
Tiered Reinforcement Learning: Pessimism in the Face
of Uncertainty and Constant Regret

Jiawei Huang1∗ Li Zhao2 Tao Qin2 Wei Chen2 Nan Jiang1 Tie-Yan Liu2

1 Department of Computer Science, University of Illinois at Urbana-Champaign
{jiaweih, nanjiang}@illinois.edu

2 Microsoft Research Asia
{lizo, taoqin, weic, tyliu}@microsoft.com

Abstract

We propose a new learning framework that captures the tiered structure of many
real-world user-interaction applications, where the users can be divided into two
groups based on their different tolerance on exploration risks and should be treated
separately. In this setting, we simultaneously maintain two policies πO and πE: πO

(“O” for “online”) interacts with more risk-tolerant users from the first tier and
minimizes regret by balancing exploration and exploitation as usual, while πE (“E”
for “exploit”) exclusively focuses on exploitation for risk-averse users from the sec-
ond tier utilizing the data collected so far. An important question is whether such a
separation yields advantages over the standard online setting (i.e., πE = πO) for the
risk-averse users. We individually consider the gap-independent vs. gap-dependent
settings. For the former, we prove that the separation is indeed not beneficial from
a minimax perspective. For the latter, we show that if choosing Pessimistic Value
Iteration as the exploitation algorithm to produce πE, we can achieve a constant
regret for risk-averse users independent of the number of episodes K, which is in
sharp contrast to the Ω(logK) regret for any online RL algorithms in the same
setting, while the regret of πO (almost) maintains its online regret optimality and
does not need to compromise for the success of πE.

1 Introduction

Reinforcement learning (RL) has been applied to many real-world user-interaction applications to
provide users with better services, such as in recommendation systems [Afsar et al., 2021] and medical
treatment [Yu et al., 2021, Lipsky and Sharp, 2001]. In those scenarios, the users take the role of the
environments and the interaction strategies (e.g. recommendation or medical treatment) correspond to
the agents in RL. In the theoretical study of such problems, most of the existing literature adopts the
online interaction protocol, where in each episode k ∈ [K], the learning agent executes a policy πk

to interact with users (i.e. environments), receives new data to update the policy, and moves on to the
next episode. While this formulation treats each user equivalently when optimizing the regret, many
scenarios have a special “Tiered Structure”2: users can be divided into multiple groups depending
on their different preference and tolerance about the risk that results from the necessary exploration
to improve the policy, and such grouping is available to the learner in advance so it would be better to
treat them separately. As a concrete example, in medical treatment, after a new treatment plan comes
out, some courageous patients or paid volunteers (denoted as GO; “O” for “Online”) may prefer it
given the potential risks, while some conservative patients (denoted as GE; “E” for “Exploit”) may
tend to receive mature and well-tested plans, even if the new one is promising to be more effective.

∗Work done during the internship at Microsoft Research Asia.
2We consider the cases with two tiers in this paper.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: Comparison between the standard setting and our tiered RL setting (#Tiers = 2), where we
use red and blue to color users from different groups. The main difference is that, in the standard
setting (LHS), the learner does not distinguish users from different groups and treats them equivalently
with a single policy πk produced by algorithm Alg, while in our setting (RHS), we leverage the tier
information and interact with different groups with different policies πE and πO.

As another example, companies offering recommendation services may recruit paid testers or use
bonus to attract customers (GO) to interact with the system to shoulder the majority of the exploration
risk during policy improvement, which may result in better service (low regret) for the remaining
customers (GE). Moreover, many online platforms have free service open for everyone (GO), while
some users are willing to pay for enhanced service (GE). If we follow the traditional online setting
and treat the users in these two groups equivalently, then in expectation each group will suffer the
same regret and risk. In contrast, if we leverage the group information by using policies with different
risk levels to interact with different groups, it is potentially possible to transfer some exploration risks
from users in GE to GO, while the additional risks suffered by GO will be compensated in other forms
(such as payment, the users’ inherent motivation, or the free service itself).

To make our objective more clear, we abstract the problem setting into Frw. 1 and compare it with
the standard online setting in Fig. 1, where we use AlgO and AlgE to denote the two algorithms
producing policies πE and πO to interact with users in GO and GE, respectively. To enable theoretical
analyses, we do adopt a few simplification assumptions while still modelling the core challenges
in the aforementioned scenarios: firstly, at each iteration of Frw. 1, the algorithms will interact
with and collect one trajectory from each group, which assumes that users from two groups will
come to seek for service in pair with the same frequency. In practice, usually, the users come
in random order and the frequencies from different groups are not the same; see Appx. B for
why our abstraction is still a valid surrogate and how our results can be generalized. Secondly,
for convenience, we only use the samples generated from GO, because AlgE is expected to best
exploit the available information and not encouraged to perform intelligent exploration. Nonethe-
less, our results hold with minor modifications if one also chooses to use trajectories from GE.
Thirdly, we assume that the dynamics and rewards during the interactions with users in different
groups are all the same (i.e. Env = EnvO = EnvE). It is possible that the users in different
tiers can behave differently, and we leave the relaxation of such an assumption to future work.

Framework 1: The Tiered RL Framework
1 Input: EnvO and EnvE // Note that EnvO = EnvE

2 Initialize D1 ← {}.
3 for k = 1, 2, ...,K do
4 πO

k ← AlgO(Dk); πE
k ← AlgE(Dk).

5 πO
k interacts with customers/users/patients in GO (i.e. EnvO), and collect data τO

k .
6 πE

k interacts with customers/users/patients in GE (i.e. EnvE), and collect data τE
k .

7 Dk+1 = Dk ∪ {τO
k }. // We do not consider to use τE

k in this paper.
8 end

Similar to the online setting, we use the expected pseudo-regret to measure the performance of the
algorithm, which is formalized in Def. 2.1. The key problem we would like to investigate is provable
benefits of leveraging the tiered structure by Frw. 1 comparing with the standard online setting:

2

Is it possible for Regret(AlgE) to be strictly lower than any online learning algorithms in
certain scenarios, while keeping Regret(AlgO) near-optimal?

