
Learning to Configure Computer Networks with
Neural Algorithmic Reasoning

Luca Beurer-Kellner1, ∗ Martin Vechev1 Laurent Vanbever1 Petar Veličković2

1ETH Zurich, Switzerland 2DeepMind

https://github.com/eth-sri/learning-to-configure-networks

Abstract

We present a new method for scaling automatic configuration of computer
networks. The key idea is to relax the computationally hard search problem of
finding a configuration that satisfies a given specification into an approximate
objective amenable to learning-based techniques. Based on this idea, we train
a neural algorithmic model which learns to generate configurations likely to
(fully or partially) satisfy a given specification under existing routing protocols.
By relaxing the rigid satisfaction guarantees, our approach (i) enables greater
flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not
depend on hardcoded rules; and (ii) finds configurations for much larger computer
networks than previously possible. Our learned synthesizer is up to 490× faster
than state-of-the-art SMT-based methods, while producing configurations which
on average satisfy more than 92% of the provided requirements.

1 Introduction

Configuring large-scale networks is a challenging and important task as network configuration
mistakes regularly lead to massive internet-wide outages affecting millions (resp. billions2) of
Internet users [35, 25]. Typically, network operators provide a router-level configuration W which,
after applying protocols such as shortest-path routing, induces a certain forwarding behaviour FWD
as illustrated in Figure 1. As this remains a challenging task, much recent research has focused on
automating configuration by leveraging synthesis techniques [15, 5, 31]: A synthesizer is used to
automatically generate a router-level configuration W that, after applying routing protocols results in
forwarding behavior that satisfies a given specification S on how traffic should be routed.

SMT-based Synthesis Due to the hardness of the configuration synthesis problem [7], many
effective tools in this domain [15, 14] resort to satisfiability modulo theory (SMT) solvers, which
employ search-based procedures to find a solution to a set of first-order logic constraints. This enables
comprehensive and exact synthesis by modelling network behavior in first-order logic. However,
these tools are typically protocol-specific, hand-coded, and can exhibit discrepancies in behavior
when compared to actual router hardware [6]. Most importantly, however, they can be very slow or
fail to complete for large networks. For example, the state-of-the-art SMT-based tool NetComplete
[15] requires more than 6 hours to synthesize a configuration for a network with 64 nodes, for which
other SMT-based tools like SyNET [14] take even longer (> 24 hours) [15]. Non-SMT-based tools
such as Propane [4] or Zeppelin [39] have achieved better performance, but at the cost of generality.
∗Correspondence to luca.beurer-kellner@inf.ethz.ch.
2As of 2021, Facebook reportedly has 2.9 billion monthly active users [1].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/eth-sri/learning-to-configure-networks

A B

C D

E

F

1

2

Forwarding Plane
Protocol

(Graph Algorithm,
e.g. OSPF)

Check
Consistency

Configuration

A B

C D

E

F

2

38

fwd(A,B,N1)
not fwd(C,B,N1)

reachable(D,A,N1)
isolation(A,B,N1,N2)

Specification S

Configuration
Synthesis

(exact, approximate)

Figure 1: Network configuration synthesis. The goal of configuration synthesis is to find a
configuration W that maximizes consistency C(FWD, S) for a given specification S.

Addressing the scalability barrier The reason for the wide-spread use of SMT in configuration
synthesis is the inherent computational complexity of the underlying synthesis problem, parts of
which have been shown to be NP-hard [7, 16, 44]. This means that any exact synthesis method is
bound to run into scalability issues (as do all SMT-based methods). However, to be practically useful,
a synthesizer must scale to the size of real-world networks and the frequency at which configurations
are updated. For example, in a Tier-1 ISP, network operators modify their configurations up to 20
times per day, on average [36]. We argue that one way to address this scalability barrier, is relaxing
the configuration synthesis problem to admit approximate solutions with high utility – configurations
which may not always satisfy all requirements of a given specification but may satisfy almost all of
them. Such a configuration would be a much better starting point for a network operator than having
no automated support whatsoever. The core technical challenge then is coming up with a strategy
likely to find solutions with high utility.

This Work: enabling fast and scalable configuration via neural algorithmic reasoning We
address this challenge and present the first learning-based framework for approximate configuration
synthesis. Our relaxed formulation allows us, for the first time, to apply end-to-end learning to
the problem of network configuration synthesis, thereby enabling fast and scalable configuration
synthesis with almost interactive response times (<90s even for large networks). Technically, we
leverage the observation that routing protocols can often be formulated as Bellman-Ford style graph
algorithms, a class of problems that has recently been studied in the area of neural algorithmic
reasoning (NAR) [43]. Connecting the two fields and building on ideas from NAR, we are able
to train a graph-based neural model with a strong inductive bias to learn an inverse mapping from
specifications back to network configurations: Our model learns how to perform synthesis from
a dataset of (specification, configuration) pairs obtained by simulating the involved protocols and
observing the computed forwarding state. With this method, we can support cross-protocol reasoning
and do not have to manually provide any hardcoded synthesis rules. Concretely, we introduce a
generic embedding scheme for topologies and configurations, making our method protocol-agnostic.
During synthesis, given a specification, our model predicts distributions of network configurations
from which we can sample possible results.

Main Contributions Our core contributions are:

• We formulate a relaxation of the exact configuration synthesis problem, which enables fast
and scalable network configuration, amenable to learning-based techniques (Section 2).

