at least 1-δ,

R
K
=

K

∑
k=1
[V ∗(sk1) − V

k
(sk1)] = Õ(d

√

K log2(1/δ) + d2 log(1/δ)) .

where Õ hides poly-logarithmic dependence on {d,K,H, ln(1/δ)}.

4.1 Proof of Theorem 2

The main idea of the proof is to infuse a peeling-based argument together with elliptical potential
count lemma to both the planning horizon and episode. Noting that the regret of the predicted
variance is controlled by the variance of variance, one can expect to reduce the total regret using this
information, as done in [31]. We begin by introducing relevant quantities that are parallel with those
in linear bandits. Let us first introduce the following lemma.

Lemma 7. Let x1, . . . , xT ∈ Rd be a sequence of vectors with ∥xt∥2 ≤ X for all t ∈ [T ]. Let
Vt = λI +∑

t
s=1 xsx

⊺
s . Let 0 = τ0 < τ1 < τ2 < . . . < τz = T where τi marks the last time step of the i-th

block formed by {τi−1 + 1, . . . , τi} for all i ∈ {0, . . . , z}. Let anc(t) be the ‘anchor’ of t, the last time
step of the i-th block such that the (i+1)-th block contains t: anc(t) =max{τi ∶ i ∈ {0, . . . , z}, τi < t}.
Let r > 0. Define J ⊆ [T ] to be the set of indices t such that∥xt∥

2
V −1
anc(t)
> r∥xt∥

2
V −1t−1

is true for the first
time in the block containing t. Then,

∣J ∣ ≤
2

ln(r)
d ln(1 +

2/e

ln(r)

X2

λ
) .

To keep track of episode-horizon index pairs concisely, we use a flat index t ∈ [T ] where T ∶=HK.
Specifically, an episode k and a horizon h corresponds to the flat index t = (k − 1)H + h. Let
t(k, h) ∶= (k − 1)H + h. Let k(t) and h(t) be the mapping from t to its corresponding episode and
horizon index respectively so that k = k(t(k, h)) and h = h(t(k, h)). By taking τk in Lemma 7 as
t(k,H), we have that anc(t) ∶= t(t − 1,H). We define T m,i

t ∶= {t(k′, h′) ∶ (k′, h′) ∈ T m,i
k,h } and

µm
t ∶= µm

k(t),h(t). Similarly, we define xm
t , etc., by replacing the subscript k, h with t. Hereafter,

any appearance of subscript k, h can be replaced with t such that t = t(k, h) without changing the
meaning.
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Given m, k and h, we define ℓmk,h as the integer ℓ such that (xm
k,h)

⊺µm
k,h ∈ (2 ⋅ 2

−ℓ,2 ⋅ 2−ℓ+1] where
µm
k,h ∶= θmk,h − θ

∗ and θmt = arg maxθ∈Θk−1 ∣{θ
⊺xm+1

t − (θ⊺xm
t )

2}∣. For simplicity, we abbreviate

ℓmk,h by ℓ. Define Wm,i,ℓ
t (µ) ∶= 2−ℓI +∑s∈Tm,i

t
(1 ∧ 2−ℓ

∣(xm
s )⊺µ∣

)xm
s (x

m
s )
⊺ and introduce a shorthand

Wm,i,ℓ
anc(t) ∶=W

m,i,ℓ
anc(t)(µ

m
t ) as before. With the definition above we have the following:

2−ℓ∥µm
t ∥

2
+ ∑

s∈Tm,i

anc(t)

((xm
s )
⊺µm

t )ℓ
(xm

s )
⊺µm

t = ∥µ
m
t ∥

2
Wm,i,ℓ

anc(t)
.

We now show the key result of the confidence set of VarLin2 that parallels Lemma 3 for bandits.

Lemma 8. Fix m ∈ {0, . . . , Lm} and i ∈ [L]. Let t ∈ T m,i
T . Then, with ℓ = ℓmt ,

∥µm
t ∥

2
Wm,i,ℓ

anc(t)
≤ cM ⋅max{

√
2−iι,

√
2−ℓι}

where cM > 0 is an absolute constant.

What is different from the linear bandit problem is that we do not update θ until the planning horizon
is over and an additional layer for peeling is imposed on variance. In [31], the authors introduce an
indicator Ikh to characterize episode-horizon pairs for which growth of the norm of µ with respect to
Wt is controlled by the norm with respect to Wanc(t) with d2 growth rate, i.e.,

Ikh ∶= 1{∥µt∥Wm,i,ℓ
t

≤ 4(d + 2)2∥µt∥Wm,i,ℓ

anc(t)
} .

where t = t(k, h). Our novelty novelty lies in being able to replace 4(d+ 2)2 above by a constant rate
r that is set to 2 later (modulo some differences due to technical reasons). To distinguish we denote
such a set by Ik,h. See B.5 for the definition of Ik,h and the proof of the following lemma.

Lemma 9. ∑K
k=1∑

H−1
h=1 Ik,h − Ik,h+1 ≤ O(

d
ln(r)) log(dHK(1 + d2/ ln(r))) for r > 0.

Note here that once we fix r such as r = 2, the bound can be replaced by O(d log5(dHK)). We now
use the following regret decomposition due to [31] which just come from replacing Ikh by Ik,h.

Lemma 10. (Zhang et al. [31])RK ≤ Reg1 +Reg2 +Reg3 +∑
K
k=1∑

H−1
h (Ik,h−Ik,h+1) where Reg1 =

∑k,h(Psk
h
,ak

h
V k
h+1 − V

k
h+1(s

k
h+1))Ik,h, Reg2 = ∑k,h(V

k
h (s

k
h) − r

k
h − Psk

h
,ak

h
V k
h+1)Ik,h, and Reg3 =

∑
K
k=1(∑

H
h=1 r

k
h − V

πk

1 (s
k
1)).

Let x̆m
k,h ∶= x

m
k,hIk,h and define Rm, Mm as

Rm ∶=∑
k,h

(x̆m
k,h)

⊺µm
k,h, and Mm ∶=∑

k,h

(Psk
h
,ak

h
(V k

h+1)
2m
− (V k

h+1(s
k
h+1))

2m
)Ik,h.

We have that Reg1 =M0 and Reg2 ≤ R0 since

Qk
h(s, a) − r(s, a) − Ps,aV

k
h+1 ≤max

θ∈Θk

x0
k,h(θ − θ

∗
).

To proceed, we first note that ∑k,h(Ik,h − Ik,h+1) and Reg3 are bounded by O(d log5(dHK)) and
O(
√
K log(1/δ)) respectively from Lemma 9 and Lemma 16. Since Reg1 +Reg2 ≤ R0 +M0, it

remains to find a bound on R0+M0. This, however, involves solving a series of recursive inequalities.
We leave the details in the appendix and provide a high-level description below.