Note that we still expect regret of AlgO to enjoy near-optimal regret guarantees, which is a reasonable
requirement as the experience of users in GO also matters in many of our motivating applications. We
regard the above problem formulation as our first contribution, which is mainly conceptual.

As our second contribution, Sec. 3 shows that AlgE has the same minimax gap-independent lower
bound as online learning algorithms. This result reveals the difficulty to leverage tiered structure in
standard tabular MDPs, and motivates us to investigate the benefits under the gap-dependent setting,
which is frequently considered in the Multi-Armed Bandit (MAB) [Lattimore and Szepesvári, 2020,
Rouyer and Seldin, 2020] and RL literature [Xu et al., 2021, Simchowitz and Jamieson, 2019].

As our third contribution and our main technical results, Sec. 4 establishes provable benefits
of Frw. 1 by proposing a new algorithmic framework and showing Regret(AlgE) is constant and
independent of the number of episodes K, which is in sharp contrast with the Ω(logK) regret lower
bound for any algorithms in the standard online setting that do not leverage the tiered structure.
Specifically, we use Pessimistic Value Iteration (PVI) as AlgE for exploitation to interact with GE,
while AlgO can be arbitrary online algorithms with near-optimal regret. Concretely, we first study
stochastic MABs as a warm-up, where we choose AlgE to be LCB (Lower Confidence Bonus), a
degenerated version of PVI in bandits, and choose UCB (Upper Confidence Bonus) as AlgO for a
concrete case study. We prove that AlgE can achieve constant pseudo-regret Õ(

∑
∆i>0(A− i)

(
1
∆i
−

∆i

∆2
i−1

)
) with A being the number of actions and ∆i’s being the gaps with ∆1 ≥ ... ≥ ∆A−1 ≥

∆A = 0, while AlgO is near-optimal due to the regret guarantee of UCB. After that, Sec. 4.2 extends
the success of PVI to tabular MDPs, and establishes results that apply to a wide range of online
algorithms AlgO with near-optimal regret. Although the benefits of pessimism have been widely
recognized in offline RL [Jin et al., 2021], to our knowledge, we are the first to study PVI in a gap-
dependent online setting. We also contribute several novel techniques for overcoming the difficulties
in achieving constant regret, and defer their summary to Sec. 4.2. Moreover, in Appx.H, we report
experiment results to demostrate the advantage of leveraging tiered structure as predicted by theory.

Closest Related Work Due to space limit, we only discuss the closest related work here and defer
the rest to Appx. A. To our knowledge, there is no previous works on leveraging tiered structure in
MDPs. In the bandit setting, there is a line of related works studying decoupling exploration and
exploitation [Avner et al., 2012, Rouyer and Seldin, 2020], where [Rouyer and Seldin, 2020] studied
“best of both worlds” methods and reported a similar constant regret. First, in stochastic bandits, there
are many cases when our result is tighter than theirs, (see a detailed comparison in Sec. 4.1), and
more importantly, our methods can naturally extend to RL (i.e., MDPs), whereas a similar extension
of their techniques can run into serious difficulties: they relied on importance sampling to provide
unbiased off-policy estimation for policy value, which incurs the infamous “curse of horizon”, a.k.a.,
a sample complexity exponential in the planning horizon H in long-horizon RL (see examples in
Sec. 2 in [Liu et al., 2018]). Our approach overcomes this difficulty by developing a pessimism-based
learning framework, which is fundamentally different from their approach and requires several novel
techniques in the analyses. Second, they did not provide any guarantee for the regret of exploration
algorithm, whereas in our results the regret of AlgO can be near-optimal, which we believe is also
important as the experience of users in GO also matters in many of our motivating applications. Third,
their bandit results require a unique best arm, whereas we allow the optimal arms/policies to be
non-unique, which can cause non-trivial difficulties in the analyses as we will discuss in Sec. 4.2.3.

2 Preliminary and Problem formulation

Stochastic Multi-Armed Bandits (MABs) The MAB model consists of a set of arms A =
{1, 2, ..., A}. When sampling an arm i ∈ A, the agent observes a random variable ri ∈ [0, 1].
We use µi = E[ri] to denote the mean value for arm i for each i ∈ A. We allow the optimal arms to
be non-unique. For simplicity of notation, we assume the arms are ordered such that µ1 ≤ µ2... ≤ µA.

Finite-Horizon Tabular Markov Decision Processes (MDPs) For the reinforcement learning (RL)
setting, we consider the episodic tabular MDPs denoted by M(S,A, H, P, r), where S is the finite

3

state space, A is the finite action space, H is the horizon length, and P = {Ph}Hh=1 and r = {rh}Hh=1
are the time-dependent transition and reward functions, respectively. We assume all steps share the
state and action space (i.e. S1 = S2... = SH = S , A1 = A2... = AH = A) while the transition and
reward functions can be different. At the beginning of each episode, the environment will start from a
fixed initial state s1 (w.l.o.g.). Then, for each time step h ∈ [H], the agent selects an action ah ∈ A
based on the current state sh, receives the reward rh(sh, ah), and observes the system transition to
the next state sh+1, until sH+1 is reached. W.l.o.g., we assume the reward function r is deterministic
and our results can be easily extended to handle stochastic rewards.

A time-dependent policy is specified as π = {π1, π2, ..., πH} with πh : S → ∆(A) for all h ∈ [H].
Here ∆(A) denotes the probability simplex over the action space. With a slight abuse of notation,
when πh is a deterministic policy, we use πh : S → A to refer to a deterministic mapping. V π

h (s) and
Qπ

h(s, a) denote the value function and Q-function at step h ∈ [H], which are defined as: V π
h (s) =

E[
∑H

h′=h rh′(sh′ , ah′)|sh = s, π], Qπ
h(s, a) = E[

∑H
h′=h rh′(sh′ , ah′)|sh = s, ah = a, π].