• We propose a NAR-based neural network architecture for learning synthesizer models that
rely on a graph-based encoding of topologies and configurations, and a strong inductive bias
towards an iterative synthesis procedure (Section 4).

• We conduct an extensive evaluation of our learning-based synthesizer with respect to both
precision and scalability. We demonstrate that our learned synthesizer is up to 490× faster
than a state-of-the-art SMT-based tool while producing high utility configurations which on
average satisfy > 93% of provided constraints (Section 5).

2

2 Configuration Synthesis: Exact and Learned

We first state the general configuration synthesis problem and explain why it is hard to solve. We
then present a rather different approach based on learning that addresses the scalability barrier of
traditional synthesis.

Forwarding Behavior and Specifications We focus on the level of the forwarding plane of a
network. This means we consider how a network forwards traffic, given a packet with a certain
destination. The forwarding plane is determined by a distributed computation that depends on the
different routing protocols in use. More formally, we define the forwarding plane FWD as follows:

FWD ∶= Prot(W ;T)

Prot(W ;T) corresponds to the result of applying routing protocols to the network topology T and
the configuration W (e.g. link weights). In the following, we omit T as it remains fixed in synthesis.
The resulting forwarding plane FWD can be understood as a directed graph superimposed on topology
T . It specifies a subset of links that are used to forward packets. To illustrate consider Figure 1:
applying the routing protocols yields forwarding plane FWD which corresponds to the subset of links
(C,A), (B,A), (A,E), (D,F). The other links of the network are not part of the forwarding plane
and will thus not be used to forward traffic.

Given FWD , we consider a forwarding specification S ∶= {Ri}i as an input to the synthesis problem.
Each requirement in S is modelled as a function Ri, where Ri(FWD) = 1 if FWD satisfies the
requirement and 0 otherwise. Practical example requirements include reachability, traffic isolation or
specifying concrete forwarding paths.

Exact Configuration Synthesis We formulate the general configuration synthesis problem as the
following optimization objective:

W ⋆
∶= argmax

W ∈P (W)
C(Prot(W), S) where C(FWD, S) ∶=

∑Ri∈S Ri(FWD)

∣S∣
(1)

P (W) denotes the set of all possible configurations and C(FWD, S) is the specification consistency
of a forwarding plane FWD w.r.t specification S. In traditional, exact configuration synthesis, this
objective is solved by limiting the search to globally-optimal configurations such that C(FWD, S) =
1.0, i.e. all requirements must be satisfied. Such exact methods typically resort to SMT solvers
because of the hardness of the underlying problem: configurations comprise a large number of tunable
parameters, where the execution of several interacting protocols yields the overall forwarding state.
Even worse, parts of the configuration synthesis problem have been shown to be NP-hard [7, 16, 44]:
For example, already the subproblem of finding link weights that yield a given set of forwarding
paths under shortest-path routing is NP-hard [7]. This makes scaling exact synthesis to real-world
networks extremely challenging.

Learning-Based Synthesis To enable fast and scalable configuration synthesis, we propose to relax
both the optimality as well as the rigid satisfaction requirements w.r.t the specification S. Concretely,
we relax the set of admissible solutions to include configurations that are not optimal, but still satisfy
a large number of provided requirements. Note that this is not the same as merely allowing solutions
with C(FWD, S) < 1.0, because maximum satisfiability does not relax the hardness of the problem.
Instead, we propose to search for near-optimal, good solutions and rely on the value of specification
consistency C as a measure of quality.

An approximate synthesis formulation relaxes the hardness of the problem, however, it also leads to
the difficult technical challenge of finding solutions with high utility (e.g., where many requirements
are satisfied). To address this challenge, we propose a rather different approach where we learn
synthesis from data. Concretely, we learn an inverse mapping that attempts to predict approximate
solutions Ŵ ⋆ with high utility, as guided by the following objective:

Ŵ ⋆
= Prot−1(FWD) s.t. C(FWD, S) is high

This can be implemented as a synthesizer model MSyn which produces a solution given just the
topology T and the specification S:

3

Figure 2: An illustration of propagating BGP route announcements in a small network, including
internal peers (blue), external peers (purple), BGP sessions as well as physical links. The last graph
illustrates the resulting forwarding plane after applying BGP/OSPF.

Ŵ ⋆
=MSyn(S;T)

We propose a learning-based approach for training such synthesizer models based on neural algorith-
mic reasoning (cf. Section 4). First, however, we discuss the routing protocols that make up function
Prot and how they relate to graph algorithms and by extension to NAR.

3 Routing Protocols as Graph Algorithms

In practice, the routing protocols defining Prot are implemented as distributed systems in which
multiple peers communicate to determine the network’s forwarding state. However, theoretical work
on routing algebras [21] has shown that the underlying computation can be understood as a traditional
message-passing graph algorithm. As a consequence, many routing protocols can be formulated
as Bellman-Ford (BF) style propagation processes. This class of problems has also recently been
subject to work on NAR [43, 41] and algorithmic alignment [45]. The authors of these works
demonstrate that neural networks are capable of closely imitating BF-style algorithms when provided
with a suitable inductive bias. Based on this insight, NAR proposes to replace traditional algorithms
with neural networks to learn improved algorithmic procedures or extend existing algorithms to be
applicable to raw data [41]. Following the idea of NAR, we implement a synthesizer model for
network configurations as an iterative Graph Neural Network (GNN) to learn Prot−1 by relying on a
Bellman-Ford style inductive bias.