Let us begin with Lemma 15 in the appendix that shows

∣Mm∣ ≤ Õ(
√
Mm+1 + d + 2m+1(K+R0) log(1/δ) + log(1/δ)) (7)

where the RHS is a function of
√
Mm+1 and

√
R0. Taking Proposition 1 below for granted and

combining it with the relation from Zhang et al. [31, Eq. (57)] showing

∑
k,h

ηmk,hIk,h ≤Mm+1 +O(d log
5
(dHK)) + 2m+1(K +R0)) +Rm+1 + 2Rm,

one arrives at Rm ≤ Õ(d1/2
√
(Mm+1+2m+1(K+R0)+Rm+1 + 2Rm+d). This bound is the key

improvement we obtain via our peeling-based regret analysis. Specifically, the bound on Rm obtained
by [31] has d4 and d6 in place of d1/2 and d above.
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We first show how our regret bound helps in obtaining the stated regret bound and then present
Proposition 1. Noting that both RL and ML are trivially bounded by HK, one can solve the series of
inequalities on Rm and ∣Mm∣ to obtain a bound on R0:

R0 ≤ Õ(d
2 log(1/δ) +

√
d2(K +R0) log(1/δ)). (8)

Solving it for R0, we obtain R0 ≤ Õ(d
2 log(1/δ) +

√
d2K log(1/δ)). One can now plug in R0 to

the bound (7) and obtain a bound on ∣M0∣ in a similar way as follows, which concludes the proof:

∣M0∣ ≤ Õ(d
√

K log2(1/δ) + d2 log(1/δ)).

We now show the key proposition that allows us to improve the bound on Rm. In the paper by Zhang
et al. [31], d4 was derived while we propose the following.

Proposition 1. Let η̆mk,h ∶= η
m
k,hIk,h. Then, we have

Rm ≤ O(d
0.5 log2.5(HK)

√

(1 +∑
k,h

η̆mk,h)ι log(dι) + d log
3
(HK)ι log(dι))

Proof. Define T m,i,ℓ ∶= {t ∈ T m,i
T ∶ (xm

t )
⊺µm

t ∈ (2 ⋅ 2
−ℓ,2 ⋅ 21−ℓ]} and split the time steps T m,i,ℓ by

T
m,i,ℓ,⟨1⟩

∶=

⎧⎪⎪
⎨
⎪⎪⎩

t ∈ T m,i,ℓ
∶∥µm

k,h∥
Wm,i,ℓ

anc(a)
≤ cM

√
2−iι
⎫⎪⎪
⎬
⎪⎪⎭

and T m,i,ℓ,⟨2⟩
∶= T

m,i,ℓ
∖T

m,i,ℓ,⟨1⟩ .

Having defined Ik,h with r = 2, we also denote T̆ m,i,ℓ,⟨z⟩ ∶= T m,i,ℓ,⟨z⟩ ∩ {t ∈ [T ] ∶ It = 1}. Now we
decompose Rm as

Rm = ∑
t∈[T ]
(x̆m

t )
⊺µm

t =∑
i,ℓ

∑

t∈T̆m,i,ℓ,⟨1⟩
(x̆m

t )
⊺µm

t +∑
i,ℓ

∑

t∈T̆m,i,ℓ,⟨2⟩
(x̆m

t )
⊺µm

t .

Fix m, i and ℓ and focus on ∑t∈T̆m,i,ℓ,⟨z⟩(x̆
m
t )
⊺µm

t for z = 1,2. Hereafter, we omit the superscripts
and subscripts of (m, i, ℓ) to avoid clutter, unless there is a need. Note that for t ∈ T̆ ⟨1⟩,n and b such
that t < b ∈ T ⟨1⟩,

Wanc(t)(µb) = 2
−ℓI + ∑

t′∈Tm,i,ℓ

anc(t)

(1 ∧
2−ℓ

∣x⊺t′µb∣
)xt′x

⊺
t′ ⪰ 2

−ℓI + ∑

t′∈T ⟨1⟩,n
anc(t)

(1 ∧
2−ℓ

2−ℓ+n+1
)xt′x

⊺
t′

⪰ 2−ℓI + 2−n−1 ∑

t′∈T ⟨1⟩,n
anc(t)

xt′x
⊺
t′

⪰ c2−nV
⟨1⟩,n
anc(t) .

For the same t, letting b = argmaxt≤b′∈T̆ ⟨1⟩ ∣x
⊺
tµb′ ∣,

2−ℓ+n ≤ ∣x⊺tµb∣ ≤∥xt∥W−1
anc(t)(µb)∥µb∥Wanc(t)(µb) ≤

√
2n∥xt∥(V ⟨1⟩,n

anc(t) )−1
∥µb∥Wanc(b)(µb)

≤ c
√
r
√
2n∥xt∥(V ⟨1⟩,nt−1 )−1

√
2−iι (by b ∈ T̆ ⟨1⟩)

This implies that∥xt∥
2

(V ⟨1⟩,nt−1 )−1 ≥ c
2−2ℓ+n
r2−iι . Thus,

∑

t∈T̆ ⟨1⟩
x⊺tµt ≤ c2

−ℓ
∑

t∈T̆ ⟨1⟩
1 ≤ c2−ℓ

√

∣T̆ ⟨1⟩∣ ∑
t∈T̆ ⟨1⟩

1 ≤ c2−ℓ

¿
Á
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

∑

t∈T̆ ⟨1⟩,n
1

≤ c2−ℓ

¿
Á
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

∑

t∈T̆ ⟨1⟩,n
1{∥xt∥

2

(V ⟨1⟩,nt−1 )−1 ≥ c
2−2ℓ+n

r2−iι
}

≤ c2−ℓ

¿
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

∑
t∈T ⟨1⟩,n

1{∥xt∥
2

(V ⟨1⟩,nt−1 )−1 ≥ c
2−2ℓ+n

r2−iι
}

(T̆ ⟨1⟩,n ⊆ T ⟨1⟩,n)
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≤ c2−ℓ

¿
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

r2−iι

2−2ℓ+n
d ln(1 + c

r2−iι

2−2ℓ+n2−ℓ
)

≤ c
√

dr∣T̆ ⟨1⟩∣2−iι ln (1 + crι8ℓ) ≤ c
√

dr(1 + ∑
t∈T̆ ⟨1⟩

ηmt )ι ln (1 + crι8
ℓ)

where we use the fact that ∣T ⟨1⟩∣ ⋅2−i ≤ O(1+∑t∈T̆ ⟨1⟩ η
m
t ), which is straightforward by the definition.

The summation over T̆ (2) can be handled in a similar way and the details of the proof is provided in
Section B.7 in our appendix.

5 Conclusion

In this work, we have made significant improvements in the regret upper bounds for linear bandits
and linear mixture MDPs by employing a novel peeling-based regret analysis based on the elliptical
potential count lemma. Our study opens up numerous future research directions. First, the optimal
regret rates are still not identified for these problems. It would be interesting to close the gap between
the upper and lower bound. Second, our algorithms are not computationally tractable. We believe
computationally tractable algorithms, even at the price of increased regret, may lead to practical
algorithms. Finally, characterizing variance-dependent uncertainty in the linear regression setting
without prior knowledge of variances is an interesting statistical problem on its own. Identifying
novel estimators for it and proving their optimal coverage would be interesting.
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

13



Appendix

Table of Contents
A Proofs for VOFUL2 13

A.1 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.4 d

√
K regret bound of VOFUL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.5 Miscellaneous Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B Proofs for VARLin2 18
B.1 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B.2 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B.3 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.4 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.5 The Exact Definition of Ik,h and Proof of Lemma 9 . . . . . . . . . . . . . . . . . 20
B.6 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.7 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.8 Miscellaneous lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C Comparison with He et al. [12] 24

A Proofs for VOFUL2

A.1 Proof of Lemma 4

Proof. Let Wt = V0 +∑s∈J,s≤t xsx
⊺
s . Then,

(
dτ +X2∣J ∣

d
)

d

≥ (
tr(Wt)

d
)

d

≥ ∣Wt∣ (AM-GM ineq.)

