
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

Appendix

A Proof of the Underlying Graphical Model of EDNIL

We assume data are generated by Equation 12 which is the process adopted by Arjovsky et al. [1] and
Lin et al. [20], where gc, gv are deterministic functions, and ✏c, ✏v are random noises independent of
Xc and Xv.

Y = gc(Xc, ✏c),

Xv = gv(Y, ✏v).
(12)

Equation 12 establishes a chain that Xc ! Y ! Xv. With the additional relation E ! Xv proposed
in our graphical model, the following two dependencies can be obtained via d-separation [25]:

Y??E | Xc,

Y 6??E | Xv.
(13)

As can be seen, the conditional independence between Y and E given Xc leads to H(Y | Xc) =
H(Y | Xc, E). On the other hand, the dependency between Y and E given Xv implies that there
exists an environment variable satisfying H(Y | Xv) > H(Y | Xv, E).

B Experimental Details

B.1 Implementation Resources

Our implementations of EDNIL are in the repository 4.

All experiments were run on a GeForce RTX 3090 machine. The training time and GPU memory
consumption of EDNIL are specified in Table 7. It takes approximately 30 hours for EDNIL to
accomplish all tasks, including main experiments and analyses.

For the choices of deep encoders, we utilize Resnet34 from torchvision 5 on Waterbirds, and
DistilBERT from Huggingface 6 on SNLI. Both network architectures and pre-trained weights
are kept as the default.

Table 7: Training time and GPU memory consumption of EDNIL (per run).

Adult-Confounded CMNIST Waterbirds SNLI

Time 1 min 2 min 40 min 60 min
GPU memory 1.3 GiB 1.6 GiB 7.0 GiB 10.2 GiB

B.2 Hyper-parameter Tuning

Without leaking into out-of-distribution information, 10% of training data are split as an in-distribution
validation set. Particularly, we infer environments on the validation data with MEI and determine
hyper-parameters according to the worst-environment score.

For MEI, we select number of environments from 2 to 5, ⌧ in softmax function from 0.05 to 0.5, �
and � in LEI from 0.2 to 10. In LED, we clip overaggressive wi with an upper bound wthres for training
stability, and it is chosen from 1.2 to 5. As for MIL, the penalty strength � in LIL is selected from {2,
10, 100, 1000}. Following Arjovsky et al. [1], we conduct an annealing mechanism before using the
configured penalty strength. The chosen number of annealing iterations ranges from 20% to 80%
of the whole. For the complex datasets, we consider a longer annealing period (larger than 50%) to
learn basic representations better.

4https://github.com/joe0123/EDNIL
5https://pytorch.org/hub/pytorch_vision_resnet
6https://huggingface.co/distilbert-base-uncased

15

Number of total training steps is decided from 500 to 2000. In Adult-Confounded and CMNIST,
full-batch training is implemented due to enough memory space. In Waterbirds and SNLI, batch
size is chosen among 128, 256 and 512. The choices of learning rate and optimizer depend on the
dataset. For Adult-Confounded, CMNIST and Waterbirds, a learning rate between 2e-4 and 2e-3
is considered. We take Adam as the optimizer for Adult-Confounded and CMNIST, and choose
SGD for Waterbirds. For SNLI, a smaller learning rate in {2e-5, 3e-5, 5e-5, 1e-4} is selected when
fine-tuning DistilBERT with AdamW.

B.3 Oracle Settings on Adult-Confounded

Given a biased training set and two sensitive features, race and sex, Eoracle for IRM is constructed
according to Table 8. The correlations between variant features and target are maximized within each
environment and diversified across environments. As implied by [5, 22], spurious correlations are
supposed to be eliminated when an invariant learning algorithm converges properly.

Table 8: Oracle environments for IRM on Adult-Confounded,
where ei 2 supp(Eoracle) represents the i-th environment.

Y = 1 Y = 0

Race Sex Race Sex

e1 Non-black Male Black Female
e2 Non-black Female Black Male
e3 Black Male Non-black Female
e4 Black Female Non-black Male

B.4 Biased Model for SNLI

To define subsets for evaluation on SNLI, we follow the labeling procedure in [9]. Specifically, k-fold
cross validation (k = 5) is applied on the training set. We fine-tune BERT [7] with hypothesis as its
only inputs on k � 1 folds, and score the left-out k-th set. For the development and testing sets, we
score each example with average predictions from k different models. The accuracy of the biased
model is approximately 68%. Finally, we set two thresholds (t1, t2), defined by [9], to (0.2, 0.5),
where t1 is used to identify unbiased data, and t2 is used to define bias aligned and misaligned sets.