Synthesis Setting Our approach is general for the domain of networks, but we focus on two widely-
used routing protocols: (1) Open Shortest Path First (OSPF) [30] – it uses link weights to route traffic
along the shortest path towards the destination, and the (2) Border Gateway Protocol (BGP) [32],
used to exchange reachability information, mostly on the level of larger backbone networks. When
using BGP, a routing destination announces its existence to other networks and routers by sending
out BGP announcements. Receivers of announcements then choose to pass them on to other peers,
redistribute them internally and/or modify them according to a set of decision rules. BGP and OSPF
interact, for instance, BGP will consider the OSPF cost of internal destinations in its routing decisions.
This means, that effective BGP/OSPF synthesis tools must implement cross-protocol reasoning,
configuring BGP and OSPF, such that together they yield the desired forwarding behaviour.

Example To provide a basic intuition about BGP/OSPF routing, consider the simple example
network in Figure 2. We apply the two protocols to obtain the forwarding plane. Physical OSPF
edges are labelled with a corresponding link weight determining the OSPF cost of paths through the
network. Dotted lines represent designated BGP edges, used to propagate BGP announcements. Our
network imports multiple BGP announcements ∎ and ▲ from E and F respectively. Both represent a
route to the same destination. As shown, the announcements have a so-called BGP local preference of
2 (we ignore other BGP properties in this example). The announcements are propagated through the
network and the best route is selected according to a designated BGP decision procedure. Figure 2
shows the intermediate states of this propagation process. As both announcements have the same
local preference value, the decision cannot eliminate based on that. Instead, in round 2, node B

4

Distribution
of Synthesized

Parameters

1 2 3 4 5 6

Fact Base
as Graph

EmbeddingMasked Input
Fact Base

Latent
Synthesizer

Input

Latent
Synthesizer

Output

Encoder
GNN

Processor
GNN

Argument
Decoders

G
AT

G
AT

DEC

DEC

router(c5)
router(c3)
router(c1)
router(c0)
network(c6)
network(c7)

external(c8)
external(c9)
external(c10)
external(c11)
external(c12)
external(c13)

route_reflector(c2)
route_reflector(c4)

connected(c2,c4,?)
connected(c2,c5,?)
connected(c2,c3,?)

4x

...

Figure 3: Neural synthesizer architecture. A provided input fact base is first embedded as a graph
including the masked to-be-synthesized parameters. Then encoder GNN, processor GNN and decoder
networks are applied to obtain a distribution over synthesized parameters.

selects ∎ over ▲ due to a lower OSPF cost (shorter path) of 2 via node A as compared to 3 via node D.
Node D selects ▲ over ∎ , since it learns this route directly from an external peer which is preferred
in BGP. After Round 3, the BGP propagation process converges to a stable state and we can derive
the forwarding plane as shown on the left in Figure 2. For completeness, we include the full BGP
decision process in Appendix A.3.

Configuration Parameters For our purposes, we define the set of synthesized configuration
parameters as follows: For OSPF, we synthesize link weights as explored in existing work [15, 16].
For BGP, we focus on a setting, where we synthesize BGP import policies only. This means we
synthesize the modifications required for BGP announcements when entering the network, to satisfy
the routing specification. Previous work has confirmed that this is a realistic configuration setting that
applies to a majority of real-world networks [9, 12, 38].

Based on the observation that routing protocols such as OSPF and BGP can be expressed as
message-passing algorithms, we heavily rely on GNNs/NAR for the design of our synthesizer model
as discussed next. In our evaluation, we then train such a model for the concrete case of BGP/OSPF
and compare synthesis performance with a traditional SMT-based tool.

4 Neural Configuration Synthesis Model

We train a graph neural network (GNN) as the neural synthesis configuration model. The model’s
input consists of a topology, a specification, and a configuration sketch where to-be-synthesized
parameters are omitted. Following the NAR paradigm, we first encode this synthesizer input in latent
space. Then, we apply an iterative processor network based on the graph attention mechanism [42].
Last, we apply a decoder network to predict the values of omitted configuration parameters, thereby
synthesizing a configuration. To remain protocol-agnostic, our model is generic with respect to the
input format, using an intermediate representation based on Datalog-like facts. Figure 3 provides an
overview of our graph-based neural synthesizer architecture.

4.1 Training Dataset of Inverse Pairs

A learning-based synthesizer model is formulated as a supervised learning problem. Thus, we
can directly train a neural network to learn the inverse mapping, given a dataset of corresponding
input-output pairs. To obtain such a dataset, we sample a random network configuration for some
topology using a uniform generative process. Then, we simulate the involved protocols using Prot,
to obtain the corresponding forwarding plane. Next, we extract a specification by randomly selecting
properties that hold for the computed forwarding plane. This leaves us with a pair of specification
and topology as input, and a corresponding configuration as output.

The key to constructing the dataset is the implementation of Prot. Even though Prot is protocol-
specific, it turns out the overall implementation effort is comparatively low, especially when compared
to SMT-based synthesis methods. Protocols are well-defined algorithms that can be easily simulated,
whereas the alternative of implementing hardcoded synthesis rules directly often requires expert

5

router(A)
router(B)
(...)

conn(A,B,2)
conn(A,C,?)➊
(...)

network(N1)
bgp_route(E,N1 ,2,3,1,0,1)

fwd(A,B,N1)
not fwd(B,A,N1)
(...)