We use V ∗
h (·) := maxπ V

π
h (·) and Q∗

h(·, ·) = maxπ Q
π
h(·, ·) to refer to the optimal state/action-value

functions, and Π∗(sh) := {ah|Q∗(sh, ah) = V ∗
h (sh)} to denote the collection of all optimal actions

at state sh. With an abuse of notation, we define Π∗ := {π : V π
1 (s1) = V ∗

1 (s1)}, i.e., the set
of policies that maximize the total expected return. In this paper, when we say that the MDP has
“unique optimal (deterministic) policy”, it is up to the occupancy measure, that is, all policies in Π∗

share the same state-action occupancy dπ(sh, ah) := Pr(Sh = sh, Ah = ah|S1 = s1, π) for all
h ∈ [H], sh ∈ Sh, ah ∈ Ah. In the following, we use |Π∗| = 1 to refer to the case of unique optimal
(deterministic) policy, where the cardinality of Π∗ is counted up to the equivalence of occupancies.
Besides, for any function V : S → R, we denote PhV (sh, ah) := Esh+1∼Ph(·|sh,ah)[V (sh+1)].

Gap-Dependent Setting We follow the standard formulation of gap-dependent setting in previous
bandits [Lattimore and Szepesvári, 2020] and RL literature [Simchowitz and Jamieson, 2019, Xu et al.,
2021, Dann et al., 2021]. In bandits, the gap w.r.t. arm i is defined as ∆i := maxj∈[A] µj − µi,∀i ∈
[A], and we assume that there exists a strictly positive value ∆min such that, either ∆i = 0 or
∆i ≥ ∆min. For tabular RL setting, we define ∆h(sh, ah) := V ∗(sh)−Q∗(sh, ah),∀h ∈ [H], sh ∈
Sh, ah ∈ Ah. We use the same notation ∆min to refer to the minimal gap in tabular setting and
assume that either ∆h(sh, ah) = 0 or ∆h(sh, ah) ≥ ∆min.

Performance Measure We use Pseudo-Regret defined below to measure the performance of AlgO

and AlgE. In the following, we will also use “exploitation regret” to refer to RegretK(AlgE).

Definition 2.1 (Pseudo-Regret). We define the regret of AlgO and AlgE to be:

RegretK(AlgO) :=E

[
K∑

k=1

V ∗
1 (s1)− V

πO
k

1 (s1)

]
; RegretK(AlgE) := E

[
K∑

k=1

V ∗
1 (s1)− V

πE
k

1 (s1)

]
,

where πO
k and πE

k are generated according to the procedure in Framework 1 and the expectation is
taken over the randomness in data generation and algorithms.

3 Lower Bound of Regret(AlgE) without Gap Assumption

In this section, we show that, in normal tabular RL setting, for arbitrary algorithm pair (AlgO,AlgE),
even if we do not constrain AlgO to be near-optimal, the regret of AlgE has the same minimax lower
bound as algorithms in online setting. We defer the formal statement and proof to Appendix C.1.

Theorem 3.1. [Lower Bound for AlgE without Gap Assumption] There exist positive constants
c, ε0, δ0, such that, for arbitrary S ≥ 4, A ≥ 2, H ≥ 2,K ≥ c

ε20
H3SA, and arbitrary algorithm pair

(AlgO,AlgE), there must exist a hard tabular MDP Mhard, E(AlgO,AlgE),Mhard

[∑K
k=1 V

∗ − V πE
k

]
≥

δ0
√
cH3SAK, where the expectation is taken over the randomness of algorithms and MDP.

The theorem above is stating that, comparing with the regret lower bound for online algorithms
Õ(
√
H3SAK) in Theorem 9 of Domingues et al. [2021], the exploitation algorithm cannot reduce

the dependence on any of parameters H,S,A,K in hard MDPs, even if we allow AlgO to sacrifice
its performance to gather the best possible data for AlgE. Also, the lower bound would still hold

4

even if we allow both AlgO and AlgE to additionally use the data τE generated by πE. This negative
result implies that without any further assumptions, the separation is not beneficial from a minimax
optimality perspective, and we can simply choose both AlgE and AlgO to be the same near-optimal
online algorithm as without worrying about separating them.

However, in the next section, we will show that, in tabular MDPs with strictly positive gaps, in
contrast with the Ω(logK) lower bound for online algorithms, we can have AlgE such that its
regret is constant and independent on the number of time horizon K, which reveals the fundamental
differences between the pure online setting and the Tiered RL setting considered in this paper.

4 Pessimism in the Face of Uncertainty and Constant Regret

In this section, we consider the gap-dependent setting and contribute to identifying the possibility to
achieve constant regret by using pessimistic algorithms for AlgE. Intuitively, the main reason why PVI
can lead to a constant regret is that the quality of the policy returned by PVI is positively correlated
to the accumulation of optimal trajectories in the dataset D, which is directly connected with
Regret(AlgO). As a result, on the one hand, the regret minimization objective of AlgE coincidentally
aligns with the optimality constraint of AlgO. On the other hand, thanks to the positive gap assumption,
πE will gradually converge to the optimal policy with high probability when AlgE is PVI, so there
will be no regret after that. In Sec. 4.1, we start with stochastic MAB as a warm-up, and in Sec. 4.2
we extend our success to tabular RL setting. We defer the proofs in this section to Appendix D.