= ∣V0∣∏
s∈J
(1 + ∥xs∥

2
W−1

s−1
) (rank-1 update equality for det.)

≥ ∣V0∣∏
s∈J
(1 + ∥xs∥

2
V −1s−1
) (Ws−1 ⪯ Vs−1)

≥ τd2∣J ∣

Ô⇒ ∣J ∣ ≤
d

ln(2)
ln(1 +

X2∣J ∣

dτ
)

Let us generalize it so that we compute the number of times ∥xs∥
2
V −1t−1

≥ q is true rather than

∥xs∥
2
V −1t−1
≥ 1 in which case we have

∣J ∣ ≤
d

ln(1 + q)
ln(1 +

X2∣J ∣

dτ
) =∶ A ln(1 +B∣J ∣) (9)

We want to solve it for ∣J ∣. We observe the following:

∣J ∣ ≤ A ln(1 +B∣J ∣) = A
⎛

⎝
ln(
∣J ∣

2A
) + ln(2A(

1

∣J ∣
+B))

⎞

⎠
(10)
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≤
∣J ∣

2
+A ln

⎛

⎝

2A

e
(
1

∣J ∣
+B)

⎞

⎠
(11)

Ô⇒ ∣J ∣ ≤ 2A ln
⎛

⎝

2A

e
(
1

∣J ∣
+B)

⎞

⎠
=

2

ln(1 + q)
d ln
⎛

⎝

2d

e ln(1 + q)
(
1

∣J ∣
+
X2

dτ
)
⎞

⎠
(12)

We fix c > 0 and consider two cases:

• Case 1: ∣J ∣ < cd
In this case, from (9), we have ∣J ∣ ≤ d

ln(1+q) ln (1 +
cX2

τ
)

• Case 2: ∣J ∣ ≥ cd

In this case, from (12) we have ∣J ∣ ≤ 2
ln(1+q)d ln(

2
e ln(1+q) (

1
c
+ X2

τ
))

We set c = 2
e ln(1+q) to obtain ∣J ∣ ≤ 2

ln(1+q)d ln (1 +
2/e

ln(1+q)
X2

τ
). We remark that one can make the

constant in front of the log to be d
ln(1+q) by plugging this bound into the RHS of (9).

A.2 Proof of Lemma 1

Proof. Let ϵs ∶= ϵs(θ∗) = rs − x⊺θ∗. It suffices to show that the following is true w.p. at least 1 − δ,

∀ℓ ∈ [L], k ∈ [K], µ ∈ Bd2(2),

RRRRRRRRRRRR

k

∑
s=1
(x⊺sµ)ℓϵs

RRRRRRRRRRRR

≤

¿
Á
ÁÀ

k

∑
s=1
(x⊺sµ)

2

ℓ
ϵ2sι + 2

−ℓι .

To show this, we define B̂ℓ to be a ξℓ-net over Bd
2(2). with cardinality at most ( 12

ξℓ
)
d
. Such a net

exists due to Lemma 4.1 [19]. Let us assume the following event, which happens with probability at
least 1 − 6K log2(K)∑

L
ℓ=1 ∣B̂ℓ∣ by Lemma 12:

RRRRRRRRRRRR

k

∑
s=1
(x⊺sµ

′)
ℓ
ϵs

RRRRRRRRRRRR

≤ 8

¿
Á
ÁÀ

k

∑
s=1
(x⊺sµ

′)
2

ℓ
ϵ2s ln(1/δ) + 16 ⋅ 2

−ℓ ln(1/δ) . (E)

Let us fix ℓ ∈ [L], k ∈ [K], and µ ∈ Bd
2(2). Choose µ′ ∈ B̂ℓ such that ∥µ − µ′∥2 ≤ ξℓ. Then,

∣
k

∑
s=1
(x⊺sµ)ϵs∣ ≤ ∣

k

∑
s=1
((x⊺sµ) − (x

⊺
sµ
′))ϵs∣ + ∣

k

∑
s=1
(x⊺sµ

′)ϵs∣

≤
k

∑
s=1
∣(x⊺sµ) − (x

⊺
sµ
′)∣ + ∣

k

∑
s=1
(x⊺sµ

′)ϵs∣ (∣ϵs∣ ≤ 1)

(a)
≤ kξℓ + ∣

k

∑
s=1
(x⊺sµ

′)ϵs∣

≤ kξℓ + 8

¿
Á
ÁÀ

k

∑
s=1
(x⊺sµ

′)
2

ϵ2s ln(1/δ) + 16 ⋅ 2
−ℓ ln(1/δ) (by (E))

≤ kξℓ + 8

¿
Á
ÁÀ2

k

∑
s=1
((x⊺sµ)

2

+ ξ2ℓ) ϵ
2
s ln(1/δ) + 16 ⋅ 2

−ℓ ln(1/δ)

≤ kξℓ + ξℓ ⋅ 8
√
2k ln(1/δ) + 8

¿
Á
ÁÀ2

k

∑
s=1
(x⊺sµ)

2

ϵ2s ln(1/δ) + 16 ⋅ 2
−ℓ ln(1/δ)

≤ 2−ℓ + 2−ℓ ⋅ 8
√
2 ln(1/δ) + 8

¿
Á
ÁÀ2

k

∑
s=1
(x⊺sµ)

2

ϵ2s ln(1/δ) + 16 ⋅ 2
−ℓ ln(1/δ)

(choose ξℓ = 2
−ℓ/K)
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≤ 8

¿
Á
ÁÀ2

k

∑
s=1
(x⊺sµ)

2

ϵ2s ln(1/δ) + 32 ⋅ 2
−ℓ ln(1/δ) (by 1 ≤ ln(1/δ))

where (a) follows from the fact that ∣x⊺s(µ − µ
′)∣ ≤ ϵ and the observation that the clipping operation

applied to two real values z and z′ only makes them closer. It remains to adjust the confidence level.
Note that

L

∑
ℓ=1
∣B̂ℓ∣K =

L

∑
ℓ=1
(12K2ℓ)dK ≤ 2(12K)d ⋅

2Ld

2d
⋅K ≤ (12K2L)d+1.

Thus,

6 log2(K)
L

∑
ℓ=1
∣B̂ℓ∣K ≤ (12K2L)d+2 .

Replacing δ with δ/(12K2L)d+2 and setting ι = 128 ln((12K2L)d+2/δ), we conclude the proof. We
remark that we did not optimize the constants in this proof.

A.3 Proof of Lemma 3

Proof. Throughout the proof, every clipping operator (.) is a shorthand of (.)ℓ. For (i), we note that

2−ℓ∥µk∥
2
+

k

∑
s=1
(x⊺sµk)ℓ

x⊺sµk = 2
−ℓ
∥µk∥

2
+

k

∑
s=1

⎛
⎜
⎝

⎛

⎝
1 ∧

2−ℓ

∣x⊺sµk ∣

⎞

⎠
xs

⎞
⎟
⎠

⊺

µkx
⊺
sµk

= µ⊺k

⎛
⎜
⎝
2−ℓλI+

k

∑
s=1

⎛

⎝
1 ∧

2−ℓ

∣x⊺sµk ∣

⎞

⎠
xsx

⊺
s

⎞
⎟
⎠
µk

= ∥µk∥
2
Wℓ,k−1 .