Figure 4: A fact base encoding a network’s topology, parameters such as link weights (conn facts)
and a specification (fwd facts).

router router

conn

12

A

Net1

fwd

B

0

0 1

2

1
router(A)

router(B)

network(Net1)

conn(A,B,12)

fwd(A,B,Net1)

Fact Base
Graph Node Features

hA ∶= emb(router) =Vrouter
hB ∶= emb(router) =Vrouter

hNet1 ∶= emb(network) =Vnetwork
hconn(A,B,12) ∶= emb(conn) + emb(conn,2,12)

∶= Vconn +Wconn2onehot(12)
hfwd(A,B,Net1) ∶= emb(fwd) =Vfwd

Figure 5: An example of embedding a simple fact base using our generic graph embedding scheme.
Different neighborhoods are indicated as edge labels 0,1,2. The full set of structural embedding rules
is provided in Figure 6, Appendix A.1. We mark nodes and facts relating to topology, specification
and configurations in color.

knowledge of SMT solvers. This process may also be adapted to rely on actual router hardware to
compute the result of Prot, thereby capturing real-world behavior precisely.

4.2 Embedding Topologies, Specifications and Configurations

To remain agnostic with respect to routing protocols, our model architecture implements a generic
graph-based encoding of Datalog-like facts, similar to knowledge graphs [33]: we first encode
topologies, configurations and specifications as a set of Datalog-like facts and then employ a generic
embedding scheme to embed these facts into latent space.

Fact Base A set of Datalog-like facts, as depicted in Figure 4, serves as the input fact base F
to our synthesizer model. F is a set of facts f(a0, . . . , an) where arguments may be constants
(e.g. A or B) or integer literals. Each fact has a corresponding boolean truth value denoted as
[f(a)]B. For instance, from the fact base in Figure 4 we can derive [fwd(A,B,N1)]B = true and
[fwd(B,A,N1)]B = false.

Synthesis as Completion Task A network’s topology, protocol configuration, parameters, and
the specification are all represented in a single fact base. To predict the value of unknown, to-be-
synthesized parameters, we support the notion of unknown parameters as illustrated at ➊ in Figure 4,
where the link weight between router nodes A and C is omitted. Based on this input format, synthesis
corresponds to using our model to predict the value of unknown parameters in a provided fact base.

Embedding To transform a fact base into a graph with node features, we apply a structurally-defined
embedding scheme. An example of this embedding scheme is given in Figure 5. As shown, we
embed topology, specification and configuration all into a single graph. This places network routers,
the related specification predicates as well as configuration parameters in close adjacency to each
other, simplifying the synthesis procedure for the processor network. In our scheme, both facts and
constants are represented as distinct nodes. The relationships between facts and constants are encoded
as node adjacency as defined by neighborhood functions Ni. We use multiple neighborhoods, i.e.
multiple types of edges, to encode the argument position of a constant occurring in a fact. To handle
unknown parameters, we replace the corresponding embedding with a learned Vhole embedding.
Overall, the embedding function EMB relies on a set of learned parameters, including Vf ∈ RD per
fact type in F , Wbool ∈ RD×2 for boolean values, Wfi ∈ RD×N per integer argument of fact type f
and Vhole ∈ RD to represent unknown parameters. D is the dimensionality of the latent space and N

6

Table 1: Average consistency with 3×16 BGP/OSPF requirements, sampling configurations randomly
from a uniform distribution and multi-shot sampling using our synthesizer model.

Random 1-Shot 4-shot 8-shot

Small 0.87±0.11 0.94±0.04 0.95±0.03 0.95±0.04
Medium 0.81±0.10 0.96±0.04 0.96±0.04 0.96±0.04

Large 0.80±0.05 0.93±0.05 0.93±0.05 0.94±0.05

specifies the number of supported integer values. For the complete embedding scheme, please see
Appendix A.1.

4.3 A NAR-based Synthesizer Model

Our synthesizer model employs an encode-process-decode architecture, inspired by neural algorithmic
reasoning [41]. It employs four main components to produce the output distribution for an unknown
parameter in a fact base F : The fact base embedding EMB, the encoder ENCGAT , the processor
PROCGAT and the fact-type specific decoder network DECfi .

Overall, the model can be expressed as follows, where Xj and Hj refer to the intermediate node
representations per node j in the graph constructed via our fact base embedding.

Xj ∶= ENCGAT (EMB(F))j + z where z ∼ N (0,1)
Hj ∶= PROCGAT ({Xi})j

Ofj(a0,...,ai−1,?,...,an) ∶= softmax(DECf
i (Hj))

(2)

ENCGAT is a GNN relying on Graph Attention Layers (GAT) [42] for propagation. We additionally
apply noise to the latent node representation Xj via z as a source of non-determinism, anticipating
the fact that the synthesis problem often has more than one solution. The processor PROCGAT is
modelled as an iterative process. It consists of a 6-layer graph attention module which we apply
for a total of 4 iterations. According to the NAR paradigm, this computational structure encodes an
inductive bias towards an iterative solution to the synthesis problem.