4.1 Warm-Up: Gap-Dependent Regret Bound for Stochastic Multi-Armed Bandits

Algorithm 2: UCB-Exploration-LCB-Exploitation

1 Initilize: α > 1; Ni(1)← 0, µ̂i(1)← 0, ∀i ∈ A; f(k) := 1 + 16A2(k + 1)2

2 for k = 1, 2, ...,K do
3 πO

k ← argmaxi µ̂i(k) +
√

2α log f(k)
Ni(k)

, πE
k ← argmaxi µ̂i(k)−

√
2α log f(k)

Ni(k)
.

4 Interact with GE and GO by πE
k and πO

k , and observe reward r(πE
k) and r(πO

k), respectively.
5 for i = 1, 2, ..., A do
6 Ni(k + 1)← Ni(k) + I[πO

k = i]; µ̂i(k + 1)← µ̂i(k)
Ni(k)

Ni(k+1) + r(πO
k)

I[πO
k=i]

Ni(k+1) .

7 end
8 end

Our main algorithm for bandit setting is shown in Alg 1, where we consider the UCB algorithm
[Lattimore and Szepesvári, 2020] as AlgO and choose the LCB as AlgE, which flips the sign of the
bonus term in UCB. We use Ni(k) to denote the number of times that arm i was pulled previous
to step k, and use µ̂i to record the empirical average of arm i. Besides, we assume 1/Ni(·) = +∞
if Ni(·) = 0, which implies that at the first |A| steps the algorithm will pull each arm one by one.
Moreover, as we will show later, the choice of α > 1 is crucial to avoiding dependence on K in
Regret(AlgE) with our techniques. For Alg. 2, we have the following guarantee:
Theorem 4.1. [Exploitation Regret] In Algorithm 2, by choosing arbitrary α > 1, there exists an
absolute constant c, such that, for arbitrary K ≥ 1, the pseduo-regret of AlgE is upper bounded by:
RegretK(AlgE) ≤ Õ

(
A

α−1 + α
∑

∆i>0(A− i)
(

1
∆i
− ∆i

∆2
i−1

))
where ∆0 :=∞ so ∆1

∆2
0
= 0.

Our result implies that by choosing PVI as AlgE, we can achieve constant regret while keeping
AlgO near-optimal. Besides the advantages discussed in the related work paragraph in Sec. 1,

our guarantee is also more favorable in certain cases compared to the O(
√

A
∆min

√∑
∆i>0

1
∆i

)

result in Rouyer and Seldin [2020]: while it is not easy to verify whether our guarantee dominates
theirs, in many cases ours can be strictly better (or at least no worse) than theirs. For example,
consider the following two representative cases: ∆1 = ∆2 = ...∆A−1 = ∆min (uniform gap) and
∆1 = ∆2 = ... = ∆A−2 ≫ ∆A−1 = ∆min (small last gap); our result achieves Õ(A

∆min
) and

Õ(1
∆min

), respectively, in contrast to their Õ(A
∆min

) and Õ(
√
A

∆min
).

5

Proof Sketch: The proof consists of two novel technique lemmas with a carefully chosen failure rate
δk ∼ O(1/kΘ(α)) so that the accumulative failure probability

∑∞
k=1 δk < +∞. The first one is Lem.

4.2, where we show that w.p. 1− δk, LCB will not prefer i with ∆i > 0 as long as another better arm
has been visited enough times in the dataset. The second step is to identify a key property of UCB
algorithm as stated in Lem. 4.3, where we provide a high probability upper bound that Ni(k) ≤ k/λ

if k ≥ Θ̃(λ/∆2
i) for arbitrary λ ∈ [1, 4A], and it serves to indicate that the condition required by the

success of LCB is achievable as long as k is large enough 3.

Lemma 4.2. [Blessing of Pessimism] With the choice that f(k) = 1 + 16A2(k + 1)2, for arbitrary
i with ∆i > 0, for the LCB algorithm in Alg 2, and arbitrary j satisfying ∆j < ∆i, we have:

Pr
(
{i = πE

k} ∩ {∆j < ∆i} ∩
{
Nj(k) ≥ 8α log f(k)

(∆j−∆i)2

})
≤ 2

k2α .

Lemma 4.3. [Property of UCB] With the choice that f(k) = 1 + 16A2(k + 1)2, there exists a
constant c, for arbitrary i with ∆i > 0 and arbitrary λ ∈ [1, 4A], in UCB algorithm, we have:
Pr(Ni(k) ≥ k

λ) ≤
2

k2α−1 , ∀k ≥ λ+ c · αλ
∆2

i
log(1 + αA

∆min
).

Directly combining the above two results, we can obtain an upper bound for Regret(AlgE) of
order Õ(A/∆−2

min), which is already independent of K. To achieve better dependence on ∆min

in the regret, we conduct a finer analysis. For each arm i with ∆i > 0, we separate all the arms
including i into two groups based on whether its gap exceeds ∆i/2: Glower

i = {j : ∆j > ∆i/2}
and Gupper

i = {j : ∆j ≤ ∆i/2}. As a result of Lem. 4.2, we know that πE
k will not prefer arm i as

long as there exists j ∈ Gupper
i such that Nj(k) = Ω̃(4∆−2

i) = Ω̃(∆−2
i). Based on Lem. 4.3, we

know it is true with high probability, as long as k ≥ Θ̃(A ·∆−2
i), since at that time Nl(k) ≤ k/A

holds for arbitrary l ∈ Glower
i , which directly implies that maxj:j∈Gupper

i
Nj(k) ≥ Ω̃(∆−2

i). Then,
combining Lem. 4.2, with high probability, the regret resulting from taken arm i cannot be higher
than Θ̃(A ·∆−2

i) ·∆i = Θ̃(A ·∆−1
i), which results in a Õ(

∑
∆i>0 A/∆i) regret bound. As for the

techniques leading to the further improvement in our final result, please refer to Lem. D.1 and the
proof of Thm. 4.1 in Appx. D.

4.2 Constant Regret of AlgE in Tabular MDPs

In this section, we establish constant regret of AlgE based on realistic conditions for AlgO and AlgE.
We highlight the key steps of our analysis and our technical contributions here.