Then,
∥µk∥

2
(Wℓ,k−1−2−ℓI)

=
k−1
∑
s=1
(x⊺sµk)x

⊺
sµk

=
k−1
∑
s=1
(x⊺sµk)(x

⊺
sθk − rs + rs − x

⊺
sθ
∗
)

=
k−1
∑
s=1
(x⊺sµk)(−ϵs(θk) + ϵs(θ

∗
))

≤

¿
Á
ÁÀ

k−1
∑
s=1
(x⊺sµk)

2

ϵ2s(θk)ι + 2
−ℓι +

¿
Á
ÁÀ

k−1
∑
s=1
(x⊺sµk)

2

ϵ2s(θ
∗)ι + 2−ℓι

(a)
≤

¿
Á
ÁÀ

k−1
∑
s=1
(x⊺sµk)

2

2(x⊺sµk)
2ι + 2

¿
Á
ÁÀ

k−1
∑
s=1
(x⊺sµk)

2

2ϵ2s(θ
∗)ι + 2 ⋅ 2−ℓι

≤

¿
Á
ÁÀ

k−1
∑
s=1
(x⊺sµk)

2

2(x⊺sµk)
2ι + 2−ℓ

¿
Á
Á
ÁÀ4
⎛

⎝

k−1
∑
s=1

8σ2
s + 4 ln(

4K(log2(K) + 2)

δ
)
⎞

⎠
ι + 2 ⋅ 2−ℓι (By E2)

≤

¿
Á
ÁÀ

k−1
∑
s=1
(x⊺sµk)

2

2(x⊺sµk)
2ι + 2−ℓ

¿
Á
ÁÀ32

k−1
∑
s=1

σ2
s ι + 3 ⋅ 2

−ℓι

≤

¿
Á
ÁÀ4

k−1
∑
s=1

2−ℓ(x⊺sµk)(x⊺sµk)ι + 2
−ℓ

¿
Á
ÁÀ32

k−1
∑
s=1

σ2
s ι + 3 ⋅ 2

−ℓι (∣x⊺sµk ∣ ≤ 2, (⋅) ≤ 2
−ℓ)

=
√

4 ⋅ 2−ℓ∥µ∥2(Wℓ,k−1−2−ℓI)ι + 2
−ℓ

¿
Á
ÁÀ32

k−1
∑
s=1

σ2
s ι + 3 ⋅ 2

−ℓι
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where (a) follows from ϵ2s(θk) = (rs−x
⊺
sθk)

2 = (x⊺s(θ∗−θk)+ϵs(θ
∗))2 ≤ 2(x⊺sµk)

2+2ϵ2s. We now
have ∥µ∥2(Wℓ,k−1−2−ℓI) on both sides. Using X ≤ A+

√
BX ≤ A+(B/2)+(X/2) Ô⇒ X ≤ 2A+B,

we have

∥µk∥
2
(Wℓ,k−1−2−ℓI) ≤ 2

−ℓ

¿
Á
ÁÀ128

k−1
∑
s=1

σ2
s ι + 8 ⋅ 2

−ℓι

Ô⇒ ∥µk∥
2
Wℓ,k−1 ≤ 4 ⋅ 2

−ℓ
+ 2−ℓ

¿
Á
ÁÀ128

k−1
∑
s=1

σ2
s ι + 8 ⋅ 2

−ℓι.

Since 1 ≤ ln(1/δ), we have 4 ⋅ 2−ℓ ≤ 4 ⋅ 2−ℓ ln(1/δ) ≤ 2−ℓι, which concludes the proof of (i).

For (ii), let c be an absolute constant that may be different every time it is used. We apply Cauchy-
Schwarz inequality to obtain

(x⊺kµk)
2
≤ ∥xk∥

2
W−1

ℓ,k−1
∥µk∥

2
Wℓ,k−1

≤ ∥xk∥
2
W−1

ℓ,k−1
⋅ c ⋅
⎛
⎜
⎝
2−ℓ

¿
Á
ÁÀ

k−1
∑
s=1

σ2
s ι + 2

−ℓι
⎞
⎟
⎠

≤ ∥xk∥
2
W−1

ℓ,k−1
⋅ c ⋅ x⊺kµk

⎛
⎜
⎝

¿
Á
ÁÀ

k−1
∑
s=1

σ2
s ι + ι

⎞
⎟
⎠

(2−ℓ ≤ x⊺kµk ≤ 2
−ℓ+1)

Dividing both sides by x⊺kµk concludes the proof.

A.4 d
√
K regret bound of VOFUL2

Let us slightly modify the algorithm so we now add Θℓ
k with ℓ = 0:

Θk = ∩
L
ℓ=0Θ

ℓ
k .

Let us call this algorithm VOFUL3. Note that this slight change will not alter the order of the regret
bound of VOFUL2 reported in Theorem 1.

Let λ > 0 be an analysis parameter to be determined later. Let Xk ∈ Rk×d be the design matrix where
row s is x⊺s and define yk ∶= (r1, . . . , rk)

⊺, ηk ∶= (ϵ1, . . . , ϵk)⊺. Let Vk ∶= λI +X
⊺
kXk and

θ̂k ∶= V
−1
k X⊺kyk (13)

We claim that

Θk ⊆ {θ ∈ Bd
2(1) ∶∥θ̂k − θ∥

2

Vk

≤ βk} =∶ Θ̊k

for some βk = Õ(d+ ln(1/δ)). This suffices to show that the VOFUL2 has regret bound of Õ(d
√
K)

since the proof technique of OFUL [1] can be immediately applied since the UCB computed based
on Θk is bounded above by the UCB computed with Θ̊k. Thus, VOFUL3 has regret bound of

R
K
= Õ
⎛
⎜
⎝
d
√
K ln(1/δ), d1.5

¿
Á
ÁÀ

K

∑
k=1

σ2
k ln(1/δ) + d

2 ln(1/δ)
⎞
⎟
⎠
.

To see why the claim above is true, let θ ∈ Θk. Then, using ϵ2s(θ) ≤ 4, we have, ∀µ ∈ Bd
2(2),

∣∑
s

µ⊺xs(ys − x
⊺
sθ)∣ ≤∥µ∥∑k

s=1 xsx⊺s
⋅
√
4ι + ι

Let us drop the subscript k from {θ̂k, Vk,Xk, yk, ηk} for brevity. The display above can be rewritten
as

µ⊺(X⊺y −X⊺Xθ) = µ⊺V (θ̂ − θ) + λµ⊺θ ≤∥µ∥X⊺X ⋅
√
4ι + ι

Ô⇒ µ⊺V (θ̂ − θ) ≤∥µ∥V ⋅
√
4ι + ι + 2λ (∥θ∥2 ≤ 1, ∣µ⊺θ∣ ≤ 2)

17



We can choose µ = 1
2
(θ̂ − θ) since 1

2
∥θ̂ − θ∥2 ≤

1
2
(∥θ̂∥2 + ∥θ∥2) ≤ 2 by Lemma 11 and the choice of λ

therein. Then,

∥θ̂ − θ∥
2

V
≤∥θ̂ − θ∥

V

√
4ι + 2ι + 4λ

Ô⇒ ∥θ̂ − θ∥
2

V
≤ 8ι + 8λ (AM-GM ineq. on∥θ̂ − θ∥

V

√
4ι)

= Õ(d + ln(1/δ))

Lemma 11. Take the assumptions for the linear bandit problem in Section 2. Consider θ̂k defined
in (13) with λ = d ln(1 + K

d
) + 2 ln(1/δ). Let K ≥ (e − 1)d. Then, with probability at least 1 − δ, we

have,

∀k ≤K, ∥θ̂k∥2 ≤ 3.