In the encoder and processor GNNs, we rely on a composed variant of the graph attention layer as
introduced by [42]. We employ multiple graph attention layers in lockstep, one per neighborhood Ni

defined by our graph embedding (cf. Section 4.2), and combine the intermediate results after each
step by summation. For details on the graph attention module, please refer to Appendix A.2.

Finally, an argument decoder DECfi is used, to produce the output distribution Ofj(a0,...,ai−1,?,...,an)
for an unknown parameter at position i of fact fj ∈ F , corresponding to node j. For this, the
synthesizer model provides one decoder per integer argument, per supported fact type. For example,
a model for the fact base in Figure 4 would provide a decoder network Dconn

2 ∶ RD → RN to decode
values for the third argument of a conn fact. Decoder networks are implemented as simple multi-layer
perceptron models.

Supervision Signal During training, we mask all fact arguments that represent to-be-synthesized
configuration parameters in our synthesis setting as unknown parameters. As a supervision signal
we use the masked values as the ground-truth and apply a negative log-likelihood loss to the output
distribution of the corresponding argument decoder networks.

Multi-Shot Sampling To sample values from the output distributions of unknown parameters, we
apply a multi-shot sampling strategy. We sample values only for a subset of unknown parameters,
insert them in the input fact base and run the synthesizer again. We repeat until no more unknown
parameters remain. This multi-shot strategy allows the model to incorporate concrete values of
previously synthesized parameters in its computation. In our evaluation, we compare this approach to
sampling all parameters at once.

5 Evaluation

In this section, we assess the performance of our model trained for BGP/OSPF synthesis. For this,
we trained a synthesizer model on a dataset of 10,240 samples, constructed by randomly sampling

7

Table 2: Average specification consistency of our synthesizer model, where standard deviation is
reported with respect to the different topologies in a dataset. We apply the model to synthesis tasks
with 3 ×N requirements, i.e. N requirements per supported specification fact.

Dataset fwd reachable trafficIsolation Overall Full Matches > 90% Matches

3 × 2 S 0.97 0.94 1.00 0.96±0.07 6/8 6/8
M 0.95 0.94 1.00 0.94±0.08 5/8 5/8
L 0.92 1.00 1.00 0.94±0.06 4/8 4/8

3 × 8 S 0.98 0.98 0.91 0.96±0.05 4/8 7/8
M 0.97 0.98 1.00 0.98±0.03 4/8 8/8
L 0.96 0.92 0.97 0.95±0.03 1/8 8/8

3 × 16 S 0.98 0.92 0.95 0.95±0.03 2/8 8/8
M 0.95 0.95 0.98 0.96±0.04 3/8 7/8
L 0.94 0.91 0.95 0.93±0.05 1/8 6/8

topologies, corresponding specifications and BGP/OSPF configurations as described in Section 4.1.
For details on BGP/OSPF dataset generation and training, please see Appendix A.3. Lastly, we also
evaluate our architectural design decisions in an ablation and parameter study in Appendix D.

Dataset, Metrics and Experimental Setup We compare using datasets Small (S), Medium (M),
and Large (L). Each dataset comprises 8 real-world topologies taken from the Topology Zoo [29],
where the number of nodes lies between 0-18, 18-39, and 39-153, respectively. To obtain random
forwarding specifications we use the same generative pipeline as discussed in Section 4.1. Regarding
forwarding requirements, we implement support for three specification facts: fwd requirements to
set/block forwarding paths, reachable to specify reachability and trafficIsolation to induce
traffic isolation among traffic classes (no shared links). In each topology, we do synthesis for 4
different traffic classes (routing destinations) at a time. Overall, this results in 3 datasets x 8 topologies
per dataset x 3 differently-size specifications = 72 synthesis tasks. To assess synthesis quality, we
determine specification consistency as the relative number of specification facts in a fact base that are
satisfied by the synthesized configuration. We run all experiments on an Intel(R) i9-9900X@3.5GHz
machine with 64GB of system memory and an NVIDIA RTX 3080 GPU with 10GB of video memory.

5.1 Synthesis Quality

To assess the quality of synthesized network configurations, we examine specification consistency
with increasingly large topologies and specifications. For each synthesis task, we run our synthesizer 5
times using 4-shot sampling and report the network configurations with the highest overall consistency.
Table 2 documents the results. On average, our synthesis model achieves > 93% specification
consistency for all datasets and specifications. With few requirements, the synthesizer model even
succeeds in producing fully-consistent configurations (cf. Full Matches in Table 2). We observe a
slight decrease in consistency with increasingly large topologies.

Multi-Shot Sampling To determine the effect of multi-shot-sampling, we report consistency when
using 1-shot, 4-shot and 8-shot sampling in Table 1. As a baseline, we also show consistency when
sampling configurations from a uniform distribution (per parameter). This simple method can achieve
suprisingly good results, as parts of a specification may be satisfied naturally by the mechanics
of shortest-path routing. Still, competing with this baseline our synthesizer model shows clear
improvements and multi-shot sampling further increases consistency.

Number of Samples We also consider the number of times we sample from our synthesizer
model. We observe that sampling more than one alternative configuration can lead to improved
best-of specification consistency across all datasets. Based on this observation, we boost synthesis
peformance by sampling multiple times per synthesis task. For each configuration that we obtain
in this way, we simulate the routing protocols, obtain the forwarding plane and check specification
consistency. This fully automated process allows us to determine the best result without consulting
the user. We select the best result as the overall output for synthesis, dismissing the other samples.
We experiment how the number of times we sample affects the resulting consistency in Appendix B.