First of all, in Sec.4.2.1, we propose the concrete PVI algorithm, and inspired by the clipping trick
used for optimistic online algorithms [Simchowitz and Jamieson, 2019], we develop a high-probability
gap-dependent upper bound for the sub-optimality of πE, which is related to the accumulation of the
optimal trajectories in dataset Dk. Secondly, in Sec. 4.2.2, we first introduce a general condition
(Cond. 4.6) for the chocie of AlgO, based on which we quantify the accumulation of optimal
trajectories in Dk with the regret of AlgO, and connect the exploration by AlgO and the optimality of
AlgE. We also supplement some details about how to relax such a condition and inherit the guarantees
by the doubling-trick in Appx. G, which may be of independent interest. In Sec. 4.2.3, i.e. the last
part of analysis, we bring the above two steps together and complete the proof. However, there is
an additional challenge when the tabular MDP has multiple deterministic optimal policies, which is
possible when there are non-unique optimal actions at some states. We overcome this difficulty by
Thm. 4.8 about policy coverage. To our knowledge, the only paper that runs into a similar challenge
is [Papini et al., 2021], and they bypass the difficulty by assuming the uniqueness of optimal policy.
Finally, Section 4.2.4 provide some interpretation and implications of our results.

4.2.1 Pessimistic Value Iteration as AlgE and its Property

The full details of our algorithm for tiered RL setting is provided in Alg. 3, where we use PVI as
AlgE. Here we do not specify a concrete Bonus function, but provide general results for a range of

3Comparing with results in Thm. 8.1 of [Lattimore and Szepesvári, 2020], although our upper bounds
of Ni(k) is linear w.r.t. k rather than log scale, we want to highlight that ours hold with high probability
O(1− k−Θ(α)) while [Lattimore and Szepesvári, 2020] only upper bounded the expectation.

6

Algorithm 3: Tiered-RL Algorithm with Pessimistic Value Iteration as AlgE

1 Input: Episode number K; Confidence level {δk}Kk=1; Bonus function Bonus(·, ·)
2 for k = 1, 2, ...,K do
3 {bk,1(·, ·), bk,2(·, ·), ..., bk,H(·, ·)} ← Bonus(Dk, δk). //Compute bonus function for PVI.
4 for h = H,H − 1, ..., 1 do
5 for sh ∈ Sh, ah ∈ Ah do
6 Nk,h(sh, ah)← the number of times sh, ah occurs in the dataset Dk.
7 Nk,h(sh, ah, sh+1)← the number of times (sh, ah, sh+1) occurs in the dataset Dk.

8 P̂k,h(·|sh, ah)←

{
0, if Nk,h(sh, ah) = 0;
Nk,h(sh,ah,·)
Nk,h(sh,ah)

, otherwise.
9 end

10 Q̂k,h(·, ·)← max{R(·, ·) + P̂k,hV̂k,h+1(·, ·)− bk,h(·, ·), 0}.
11 V̂k,h(·) = maxah∈A Q̂k,h(·, ah), πPVI

k,h(·)← argmaxa Q̂k,h(·, a).
12 end
13 πE

k ← {πPVI
k,1 , π

PVI
k,2 , ...π

PVI
k,H}

14 // Step 2: Use AlgO satisfying Cond. 4.6 to compute πO
k for GO

15 πO
k ← AlgO(Dk).

16 // Step 3: Sample trajectories and collect new data
17 Interact with GE and GO by πE

k and πO
k , and observe τE

k and τO
k , respectively.

18 Dk+1 ← Dk ∪ {τO
k }.

19 end

qualified bonus functions satisfying Cond. 4.4 below. Cond. 4.4 can be satisfied by many bonus term
considered in online literatures, and we briefly dicuss some examples in Appx. F.1.

Condition 4.4 (Condition on Bonus Term for AlgE). We define the following event at iteration
k ∈ [K] during the running of Alg. 3: EBonus,k :=

⋂
h∈[H],sh∈Sh,ah∈Ah

{
{|P̂k,hV̂k,h+1(sh, ah) −

PhV̂k,h+1(sh, ah)| < bk,h(sh, ah)} ∩ {bk,h(sh, ah) ≤ B1

√
log(B2/δk)
Nk,h(sh,ah)

}
}

where B1 and B2 are

parameters depending on S,A,H and ∆ but independent of δk, k.4 We assume that, Bonus function
satisfies that, in Alg. 3, given arbitrary sequence {δk}Kk=1 with δ1, δ2, ..., δK ∈ (0, 1/2), at arbitrary
iteration k ∈ [K], we have Pr(EBonus,k) ≥ 1− δk.

Next, we provide an upper bound for the sub-optimality gap of πPVI
k with the clipping operator

Clip[x|ε] := x · I[x ≥ ε]. Previous upper bounds of PVI [e.g., Theorem 4.4 of Jin et al., 2021] do not
leverage the strictly positive gap and can be much looser when Nk,h is large, and directly applying
those results to our analysis would result in a regret scaling with

√
K.

Theorem 4.5. By running Algorithm 3 with confidence level δk, a function Bonus satisfying Condition
4.4, and a dataset D = {τ1, ...τk} consisting of k complete trajectories generated by executing a
sequence of policies π1, ..., πk, on the event EBonus defined in Condition 4.4:

V ∗
1 (s1)− V

πPVI
k

1 (s1) ≤ 2Eπ∗

[
H∑

h=1

Clip

[
min

{
H, 2B1

√
log(B2/δk)

Nk,h(sh, ah)

}∣∣∣∣∣ εClip

]]
. (1)

where π∗ can be an arbitrary optimal policy, εClip := ∆min

2H+2 if |Π∗| = 1 and εClip := dmin∆min

2SAH if
|Π∗| > 1, where dmin := minπ∈Π∗,h∈[H],sh∈Sh,ah∈Ah

dπ(sh, ah) subject to dπ(sh, ah) > 0.