Proof. Let us drop the subscript k from {θ̂k, Vk,Xk, yk, ηk}. Then,

∥θ̂∥2 ≤ ∥θ̂ − θ
∗
∥2 + ∥θ

∗
∥2 .

Note that∥θ∗∥2 ≤ 1. We can further bound the first term:

∥θ̂ − θ∗∥2 = ∥V
−1
(X⊺η − λθ∗)∥2

≤ ∥V −1X⊺η∥2 + λ∥V
−1θ∗∥2 .

Note that

λ∥V −1θ∗∥2 = λ
√

θ∗⊺V −2θ∗ ≤ λ

√

θ∗⊺(
1

λ2
I)θ∗ ≤ ∥θ∗∥2 ≤ 1 .

It remains to bound ∥V −1X⊺η∥2. To see this,

∥V −1X⊺η∥2 =
√
η⊺XV −2X⊺η

=

√

η⊺XV −1(
1

λ
⋅ λI)V −1X⊺η

≤

√

η⊺XV −1(
1

λ
⋅ V )V −1X⊺η

=
1
√
λ
∥X⊺η∥V −1

≤
1
√
λ

⎛
⎜
⎝

√

d ln(1 +
k

dλ
) + 2 ln(1/δ)

⎞
⎟
⎠

(Abbasi-Yadkori et al. [1, Theorem 1])

(a)
≤ 1

where (a) is by choosing λ = d ln(1+ K
d
)+2 ln(1/δ) and then using λ ≥ 1 (due to K ≥ (e−1)d).

A.5 Miscellaneous Lemmas

For completeness, we state the lemmas borrowed from prior work.

Lemma 12. (Zhang et al. [31, Lemma 9]) Let {Fi}
n
i=0 be a filtration. Let {Xi}

n
i=1 be a sequence of

real-valued random variables such that Xi is Fi-measurable. We assume that E [Xi ∣ Fi−1] = 0 and
that ∣Xi∣ ≤ b almost surely. For δ < e−1, we have

P
⎛
⎜
⎝
∣

n

∑
i=1

Xi∣ ≤ 8

¿
Á
ÁÀ

n

∑
i=1

X2
i ln(1/δ) + 16b ln(1/δ)

⎞
⎟
⎠
≥ 1 − 6δ log2(n)

Lemma 13. (Zhang et al. [31, Lemma 10]) Let {Fi}i≥0 be a filtration. Let {Xi}
n
i=1 be a sequence of

random variables such that ∣Xi∣ ≤ 1 almost surely, that Xi is Fi-measurable. For every δ ∈ (0,1),
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we have

P
⎡
⎢
⎢
⎢
⎢
⎣

n

∑
i=1

X2
i ≥

n

∑
i=1

8E [X2
i ∣ Fi−1] + 4 ln

4

δ

⎤
⎥
⎥
⎥
⎥
⎦

⩽ (⌈log2 n⌉ + 1) δ

B Proofs for VARLin2

Throughout the proof, we use c as absolute constant that can be different every single time it is used.

B.1 Proof of Lemma 6

Proof. Assume that θ∗ ∈ Θk for all k ∈ [K]. Since θ∗ ∈ Θk,

Qk
h(s, a) =min{r(s, a) +max

θ∈Θk

d

∑
i=1

θiP
i
s,aV

k
h+1}

≥min{1, r(s, a) +
d

∑
i=1

θ∗i P
i
s,aV

k
h+1}

≥min{1, r(s, a) +
d

∑
i=1

θ∗i P
i
s,aV

∗
h+1}

= Q∗h(s, a),

so the statement follows.

B.2 Proof of Lemma 5

Proof. Similar to the linear bandit case, let B̂ℓ be a ξℓ-net over Bd
1(2) with cardinality at most ( 12

ξℓ
)d

and pick µ ∈ Bd
1(2) and µ′ ∈ B̂ℓ such that the distance between them is at most ξℓ. Let us define

the conditional variance Vv,u[ϵ
m
v,u] ∶= V[ϵmv,u ∣ Fv

u] where Fv
u denotes history up to (and including)

episode v and time horizon u.

Noticing

Vv,u[ϵ
m
v,u] = Ev,u[(ϵ

m
v,u)

2
]

= ((θ∗)⊺xm
v,u)

2
− 2((θ∗)⊺xm

v,u) ⋅Ev,u[(V
v
u+1(s

v
u+1))

2m
] +Ev,u[((V

v
u+1(s

v
u+1))

2m
)
2
],

Ev,u[(V
v
u+1(s

v
u+1))

2m] = (θ∗)⊺xm
v,u, and Ev,u[((V

v
u+1(s

v
u+1))

2m)
2
] = (θ∗)⊺xm+1

v,u , we have

Vv,u[ϵ
m
v,u] = (θ

∗
)
⊺xm+1

v,u − ((θ
∗
)
⊺xm

v,u)
2.

We apply Lemma 14 with ϵ = 1, b = 2−ℓ to obtain
RRRRRRRRRRRRRRRR

∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ′)
ℓ
ϵmv,u

RRRRRRRRRRRRRRRR

≤ 4

¿
Á
Á
ÁÀ ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ′)
2

ℓ
V[ϵmv,u ∣ Fv

u] + 4 ⋅ 2
−ℓ ln(1/δ)

with probability at least 1 − δ(1 + log2(HK)) and repeat the similar procedure by taking the union
bound. We drop ℓ from the clipping notation for the sake of brevity.

∣ ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ)ϵmv,u∣

= ∣ ∑

(v,u)∈Tm,i
k,H

(((xm
v,u)

⊺µ) − ((xm
v,u)

⊺µ′))ϵmv,u∣ + ∣ ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ′)ϵmv,u∣

≤ ∑

(v,u)∈Tm,i
k,H

∣((xm
v,u)

⊺µ) − ((xm
v,u)

⊺µ′)∣ + ∣ ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ′)ϵmv,u∣ (∣ϵs∣ ≤ 1)
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≤HKξℓ + 4

¿
Á
Á
ÁÀ ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ′)
2

V[ϵmv,u ∣ Fv
u] ln(1/δ) + 4 ⋅ 2

−ℓ ln(1/δ)

≤HKξℓ + 4

¿
Á
Á
ÁÀ2 ∑

(v,u)∈Tm,i
k,H

{((xm
v,u)

⊺µ)
2

+ ξ2ℓ }V[ϵmv,u ∣ Fv
u] ln(1/δ) + 4 ⋅ 2

−ℓ ln(1/δ)

≤HKξℓ + 4ξℓ
√
2HK ln(1/δ) + 4

¿
Á
Á
ÁÀ2 ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ)
2

V[ϵmv,u ∣ Fv
u] ln(1/δ) + 4 ⋅ 2

−ℓ ln(1/δ)

≤ (4
√
2 + 5) ⋅ 2−ℓ ln(1/δ) + 4

¿
Á
Á
ÁÀ2 ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ)
2

V[ϵmv,u ∣ Fv
u] ln(1/δ)

(choose ξℓ = 2
−ℓ/(HK))

≤ 4 ⋅ 2−ℓ ln(1/δ′) + 4

¿
Á
Á
ÁÀ ∑

(v,u)∈Tm,i
k,H

((xm
v,u)

⊺µ)
2

ηmv,u ln(1/δ
′) (setting δ = δ′

1/3)

We then take union bounds over m ∈ {1,2, ..., L}, i, ℓ ∈ [L], k ∈ [K], and µ′ ∈ B̂ℓ, which invoke
applying Lemma 14 (2HK)2(d+2) times. It follows from

∑
i,ℓ,k

∣B̂ℓ∣ = L0LK∑
ℓ

(HK2ℓ)d ≤ (HK)2(HK)d
2Ld

2d
≤ (HK2L)d+2 ≤ (2HK)2(d+2).