8

Table 3: Comparing consistency and synthesis time of our method (Neural) with the SMT-based
NetComplete. The notation n/8 TO indicates the number of timed out runs out of 8 (25+ minutes).

Requirements NetComplete (s) Neural CPU (s) Speedup ∅ Consistency Full Matches

2 reqs. S 18.07s±14.55 0.72s±0.54 25.2x 0.97±0.09 7/8
M 60.86s±33.39 3.18s±4.32 19.1x 0.94±0.13 6/8
L 1389.48s±312.58 7/8 TO 24.25s±28.35 57.3x 0.99±0.03 7/8

8 reqs. S 247.69s±436.90 1.25s±1.02 198.7x 0.96±0.08 6/8
M >25m 8/8 TO 4.55s±4.30 329.8x 0.97±0.04 4/8
L >25m 8/8 TO 31.28s±28.53 48.0x 0.97±0.05 5/8

16 reqs. S 1416.83s±235.25 7/8 TO 2.88s±1.66 492.0x 0.92±0.06 1/8
M >25m 8/8 TO 6.53s±5.10 229.8x 0.95±0.05 2/8
L >25m 8/8 TO 87.99s±141.97 17.0x 0.95±0.03 2/8

Overall, sampling more than once is beneficial for all datasets. Average best consistency values appear
to be reached after 4-5 samples for 3 × 16 BGP/OSPF requirements. Hence, we rely on 5 samples in
all other experiments as a trade-off of fast synthesis time and good specification consistency.

Unsatifiable Specifications In practice, network operators may sometimes provide unsatisfiable
specifications. While exact methods will typically return an error for such inputs, our relaxed
setting enables us to consider partial solutions, i.e. configurations that still achieve high specification
consistency while ignoring unsat requirements. This may be preferable in some scenarios, especially
when perfect specification consistency is not critical anyway. To simulate this scenario, we evaluate
specification consistency for OSPF-only synthesis tasks, which were all verified to be unsatisfiable
using the SMT-based synthesizer NetComplete [15]. We still observe a comparatively high average
consistency of 0.90 for our learned synthesizer. This suggests that our model is indeed capable of
handling unsatisfiable specifications, while still producing good, partial solutions. For more detailed
unsat results and methodology, see Appendix B.2.

5.2 Comparison to SMT-based Synthesis

We compare the synthesis time of our learned synthesizer with the SMT-based, state-of-art con-
figuration synthesis tool NetComplete [15]. We compare BGP/OSPF and OSPF-only synthesis
time. For each topology/specification, we report the total time of running our synthesizer 4 times
using 4-shot sampling, whereas for consistency we report the best out of the 4 runs. If a fully
consistent configuration is found, we do not continue to sample and only report time until then. For
NetComplete, we time out at 25 minutes and report that as a lower bound if exceeded. We restrict
our comparison to specifications that only include forwarding paths (i.e. fwd facts), as the type of
supported requirements in NetComplete does not fully align with our model.

Table 3 shows that our synthesizer model outperforms NetComplete by multiple orders of magnitude.
We observe a speedup of 20 − 490× that increases with the size of topology/specification. The loss of
precision due to approximation remains moderate, with the average consistency of the synthesized
configurations being greater than 92% even for large topologies. In comparison, NetComplete times
out on more than half of the synthesis tasks, which means that we only observe a lower bound for
speedup. Running our model on a GPU can result in even greater speedups (up to 900× given enough
GPU memory, cf. Appendix B.3). Comparing OSPF-only synthesis time, our synthesizer model
achieves a speedup of 2-10x over NetComplete. With 16 requirements on dataset L this can also
increase up to 500×. Further, our model produces fully-consistent OSPF configurations even more
often than for BGP/OSPF. See Appendix B.4 for the full OSPF-only synthesis comparison.

5.3 Discussion

We have shown that our learning-based synthesizer reaches a very high degree of consistency, often
producing fully-consistent configurations. With respect to synthesis time, we outperform SMT-based
methods by a large margin, especially for larger topologies. However, this comes at a price: our
model sometimes fails to produce fully consistent configurations, especially for large topologies

9

with many requirements. In comparison, SMT-based synthesis will always produce fully consistent
configurations if and once it completes. We, therefore, observe a trade-off between consistency and
synthesis time. We also note that our evaluation considers real topologies (Topology Zoo [29]) but
not real specifications. This is due to the lack of a large, practical dataset thereof. Still, we experiment
with robustness (Appendix D) by introducing distribution shift regarding the size of specifications
during training and achieve comparable performance.

Scaling to Even Larger Topologies The Topology Zoo [29] as used for our evaluation, provides
a good range of realistically-sized networks. However, if we consider synthesis at very large scale
(e.g. thousands of routers), we note the following scalability limitations: (1) Our models consume a
lot of video memory, reaching beyond the amounts available on current consumer GPUs (> 12GB).
This limit is reached with networks of 150 or more routers, and we have to do inference on the CPU
(as indicated in Table 3). If even faster synthesis is important at this scale, more than one such GPU
is needed for inference. Further, (2) the distance that information is propagated in the synthesizer
GNN is finite due to the model’s fixed number of iterations. This means that in very large networks,
our synthesizer model will only be capable of deriving solutions by local reasoning which is very
likely to impact synthesis quality. While out of the scope of this paper, longer training with more
synthesizer iterations and larger topologies may be necessary to obtain comparable results at very
large scale.