4.2.2 Choice and Analysis of AlgO

Next, we introduce our general condition for AlgO that the AlgO can achieve O(log k)-regret with
high probability. It is worth noting that many existing near-optimal online RL algorithms for gap-
dependent settings may not directly satisfy the condition [Simchowitz and Jamieson, 2019, Xu et al.,

4Note that we do not require the knowledge of ∆i’s to compute bk,h.

7

2021, Dann et al., 2021] since they use a fixed confidence interval δ. In Appx. G, we will introduce a
more realistic abstraction of those algorithms in Cond. G.1, and discuss in more details about how to
close this gap with an algorithm framework inspired by the doubling trick.

Condition 4.6 (Condition on AlgO). AlgO is an algorithm which returns deterministic policies at each

iteration, and for arbitrary k ≥ 2, we have: Pr
(∑k

k̃=1 V
∗
1 (s1)−V

πO
k̃

1 (s1) > C1+αC2 log k
)
≤ 1

kα ,
where C1, C2 are parameters only depending on S,A,H and gap ∆ and independent of k.

Implication of Condition 4.6 for AlgO Intuitively, low regret implies high accumulation of optimal
trajectories in the dataset collected by AlgO. We formalize this intuition in Thm. 4.7 by establishing
the relationship between the regret of AlgO, dπ

∗
and

∑k
k̃=1 d

πO
k̃(sh, ah) (the expectation of Nk,h).

Theorem 4.7. For an arbitrary sequence of deterministic policies π1, π2, ..., πk, there must exist a
sequence of deterministic optimal policies π∗

1 , π
∗
2 , ..., π

∗
k, such that ∀h ∈ [H], sh ∈ Sh, ah ∈ Ah:

k∑
k̃=1

dπk̃(sh, ah) ≥
k∑

k̃=1

dπ
∗
k̃(sh, ah)−

1

∆min

(k∑
k̃=1

V ∗
1 (s1)− V

π
k̃

1 (s1)
)
.

4.2.3 Main Results and Analysis

The main analysis is based on our discussion about the properties of AlgE and AlgO in previous
sub-sections. In the following, we first discuss the proof sketch for the case when |Π∗| = 1. The
main idea is to show that the unique π∗ will be “well-covered” by dataset, where we say a policy π∗

is “well-covered” if for each (sh, ah) ∈ Sh × Ah with dπ
∗
(sh, ah) > 0, Nk,h(sh, ah) can strictly

increase so that the RHS of Eq.(1) in Thm. 4.5 will gradually decay to zero (e.g. Nk,h(sh, ah) ≥
Õ(k)). To show this, the key observation is that, with high probability, Nk,h(sh, ah) will not
deviate too much from its expectation

∑
k̃ d

π
k̃(sh, ah) (Lem. F.8), and can be lower bounded by∑k

k̃=1 d
π∗
k̃(sh, ah)−O(log k) = kdπ

∗
(sh, ah)−O(log k) as a result of Thm. 4.7. As a result, the

clipping operator in Eq.(1) will take effects as long as k is large enough, and πPVI
k will converge

to the optimal policy with no regret. All that remains is to show the regret under failure events
is also at the constant level because we choose a gradually decreasing failure rate O(1

kα), and
limK→∞

∑K
k=1 O(1

kα) <∞ as long as α > 1.

However, when |Π∗| > 1, the analysis becomes more challenging. The main difficulty is that, when
the optimal policy is not unique, it is not obvious about the existence of “well-covered” π∗, since it
is not guarantee that how much similarity is shared by the sequence of policies π∗

1 , ...π
∗
k, especially

when |Π∗| is exponentially large (e.g. |Π∗| = Ω((SA)H)). We overcome this difficulty by proving
the existence of “well-covered” policy in the theorem stated below:
Theorem 4.8. [The existance of well-covered optimal policy] Given an arbitrary tabular MDP, and
an arbitrary sequence of deterministic optimal policies π∗

1 , π
∗
2 , ...π

∗
k (π∗

i may not equal to π∗
j for

arbitrary 1 ≤ i < j ≤ k when there are multiple deterministic optimal policies), there exists a
(possibly stochastic) policy π∗

cover such that ∀h ∈ [H],∀(sh, ah) ∈ Sh ×Ah with dπ
∗
cover(sh, ah) > 0:

k∑
k̃=1

dπ
∗
k̃(sh, ah) ≥

k

2
· d̃π

∗
cover(sh, ah), with d̃π

∗
cover(·, ·) := max

{
d∗h,min(·, ·)

(|Zh,div|+ 1)H
, dπ

∗
cover(·, ·)

}
.

where Z∗
h,div := {(sh, ah) ∈ Sh × Ah|∃π∗, π̃∗ ∈ Π∗, s.t. dπ

∗
(sh) > 0, dπ̃

∗
(sh) = 0}, and

d∗h,min(sh, ah) := minπ∗∈Π∗ dπ
∗
(sh, ah) subject to dπ

∗
(sh, ah) > 0.

Here we provide some explanation to the above result. According to the definition, Z∗
h,div is the

set including the state-action pairs which can be covered by some deterministic policies but is not
reachable by some other deterministic policies, and therefore |Z∗

h,div| ≤ SA (or even |Z∗
h,div| ≪ SA).

Besides, d∗h,min(sh, ah) denotes the minimal occupancy over all possible deterministic optimal
policies which can hit sh, ah, and therefore, is no less than dmin defined in Thm. 4.5. As a result, we
know there exists a “well-covered” π∗

cover, since the accumulative density of its arbitrary reachable
states can be lower bounded by O(k). Then, following a similar discussion as the case |Π∗| = 1, we
can finish the proof. We summarize our main result below.