C Additional Empirical Results

C.1 Synthetic Data for Regression Problem

We further validate our work on regression problem with a synthetic dataset proposed in [23]. The
features are X = H[Xc, Xv] 2 Rd, and the target is generated by Y = f(Xc) + ✏, where H is an
random orthogonal matrix for scrambling features and f(·) is a non-linear function. Xc are invariant
features that P (Y |Xc) is consistent across environments, while Xv are variant features that P (Y |Xv)
can arbitrary change according to the following data sampling mechanism:

P̂ (xi, yi) = |r|(�5·|yi�sign(r)·X⇤
v |) (14)

In Equation 14 where |r| > 1, r controls the spurious correlation between the certain variable
X

⇤
v 2 Xv and the target label Y . Specifically, larger |r| represents stronger correlation, and the sign

of r indicates the direction of correlation. In the training set, there are 1000 examples generated from
the environment with r = 2.3 and 100 examples from that with r = �1.1. The environment labels
are unavailable as in the previous experiments. For testing, two scenarios are considered. First, we
define two environments, IID and OOD, to evaluate the generalization under dramatic distributional
shifts. In IID, 1100 examples are sampled with the same procedures as training data. In OOD, 1000
examples are generated from the environment with r = �2.5. Secondly, following [23], we evaluate
the stability over six testing environments where r 2 {�2.9,�2.7,�2.5, ...,�1.9}.

In our regression task, the evaluation metric is mean square error. For all methods, MLP with one
hidden layer of 1024 neurons is utilized. When calculating the label independency term LLI for

16

EDNIL, we discretize Y by quartiles. Empirically, such efficient estimation can improve the quality of
environment inference to some degree. We leave more precise approximations of mutual information
between discrete and continuous variables for future work.

Results The results of the first testing scenario are listed in Table 9. Among all methods, EDNIL
obtains the most consistent scores across IID and OOD. The performance degradation when � = 0
suggests the importance of LLI.

Table 10 shows the results of the second scenario. As in [23], Mean Error and Std Error represent
the mean and standard deviation of errors over six testing environments respectively, both of which
are averaged over 20 runs. Similar to the first scenario, EDNIL performs the best and most robustly
in out-of-distribution settings. The estimated LLI also gains empirical improvements in this test.

Table 9: Testing mean square errors on syn-
thetic regression dataset (Scenario 1).

IID OOD
ERM 0.772 ± 0.079 5.431 ± 0.461

EIIL 1.629 ± 0.174 3.675 ± 0.756

KerHRM 1.246 ± 0.339 3.612 ± 1.082

EDNIL 1.971 ± 0.183 2.253 ± 0.422
EDNIL�=0 1.733 ± 0.340 2.933 ± 0.808

Table 10: Mean square errors of stability test
on synthetic regression dataset (Scenario 2).

Mean Error Std Error

ERM 5.367 0.217

EIIL 3.623 0.188
KerHRM 3.526 0.151
EDNIL 2.218 0.103

EDNIL�=0 2.879 0.151

C.2 CMNIST with Different Color Noises

In this task, the learning effects of all methods are tested under different strengths of spurious
correlation at train time. We select CMNIST with fixed label noise 0.2, and adjust overall color
noise e from 0.1 to 0.3 to generate five different training sets. For testing, e = 0.1 and e = 0.9 are
considered. Given color label C and target Y , samples with C = Y are more than those with C 6= Y

when e = 0.1, where the direction of spurious correlation is aligned with that in the training sets.
On the other hand, when e = 0.9, samples with C 6= Y are in the majority. Due to the reversed
correlation, models relying on the variant feature (i.e. color C) are vulnerable to this setting.

Results The results are plotted in Figure 4. As the training color noise increases, the generalization
of ERM improves since the spurious correlation decreases at train time. Meanwhile, as indicated
in [6], EIIL fails because the reference model, i.e. ERM, is no longer a pure variant predictor. For
KerHRM, the instability of inferred environments results in large standard deviation, especially when
training color noise is small. In comparison, given different strengths of spurious correlation for
training, EDNIL can distinguish invariant features from variant ones, and performs more consistently
as IRM (with Eoracle) does.

(a) Test color noise e = 0.1 (b) Test color noise e = 0.9

Figure 4: Testing accuracy (%) of CMNIST. Testing set with color noise e = 0.9 is more challenging
since the direction of spurious correlation is opposite to that in training.

17

	Introduction
	Preliminaries and Related Works
	Out-of-distribution Generalization and Invariant Learning
	Ideal Environments
	Unsupervised Environment Inference

	Methodology
	The Environment Inference Model
	Inference Stage of MEI
	Learning Stage of MEI

	The Invariant Learning Model

	Experiments
	Simple Datasets with MLP
	Discussions on Adult-Confounded
	Discussions on CMNIST

	Complex Datasets with Pre-trained Deep Learning Models
	Discussions on Waterbirds
	Discussions on SNLI

	Limitations
	Conclusions and Societal Impacts
	Proof of the Underlying Graphical Model of EDNIL
	Experimental Details
	Implementation Resources
	Hyper-parameter Tuning
	Oracle Settings on Adult-Confounded
	Biased Model for SNLI

	Additional Empirical Results
	Synthetic Data for Regression Problem
	CMNIST with Different Color Noises