Hence, the display above holds with probability at least 1 − δ(1 + log2(HK))(2HK)2(d+2) ≥
1 − δ(2HK)2(d+3). Replacing δ with 1/(2HK)2(d+3) ⋅ δ and setting ι = 3 ⋅ ln((2HK)2(d+3)/δ) the
result follows.

B.3 Proof of Lemma 7

Proof. Lemma 12 of Abbasi-Yadkori et al. [1] shows the following in its proof: Let A, B, and C be
positive semi-definite (PSD) matrices such that A = B +C. Then we have that

sup
x≠0

∥x∥2A

∥x∥
2
B

≤
det(A)
det(B)

.

Note that V −1anc(t) = V
−1
t−1 +C for some PSD matrix C (to see this, apply a series of rank-one update

formula for the covariance matrix). Thus, we have that if t ∈ J , then

r <
∥xt∥

2
V −1
anc(t)

∥xt∥
2
V −1t−1

≤
∣V −1anc(t)∣

∣V −1t−1∣
=
∣Vt−1∣

∣Vanc(t)∣
.

Let J[t] = J ∩ [t] with [0] ∶= ∅. Let prev(t) be the time step in J immediately prior to t: prev(t) ∶=
max{s ∈ {0} ∪ J ∶ s < t} Define Wt = V0 +∑s∈J[t] xsx

⊺
s .

(
dλ +X2∣J ∣

d
)

d

≥ (
tr(WT )

d
)

d

≥ ∣WT ∣ (AM-GM ineq.)

= ∣V0∣∏
t∈J

∣Wt∣

∣Wprev(t)∣

≥ ∣V0∣∏
t∈J

∣Wt∣

∣Wanc(t)∣
(prev(t) ≤ anc(t))

= ∣V0∣r
∣J ∣

≥ λdr∣J ∣
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Ô⇒ ∣J ∣ ≤
d

ln(r)
ln(1 +

X2∣J ∣

dλ
)

Then,

∣J ∣ ≤
d

ln(r)
ln(1 +

X2∣J ∣

dλ
) =∶ A ln(1 +B∣J ∣) (14)

We want to solve it for ∣J ∣. Do the following:

∣J ∣ ≤ A ln(1 +B∣J ∣) = A
⎛

⎝
ln(
∣J ∣

2A
) + ln(2A(

1

∣J ∣
+B))

⎞

⎠
(15)

≤
∣J ∣

2
+A ln

⎛

⎝

2A

e
(
1

∣J ∣
+B)

⎞

⎠
(16)

Ô⇒ ∣J ∣ ≤ 2A ln
⎛

⎝

2A

e
(
1

∣J ∣
+B)

⎞

⎠
=

2

ln(r)
d ln
⎛

⎝

2d

e ln(r)
(
1

∣J ∣
+
X2

dλ
)
⎞

⎠
(17)

We fix c > 0 and consider two cases:

• Case 1: ∣J ∣ < cd
In this case, from (14), we have ∣J ∣ ≤ d

ln(r) ln (1 +
cL2

λ
)

• Case 2: ∣J ∣ ≥ cd

In this case, from (17) we have ∣J ∣ ≤ 2
ln(r)d ln(

2
e ln(r) (

1
c
+ X2

λ
))

We set c = 2
e ln(r) to obtain ∣J ∣ ≤ 2

ln(r)d ln (1 +
2/e
ln(r)

X2

λ
).

B.4 Proof of Lemma 8

Recall that θmt = arg maxθ∈Θk−1 ∣{θx
m+1
t − (θxm

t )
2}∣ and ηmb (θ) = θx

m+1
b − (θxm+1

b )2 We have

∥µm
t ∥

2
(Wm,i,ℓ

anc(t) −2−ℓI)
= ∑

b∈Tm,i

anc(t)

((xm
b )
⊺µm

t )(x
m
b )µ

m
t

= ∑

b∈Tm,i

anc(t)

((xm
b )
⊺µm

t )(−ϵ
m
b (θ

m
t ) + ϵ

m
b (θ

∗
))

≤

¿
Á
Á
ÁÀ ∑

b∈Tm,i

anc(t)

((xm
b )
⊺µm

t )
2

ηmb (θ
m
t )ι + 4 ⋅ 2

−ℓι + 4

¿
Á
Á
ÁÀ ∑

b∈Tm,i

anc(t)

((xm
b )
⊺µm

t )
2

ηmb (θ
∗)ι + 4 ⋅ 2−ℓι

≤ C

¿
Á
Á
ÁÀ ∑

b∈Tm,i

anc(t)

((xm
b )
⊺µm

t )
2

⋅ 2−iι + 8 ⋅ 2−ℓι

≤ C

¿
Á
ÁÀ ∑

b∈Tm,i

anc(t)

((xm
b )
⊺µm

t )(x
m
b )
⊺µm

t ⋅ 2
−iι + 8 ⋅ 2−ℓι

≤ C∥µm
t ∥Wm,i,ℓ

anc(t)

√
2−iι + 8 ⋅ 2−ℓι

Solving for ∥µm
t ∥Wm,i,ℓ

anc(t)
, we get the desired bound.

B.5 The Exact Definition of Ik,h and Proof of Lemma 9

Fix m and i. Let t ∈ T m,i
T and ℓ = ℓmt . We recall Lemma 8 that yields

∥µm
t ∥Wm,i,ℓ

anc(t)
≤ cM ⋅max{

√
2−iι,

√
2−ℓι}
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Let us define T m,i,ℓ = {t ∈ T m,i
T ∶ (xm

t )
⊺µm

t ∈ (2 ⋅ 2
−ℓ,2 ⋅ 21−ℓ])} and split the time steps T m,i,ℓ as

follows:

T
m,i,ℓ,⟨1⟩

∶= {t ∈ T m,i,ℓ
∶∥µm

t ∥Wm,i,ℓ

anc(t)
≤ cM

√
2−iι} and T

m,i,ℓ,⟨2⟩
∶= T

m,i,ℓ
∖T

m,i,ℓ,⟨1⟩ .

Given t ∈ [T ], let nm,i,ℓ,⟨1⟩
t be n ∈ {0, . . . , ℓ} such that

max
t′∶t≤t′∈Tm,i,ℓ,⟨1⟩

∣(xm
t )
⊺µm

t′ ∣ ∈ (1{n ≠ 0} ⋅ 2
−ℓ+n,2−ℓ+n+1]

where we set n = 0 if the maximum above is less or equal to 2−ℓ.

Let T m,i,ℓ,⟨1⟩,n = T m,i,ℓ,⟨1⟩ ∩ {t ∶ n
m,i,ℓ,⟨1⟩
t = n} and set V

m,i,ℓ,⟨1⟩,n
t ∶= 2−ℓI +

∑b∈Tm,i,ℓ,⟨1⟩,n
t

xm
b (x

m
b )
⊺ with T m,i,ℓ,⟨z⟩,n

t ∶= {a′ ≤ a ∶ a′ ∈ T m,i,ℓ,⟨z⟩,n}.