8

Theorem 4.9. By running an Algorithm satisfying Condition 4.6 as AlgO, running Alg 3 as AlgE with
a bonus term function Bonus satisfying Condition 4.4 and δk = 1/kα, for some constant α > 1, for
arbitrary K ≥ 1, the exploitation regret of AlgE can be upper bounded by:

(i) When |Π∗| = 1 (unique optimal deterministic policy):

RegretK(AlgE) ≤O
(H∑

h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

(C1 + C2

∆min
log

SAH(C1 + C2)

dπ∗(sh, ah)∆min
+

B1H

∆min
log

B2H

dπ∗(sh, ah)∆min

))
.

(ii) When |Π∗| > 1 (non-unique optimal deterministic policies):

RegretK(AlgE) ≤ O
(H∑

h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

(C1 + C2

∆min
log

SAH(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

+
B1SAH

dmin∆min
log

B2SAH

dmin∆min

))
.

where π∗
cover and d̃π

∗
cover(sh, ah) are introduced in Theorem 4.8.

4.2.4 Interpretation of Results in Tabular RL

Recall our objective in Sec. 1 is to establish the benefits of leveraging the tiered structure by showing
RegretK(AlgE) is constant. This contrasts the lower bound of online algorithms that continuously
increases with the episode number K, which corresponds to the regret suffered by users in GE without
leveraging the tiered structure, while RegretK(AlgO) keeps (near-)optimal as before. In Appx. H, we
also provide some simulation results as a verification of our theoretical discovery.

One limitation of our results is that our bounds have additional dependence on dπ
∗

(or even 1/dπ
∗
)

compared to most of the regret bounds in the online setting, although similar dependence on log dπ
∗

also appeared in a few recent works [e.g., λ+
h in Thms. 8 and 9 of Papini et al., 2021]. Besides,

according to the lower and upper bound of online RL in gap-dependent settings [Simchowitz and
Jamieson, 2019], C1 + C2 in Cond. 4.6 have dependence on O(∆−1

min), which implies that in the
regret bound in Thm. 4.9, the dependence on ∆min would be O(∆−2

min). For the former, in Appx. C.2,
we prove a lower bound, showing that log 1

dπ∗ is unavoidable when AlgO is allowed to behave
adversarially without violating Cond. 4.6; for the latter, we note that in the analysis of MAB setting
(Sec.4.1), specifying the detailed behavior of AlgO can help tighten the bound. Therefore, we
conjecture that our results can be improved by putting more constraints on the behavior of AlgO,
which we leave to future work.

5 Conclusion

In this paper, we identify the tiered structure in many real-world applications and study the potential
advantages of leveraging it by interacting with users from different groups with different strategies.
Under the gap-dependent setting, we provide theoretical evidence of benefits by deriving constant
regret for the exploitation policy while maintaining the optimality of the online learning policy.

As for the future work, we propose several potentially interesting directions. (i) As we mentioned
in Section 4.2.4, it is worth investigating the possibility of improving the regret bound of AlgE by
considering a more concrete choice of AlgO, or maybe other choices for AlgE. (ii) It would be
interesting to relax our constraint on the optimality of AlgO by introducing the notion of budget C as
the tolerance on the sub-optimality of AlgO. As a result, our setting and the decoupling exploration
and exploitation setting can be regarded as special cases of a more general framework when C = 0
and C =∞. (iii) We assume that the users from different groups share the same transition and reward
function, and it would also be interesting to extend our results to more general settings, where the
group ID serves as context and will affect the dynamics [Abbasi-Yadkori and Neu, 2014, Modi et al.,
2018]. (iv) We only consider the setting with two tiers, and it may be worth studying the possibility
and potential benefits under the setting with multiple tiers.

9

Acknowledgements

JH’s research activities on this work were conducted during his internship at MSRA. NJ’s last
involvement was in December 2021. NJ also acknowledges funding support from ARL Cooperative
Agreement W911NF-17-2-0196, NSF IIS-2112471, NSF CAREER award, and Adobe Data Science
Research Award. The authors thank Yuanying Cai for valuable discussion.

References
Yasin Abbasi-Yadkori and Gergely Neu. Online learning in mdps with side information. arXiv

preprint arXiv:1406.6812, 2014.

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. arXiv preprint arXiv:2101.06286, 2021.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Orly Avner, Shie Mannor, and Ohad Shamir. Decoupling exploration and exploitation in multi-armed
bandits. arXiv preprint arXiv:1205.2874, 2012.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pages 263–272. PMLR,
2017.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-dataset
policy optimization. arXiv preprint arXiv:2009.06799, 2020.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
for episodic reinforcement learning, 2017.

Christoph Dann, Teodor Vanislavov Marinov, Mehryar Mohri, and Julian Zimmert. Beyond value-
function gaps: Improved instance-dependent regret bounds for episodic reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning
Theory, pages 578–598. PMLR, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pages 4171–
4180. PMLR, 2021.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
arXiv preprint arXiv:1807.03765, 2018.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

10

Martin S Lipsky and Lisa K Sharp. From idea to market: the drug approval process. The Journal of
the American Board of Family Practice, 14(5):362–367, 2001.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. Advances in Neural Information Processing Systems, 31, 2018.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
continuous side information. In Algorithmic Learning Theory, pages 597–618. PMLR, 2018.

Matteo Papini, Andrea Tirinzoni, Aldo Pacchiano, Marcello Restelli, Alessandro Lazaric, and Matteo
Pirotta. Reinforcement learning in linear mdps: Constant regret and representation selection.
Advances in Neural Information Processing Systems, 34, 2021.

Chloé Rouyer and Yevgeny Seldin. Tsallis-inf for decoupled exploration and exploitation in multi-
armed bandits. In Conference on Learning Theory, pages 3227–3249. PMLR, 2020.

Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
mdps. Advances in Neural Information Processing Systems, 32:1153–1162, 2019.

Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272, 2019.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=tyrJsbKAe6.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. arXiv preprint arXiv:2106.06926, 2021.