Nonetheless, we envision a wide range of practically-relevant applications for fast, approximate
synthesis, including ML-guided synthesis, unsatisfiable specifications, and hybrid synthesizers,
leveraging both learning and SMT solvers. We list a number of future directions in Appendix C.

6 Related Work

Traditional Configuration Synthesis Next to methods based on compilation such as
Propane/PropaneAT [5], there is a number of exact configuration synthesis methods based on
constraint solving, e.g. ConfigAssure [31], SyNet [14] and NetComplete [15]. These tools are
typically hand-coded, very protocol-specific, and can be slow due to the solvers they employ. In
contrast, our approach is approximate but scales to much larger networks. Further, as a side-product
of our learning-based approach, we can easily adapt to new protocols and allow for transparent
cross-protocol reasoning, merely by training on different protocol data.

GNNs and Networking DeepBGP [2] relies on GNNs and reinforcement learning to do configura-
tion synthesis. However, it is limited to BGP configuration and is slower than SMT-based synthesis.
In contrast, our learning-based framework is cross-protocol, does not rely on reinforcement learning
and provides better synthesis times. Apart from configuration synthesis, GNNs have also been applied
to other problems in the networking domain. For example, the authors of RouteNet [34] use GNNs to
predict networking performance metrics. Other work focuses on learning improved protocols like
Q-Routing [8] and Graph-Query Neural Networks [18].

Neural Algorithmic Reasoning NAR [41] refers to the idea of replacing algorithms with neural
networks to learn improved algorithmic procedures. Successful applications include graph algorithms
[43], combinatorial optimization problems [10, 26, 37] and multi-task settings [23]. Our synthesis
framework is the first application of NAR to the networking domain and relies on the NAR-native
encode-process-decode architecture. In the hierarchy of NAR approaches in [10], our method is an
algorithm-level approach, as we do not supervise on intermediate steps. Although step-level methods
promise better generalization, it is not clear what an intermediate result of a general synthesis
procedure would be. Future work on a step-level approach may further improve our model.

7 Conclusion

We presented a learning-based method to enable approximate but scalable network configuration
synthesis. For BGP/OSPF routing, our neural synthesizer is up to 490× faster than SMT-based
methods, while producing configurations with very high specification consistency. We believe there
are future research that can be explored in the direction of learning-based synthesis and ML-guided
network configuration. Ethical Issues This work does not raise any ethical issues.

Acknowledgments This work was partially supported by an ETH Research Grant ETH-03 19-2.

10

References
[1] 2022. Number of monthly active Facebook users worldwide as of 3rd quar-

ter 2021. (Feb 2022). https://www.statista.com/statistics/264810/
number-of-monthly-active-facebook-users-worldwide/, Last-Access: 02.02.2022.

[2] Mahmoud Bahnasy, Fenglin Li, Shihan Xiao, and Xiangle Cheng. 2020. DeepBGP: a machine
learning approach for BGP configuration synthesis. In Proceedings of the Workshop on Network
Meets AI & ML. 48–55.

[3] T. Bates, R. Chandra, and E. Chen. 2000. BGP Route Reflection - An Alternative to Full Mesh
iBGP, RFC2796. (2000). https://datatracker.ietf.org/doc/html/rfc2796.html

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker. 2016. Don’t
mind the gap: Bridging network-wide objectives and device-level configurations. In Proceedings
of the 2016 ACM SIGCOMM Conference. 328–341.

[5] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker. 2017.
Network configuration synthesis with abstract topologies. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 437–451.

[6] Rüdiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever, and Martin T Vechev.
2021. Metha: Network Verifiers Need To Be Correct Too!. In NSDI. 99–113.

[7] Andreas Bley. 2007. Inapproximability results for the inverse shortest paths problem with
integer lengths and unique shortest paths. Networks: An International Journal 50, 1 (2007),
29–36.

[8] Justin A Boyan and Michael L Littman. 1994. Packet routing in dynamically changing networks:
A reinforcement learning approach. In Advances in neural information processing systems.
671–678.

[9] Matthew Caesar and Jennifer Rexford. 2005. BGP routing policies in ISP networks. IEEE
network 19, 6 (2005), 5–11.

[10] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. 2021. Combinatorial optimization and reasoning with graph neural networks. arXiv
preprint arXiv:2102.09544 (2021).

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

[12] Luca Cittadini, Stefano Vissicchio, and Giuseppe Di Battista. 2010. Doing don’ts: Modi-
fying BGP attributes within an autonomous system. In 2010 IEEE Network Operations and
Management Symposium-NOMS 2010. IEEE, 293–300.

[13] Iddo Drori and Nakul Verma. 2021. Solving Linear Algebra by Program Synthesis. arXiv
preprint arXiv:2111.08171 (2021).

[14] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2017. Network-wide
configuration synthesis. In International Conference on Computer Aided Verification. Springer,
261–281.

[15] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2018. Netcom-
plete: Practical network-wide configuration synthesis with autocompletion. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 579–594.