Define

I
m,i,ℓ,⟨1⟩,n
t ∶= 1{∀t′ ∈ T

m,i,ℓ,⟨1⟩,n
t with k(t′) = k(t), ∥xt′∥

2

(V m,i,ℓ,⟨1⟩,n
anc(t′) )−1 ≤ r∥xt′∥

2

(V m,i,ℓ,⟨1⟩,n
t′−1 )−1}

for some r > 1 to be specified later. With this definition, one can see that ∑t∈[T ]∶h(t)<H I
m,i,ℓ,⟨1⟩,n
t −

I
m,i,ℓ,⟨1⟩,n
t+1 is the number of bad episodes where there exists h ∈ [H] such that

∥xt∥
2

(V m,i,ℓ,⟨1⟩,n
anc(t) )−1 > r∥xt∥

2

(V m,i,ℓ,⟨1⟩,n
t−1 )−1 .

Define I
m,i,ℓ,⟨1⟩,n
k,h ∶= I

m,i,ℓ,⟨1⟩,n
t(k,h) . Define similar quantities for ⟨2⟩ as well.

Define It ∶=∏m,i,ℓ,n I
m,i,ℓ,⟨1⟩,n
t ∏m,i,ℓ,n I

m,i,ℓ,⟨2⟩,n
t . We now prove Lemma 9.

Note that
K

∑
k=1

H−1
∑
h=1

Ik,h − Ik,h+1 ≤
K

∑
k=1

H−1
∑
h=1

∑
m≤L0

∑
i≤L
∑
ℓ≤L
∑
z∈[2]

ℓ

∑
n=0
(I

m,i,ℓ,⟨z⟩,n
k,h − I

m,i,ℓ,⟨z⟩,n
k,h+1 ) ,

We now assume z = 1 without loss of generality. The display above can be written as

∑
t∈[T ]∶h(t)<H

(It − It+1) ≤ ∑
m,i,ℓ,n

∑
t∈[T ]∶h(t)<H

I
m,i,ℓ,⟨1⟩,n
t − I

m,i,ℓ,⟨1⟩,n
t+1 .

Recall that the inner sum above is the count of the ‘bad’ episodes. We invoke Lemma 7 2L0(L)
3

times with X =
√
d as ∥xt∥1 ≤

√
d to finish the proof as

∑
k,h

Ik,h − Ik,h+1 ≤ O
⎛

⎝

d

ln(r)
log5 (dHK(1 +

d2

ln(r)
))
⎞

⎠

B.6 Proof of Proposition 1

To proceed we safely choose r = 2 and inherit all notations from Section B.5. Let us define

T̆
m,i,ℓ,⟨z⟩

∶= T
m,i,ℓ,⟨z⟩

∩ {t ∈ [T ] ∶ It = 1}

where z ∈ {1,2}. We start with Rm as
Rm =∑

t

(x̆m
t )
⊺µm

t

≤ ∑
t,i,ℓ

∑

t∈T̆m,i,ℓ,⟨1⟩
(x̆m

t )
⊺µm

t + ∑
t,i,ℓ

∑

t∈T̆m,i,ℓ,⟨2⟩
(x̆m

t )
⊺µm

t .

Let us fix m, i, and ℓ and focus on controlling ∑t∈T̆m,i,ℓ,⟨z⟩(x̆
m
t )
⊺µm

t for z ∈ [2]. Hereafter, we omit
the superscripts of (m, i, ℓ) to avoid clutter, unless there is a need.

Note that for t ∈ T̆ ⟨1⟩,n and b such that t ≤ b,

Wanc(t)(µb) = 2
−ℓI + ∑

t′∈Tm,i,ℓ

anc(t)

(1 ∧
2−ℓ

∣xt′µb∣
)xt′x

⊺
t′
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⪰ 2−ℓI + ∑

t′∈Tm,i,ℓ,⟨1⟩,n
anc(t)

(1 ∧
2−ℓ

∣xt′µb∣
)xt′x

⊺
t′

⪰ 2−ℓI + ∑

t′∈Tm,i,ℓ,⟨1⟩,n
anc(t)

(1 ∧
2−ℓ

2−ℓ+n+1
)xt′x

⊺
t′

⪰ 2−ℓI + 2−n−1 ∑

t′∈Tm,i,ℓ,⟨1⟩,n
anc(t)

xt′x
⊺
t′

⪰ c2−nV
⟨1⟩,n
anc(t) .

For t ∈ T̆ ⟨1⟩,n, let b = argmaxt≤b′∈T̆ ⟨1⟩ ∣x
⊺
tµb′ ∣. Then,

2−ℓ+n ≤ ∣x⊺tµb∣ (def’n of b)
≤∥xt∥W−1

anc(t)(µb)∥µb∥Wanc(t)(µb)

≤
√
2n∥xt∥(V ⟨1⟩,n

anc(t) )−1
∥µb∥Wanc(b)(µb)

≤ c
√
r
√
2n∥xt∥(V ⟨1⟩,nt−1 )−1

√
2−iι . (by b ∈ T̆ ⟨1⟩)

This implies that

∥xt∥
2

(V ⟨1⟩,nt−1 )−1 ≥ c⟨1⟩
2−2ℓ+n

r2−iι
.

for some absolute constant c⟨1⟩ > 0.

Thus,

∑

t∈T̆ ⟨1⟩
xtµt ≤ c2

−ℓ
∑

t∈T̆ ⟨1⟩
1

≤ c2−ℓ
√

∣T̆ ⟨1⟩∣ ∑
t∈T̆ ⟨1⟩

1

≤ c2−ℓ

¿
Á
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

∑

t∈T̆ ⟨1⟩,n
1

≤ c2−ℓ

¿
Á
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

∑

t∈T̆ ⟨1⟩,n
1{∥xt∥

2

(V ⟨1⟩,nt−1 )−1 ≥ c⟨1⟩
2−2ℓ+n

r2−iι
}

≤ c2−ℓ

¿
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

∑
t∈T ⟨1⟩,n

1{∥xt∥
2

(V ⟨1⟩,nt−1 )−1 ≥ c⟨1⟩
2−2ℓ+n

r2−iι
} (T̆ ⟨1⟩,n ⊆ T ⟨1⟩,n)

≤ c2−ℓ

¿
Á
ÁÀ∣T̆ ⟨1⟩∣

ℓ

∑
n=0

r2−iι

2−2ℓ+n
d ln(1 + c

r2−iι

2−2ℓ+n2−ℓ
) (Lemma 4)

≤ c
√

dr∣T̆ ⟨1⟩∣2−iι ln (1 + crι8ℓ)

≤ c
√

dr(1 + ∑
t∈T̆ ⟨1⟩

ηt)ι ln (1 + crι8ℓ)

For the other case involving T̆ ⟨2⟩, we use the same logic as above. Let t ∈ T̆ ⟨1⟩,n. Then, for any b
such that a ≤ b, one can show that

Wanc(t)(µb) ⪰ c2
−nV

⟨2⟩,n
anc(t) .

Then, once again letting b = argmaxt<b∈T̆ ⟨2⟩ ∣x
⊺
tµb∣ for t ∈ T̆ ⟨2⟩,n one can show that

2−ℓ+n ≤ c
√
r
√
2n∥xt∥(V ⟨2⟩,nt−1 )−1

√
2−ℓι .
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This implies that

∥xt∥
2

(V ⟨2⟩,nt−1 )−1 ≥ c
2−ℓ+n

rι
for some absolute constant c > 0. Then,

∑

t∈T̆⟨2⟩

x⊺tµt ≤ c2
−ℓ

ℓ

∑
n=0

∑

(k,h)∈T̆ ⟨2⟩,n
1

≤ c2−ℓ
ℓ

∑
n=0

∑

t∈T̆ ⟨2⟩,n
1

⎧⎪⎪
⎨
⎪⎪⎩

∥x∥
2

(V ⟨2⟩,na−1 )−1 ≥ c
2n−ℓ

rι

⎫⎪⎪
⎬
⎪⎪⎭

≤ c2−ℓ
ℓ

∑
n=0

c
rι

2n−ℓ
d ln(1 + c

rι

2n−ℓ ⋅ 2−ℓ
)

≤ cdrι ln (1 + crι4ℓ)

Invoking the elliptical potential count lemma together with r = 2,

Rm ≤ c
L

∑
i

L

∑
ℓ

⎛
⎜
⎝
d0.5
√

(1 + ∑

t∈T̆m,i,ℓ

ηmt )ι ln (1 + cι8
ℓ) + dι ln (1 + cι8ℓ)

⎞
⎟
⎠
,

which implies that

Rm ≤ O
⎛

⎝
d0.5 log2.5(HK)

√
∑
t

η̆mt ι log(ι) + d log3(HK)ι log(ι)
⎞

⎠
.

where η̆mt ∶= η
m
t It.

B.7 Proof of Theorem 2

Proof. We continue from the proof in the main paper where it remains to bound R0 +M0. Using the
relation (equation (56) and (57) in [31]),

∑
t

η̆mt ≤ ∣Mm+1∣ +O(d log
5
(dHK) + 2m+1(K +R0)) +Rm+1 + 2Rm,

one has, using Proposition 1,

Rm ≤ O(d
0.5 log2.5(dHK)

√
ι log(ι)

√
∣Mm+1∣ + 2m+1(K +R0) +Rm+1 + 2Rm+d log

5
(dHK)ι log(ι))

The strategy is to solve the recursive inequalities with respect to Rm and Mm to obtain a bound on
R0 and M0. By Lemma 15, we have

∣Mm∣ ≤ O(
√
∣Mm+1∣ + 2m+1(K +R0) log(1/δ) + d

0.5 log2.5(dHK) + log(1/δ)) . (18)
With bm ∶= Rm + ∣Mm∣, we have

bm ≤ Ô(d log
3
(dHK)

√
log(1/δ)

√
bm + bm+1 + 2m+1(K +R0) + d

2 log7(dHK) log(1/δ)).

where Ô ignores doubly logarithmic factors.

We now use Lemma 17 with λ1 = HK, λ2 = Θ̂(d log3(dHK)
√
log(1/δ)), λ3 = (K + R0) and

λ4 = Θ̂(d
2 log7(dHK) ln(1/δ)) where Θ̂ ignores doubly logarithmic factors, we obtain

R0 ≤ b0 ≤ Õ(d
2 log7(dHK) log(1/δ) +

√

(K +R0)d2 log
6
(dHK) log(1/δ)).

We can solve it for R0 to obtain R0 ≤ Õ(
√

Kd2 log7(dHK) log(1/δ) + d2 log7(dHK) log(1/δ)).

Next, we apply Lemma 18 to (18) with λ2 = Θ(1), λ3 = (K + R0) ln(1/δ), and λ4 =

Θ(d0.5 log2.5(dHK) + ln(1/δ)) to obtain

∣M0∣ ≤ O(
√
(K +R0) ln(1/δ) + d

0.5 log2.5(dHK) + ln(1/δ))

≤ Õ(
√
K log(1/δ) +

√

d2 log7(dHK) log2(1/δ) + d0.5 log2.5(dHK) + ln(1/δ))
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where the last inequality uses
√
AB ≤ A+B

2
to obtain the following:

K +R0 ≤ Õ(K + d
2 log7(dHK) log(1/δ) +

√

Kd2 log7(dHK) log(1/δ))

≤ Õ (K + d2 log7(dHK) log(1/δ) +
1

2
⋅K +

1

2
⋅ d2 log7(dHK) log(1/δ)) .

Altogether, we obtain

b0 = Õ(
√

Kd2 log7(dHK) log2(1/δ) + d2 log7(dHK) log(1/δ))

This concludes the proof.

B.8 Miscellaneous lemmas

Lemma 14. (Zhang et al. [32, Lemma 11]) Let (Mn)n≥0 be a martingale such that M0 = 0 and
∣Mn −Mn−1∣ ≤ b almost surely for n ≥ 1. For each n ≥ 0, let Fn = σ(M1, ...,Mn). Then for any
n ≥ 1 and ϵ, δ > 0, we have

P
⎛
⎜
⎝
∣Mn∣ ≥ 2

¿
Á
ÁÀ

n

∑
i=1

E[(Mi −Mi−1)2∣Fi−1] ln(1/δ) + 2
√
ϵ ln(1/δ) + 2b ln(1/δ)

⎞
⎟
⎠
≤ 2(log2(b

2n/ϵ)+1)δ

Lemma 15. (Zhang et al. [31, Lemma 25])

∣Mm∣ ≤ O (
√

Mm+1 +O(d log
5
(dHK)) + 2m+1(K +R0) log(1/δ) + log(1/δ))

Lemma 16. (Zhang et al. [31, Lemma 6]) Reg3 ≤ O(
√
K log(1/δ)).

Lemma 17. (Zhang et al. [31, Lemma 12]) For λi > 0, i ∈ {1,2,4} and λ3 ≥ 1, let κ =

max{log2(λ1),1}. Assume that 0 ≤ ai ≤ λ1 and ai ≤ λ2

√
ai + ai+1 + 2i+1λ3+λ4 for i ∈ {1,2, ..., κ}.

Then, we have

a1 ≤ 22λ
2
2 + 6λ4 + 4λ2

√
2λ3

Lemma 18. (Zhang et al. [30, Lemma 2]) Let λ1, λ2, λ4 ≥ 0 and λ3 ≥ 1 with i′ = log2(λ1). We have
a sequence {ai}i for i ∈ {1,2, ..., i′} satisfying ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4. Then,

a1 ≤max{(λ2 +

√

λ2
2 + λ4)

2, λ2

√
8λ3 + λ4}

C Comparison with He et al. [12]

At a high-level, He et al. [12] apply a similar strategy to ours. One immediate difference is that we
do not incur an extra dependence on d inside the logarithm, but it could be due to the fact that their
lemma is applying the count on a different quantity from ours. Note that our EPC is still novel and
tighter than the bound appeared in a concurrent work of Wagenmaker et al. [22, Lemma 6.2] for a
large enough K (i.e., time horizon).

Note that the core of our novelty is the point of view introduced by the the matrix norm with respect
to Wℓ,k−1(µ). This enables the connection to the elliptical potential lemma and the peeling technique.
Such a viewpoint is exactly what the paper of VOFUL [31] did not seem to have realized. Indeed, the
proof of VOFUL [31] does not use peeling on x⊺kµk as we do.

We also like to highlight that Lemma 7 is still novel and is one of the main contributors to the
improved regret bound for the linear mixture MDP.
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