[16] Bernard Fortz and Mikkel Thorup. 2000. Internet traffic engineering by optimizing OSPF
weights. In Proceedings IEEE INFOCOM 2000. conference on computer communications.
Nineteenth annual joint conference of the IEEE computer and communications societies (Cat.
No. 00CH37064), Vol. 2. IEEE, 519–528.

11

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://datatracker.ietf.org/doc/html/rfc2796.html

[17] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and Hongqiang Harry Liu. 2017.
Automatically repairing network control planes using an abstract representation. In Proceedings
of the 26th Symposium on Operating Systems Principles. 359–373.

[18] Fabien Geyer and Georg Carle. 2018. Learning and generating distributed routing protocols
using graph-based deep learning. In Proceedings of the 2018 Workshop on Big Data Analytics
and Machine Learning for Data Communication Networks. 40–45.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
2017. Neural message passing for quantum chemistry. In International conference on machine
learning. PMLR, 1263–1272.

[20] GitHub.com. 2021. GitHub Copilot. (2021). https://copilot.github.com

[21] Timothy G Griffin and Joäo Luís Sobrinho. 2005. Metarouting. In Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols for computer communi-
cations. 1–12.

[22] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhut-
dinov. 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012).

[23] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac,
Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Veličković. 2022. A Generalist
Neural Algorithmic Learner. (2022). https://doi.org/10.48550/ARXIV.2209.11142

[24] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine learning.
PMLR, 448–456.

[25] Santosh Janardhan. 2021. More details about the October 4 outage. (Oct 2021). https:
//engineering.fb.com/2021/10/05/networking-traffic/outage-details/, Last-
Access: 06.10.2021.

[26] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent, and Xavier Bres-
son. 2020. Learning TSP requires rethinking generalization. arXiv preprint arXiv:2006.07054
(2020).

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[28] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

[29] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. 2011.
The internet topology zoo. IEEE Journal on Selected Areas in Communications 29, 9 (2011),
1765–1775.

[30] J. Moy. 1998. OSPF Version 2, RFC2328. (1998). https://datatracker.ietf.org/doc/
html/rfc2328

[31] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul. 2008. Declarative infrastructure
configuration synthesis and debugging. Journal of Network and Systems Management 16, 3
(2008), 235–258.

[32] Yakov Rekhter, Tony Li, Susan Hares, et al. 1991. A border gateway protocol 4 (BGP-4),
RFC4271. (1991). https://datatracker.ietf.org/doc/html/rfc4271

[33] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets: hyper-
relational knowledge graph embedding for link prediction. In Proceedings of The Web Confer-
ence 2020. 1885–1896.

12

https://copilot.github.com
https://doi.org/10.48550/ARXIV.2209.11142
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc4271

[34] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros, and Albert Cabellos-
Aparicio. 2020. RouteNet: Leveraging Graph Neural Networks for network modeling and
optimization in SDN. IEEE Journal on Selected Areas in Communications 38, 10 (2020),
2260–2270.

[35] Adam Satariano. 2021. What is Fastly, the company behind the worldwide inter-
net outage? (June 2021). https://www.nytimes.com/2021/06/08/business/
fastly-internet-outage.html, Last-Access: 02.02.2022.

[36] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snowcap: synthesizing network-
wide configuration updates. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
33–49.

[37] Daniel Selsam and Nikolaj Bjørner. 2019. Guiding high-performance SAT solvers with unsat-
core predictions. In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 336–353.

[38] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2020.
Probabilistic verification of network configurations. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 750–764.

[39] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2018. Synthesis of fault-tolerant
distributed router configurations. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 1 (2018), 1–26.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural
information processing systems. 5998–6008.

[41] Petar Veličković and Charles Blundell. 2021. Neural Algorithmic Reasoning. arXiv preprint
arXiv:2105.02761 (2021).

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).

[43] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. 2019.
Neural execution of graph algorithms. arXiv preprint arXiv:1910.10593 (2019).

[44] Stefano Vissicchio, Luca Cittadini, Laurent Vanbever, and Olivier Bonaventure. 2012. iBGP
deceptions: More sessions, fewer routes. In INFOCOM, 2012 Proceedings IEEE. IEEE, 2122–
2130.

[45] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. 2019. What can neural networks reason about? arXiv preprint arXiv:1905.13211
(2019).

13

https://www.nytimes.com/2021/06/08/business/fastly-internet-outage.html
https://www.nytimes.com/2021/06/08/business/fastly-internet-outage.html

	Introduction
	Configuration Synthesis: Exact and Learned
	Routing Protocols as Graph Algorithms
	Neural Configuration Synthesis Model
	Training Dataset of Inverse Pairs
	Embedding Topologies, Specifications and Configurations
	A NAR-based Synthesizer Model

	Evaluation
	Synthesis Quality
	Comparison to SMT-based Synthesis
	Discussion

	Related Work
	Conclusion
	Implementation and Model Details
	Structural Fact Base Embedding
	Graph Attention Layer
	Dataset Generation and Training

	More Evaluation Results
	Number Of Samples
	Unsatisfiable Specifications
	BGP/OSPF Synthesis Time (GPU)
	OSPF Synthesis Time

	Future Research Directions
	Additional Experiments
	Ablation and Parameter Study
	Dataset Statistics and Distribution Shift
	Varying Number of Samples