Haike Xu, Tengyu Ma, and Simon S Du. Fine-grained gap-dependent bounds for tabular mdps via
adaptive multi-step bootstrap. arXiv preprint arXiv:2102.04692, 2021.

Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In International
Conference on Artificial Intelligence and Statistics, pages 1576–1584. PMLR, 2021.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with
pessimism. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312. PMLR, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

11

https://openreview.net/forum?id=tyrJsbKAe6
https://openreview.net/forum?id=tyrJsbKAe6

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

A Detailed Related Work

Online RL The online RL/MAB is the most basic framework studying the trade-off between
exploration and exploitation [Auer et al., 2002, Slivkins, 2019, Lattimore and Szepesvári, 2020],
where the agent targets at exploring the MDP to identify good actions as fast as possible to minimize
the accumulative regrets. In tabular MDPs [Jaksch et al., 2010, Dann et al., 2017, Jin et al., 2018],
the regret lower bounds for non-stationary MDPs [Domingues et al., 2021] have been achieved by
Azar et al. [2017], Zanette and Brunskill [2019]. Recently, there has been interests in studying the
gap-dependent regret [Simchowitz and Jamieson, 2019, Xu et al., 2021, Dann et al., 2021, Yang et al.,
2021, He et al., 2021], where the agent can achieve log dependence on the number of episodes K
under additional dependence on (the inverse of) the minimal gap 1

∆min
. Simchowitz and Jamieson

[2019] reports that, similar to stochastic MABs [Lattimore and Szepesvári, 2020], the regret in
the gap-dependent setting must scale as Ω(logK), which implies that the logK upper bound is
asymptotically tight. However, all of these works treat the customers equivalently and ignore the
opportunities of leveraging the tiered structure. Recently, [Papini et al., 2021] achieved similar
constant regret in online setting with linear function approximation. Comparing with ours, they
investigated the benefits of good features, while we focus on the benefits of considering a different
learning protocol. Besides, although their results were established on a more general linear setting,
their assumptions on the feature and the uniqueness of optimal policy are quite restrictive in tabular
setting.

Offline RL Offline RL considers how to learn a good policy with a fixed dataset [Levine et al.,
2020]. Without the requirement of exploration, offline RL prefers algorithms with strong guarantees
for exploitation and safety, and Pessimism in the Face of Uncertainty (PFU) becomes a major principle
for achieving this both theoretically and empirically [Yin and Wang, 2021, Uehara and Sun, 2022, Liu
et al., 2020, Xie et al., 2021, Buckman et al., 2020, Kumar et al., 2020, Fujimoto and Gu, 2021, Yu
et al., 2020]. Similar to the offline setting, we choose AlgE to be a pessimistic algorithm. However,
we still consider to interact the environment with AlgE, although we ignore the data collected by
AlgE for now and leave the investigation of its value to future work. As another difference, offline
RL assumes the dataset is fixed and only the final performance matters, whereas we evaluate the
accumulative regret of AlgE.

B More Discussion about Framework. 1 and Motivating Examples

In this section, we try to justify that our Frw. 1 is an appropriate abstraction for our motivating
examples and user-interaction real-world applications.

In the standard online learning protocol, at iteration k, the algorithm Alg compute a policy πk based
on previous exploration data, the environment samples a user uk from GO and GE according to the
probability where P (uk ∈ GO) and P (uk ∈ GE), respectively (note that P (uk ∈ GO) + P (uk ∈
GE) = 1). After that, πk will interact with uk and obtain a new trajectory for the future learning,
while uk suffers loss V ∗

1 − V πk , and the expected accumulative loss suffered by users from two
groups till step K is

RegretK(Alg) := E[
K∑

k=1

V ∗
1 (s1)− V πk(s1)]

Now, we consider a realistic assumption about the probability of uk from different groups:

Assumption 1 (Assumption on the Ratio between Users from Different Groups). We assume that:

P (uk ∈ GE)

P (uk ∈ GO)
= C, ∀k ≥ 1

for some constant C.

Based on the assumption above, if we do not leverage the tiered structure, and treat the users from
different groups equivalently, then the loss suffered by each group will be proportional to the size of

13

that group. Therefore, even if we assume Alg is near-optimal, the expected loss for each group will
scale with logK, i.e.:

LossK(GO) :=E[
K∑

k=1

I[uk ∈ GO](V ∗
1 (s1)− V πk(s1))]

=
1

1 + C
E[

K∑
k=1

V ∗
1 (s1)− V πk(s1)] = O(

logK

1 + C
) (2)

LossK(GE) :=E[
K∑

k=1

I[uk ∈ GE](V ∗
1 (s1)− V πk(s1))]

=
C

1 + C
E[

K∑
k=1

V ∗
1 (s1)− V πk(s1)] = O(

C logK

1 + C
) (3)

Besides, we can also leverage the tiered structure, and consider an alternative protocol below:

Algorithm 4: Online Interaction Protocol after Leveraging Tiered Structure

1 Initialize: D1 ← {}, k = 1, πO
1 ← AlgO(D1), πE

1 ← AlgE(D1)
2 for k = 1, 2, ... do
3 User uk comes.
4 if uk ∈ GO then
5 Use πO

k to interact with uk, and collect data τO
k .

6 Dk+1 = Dk ∪ {τO
k }, πO

k+1 ← AlgO(Dk), πE
k+1 ← AlgE(Dk)

7 end
8 else
9 πE

k interacts with uk, and collect data τE
k . // We do not use τE

k for now.
10 Dk+1 = Dk ∪ {τE

k }, πO
k+1 ← πO

k , πE
k+1 ← πE

k

11 end
12 end

In another word, in this new protocol, we use two policies at different exploitation level to interact
with users from different groups, and only update policies if user comes from group GO. Note that in
expectation, {uk ∈ GO} will happen for K

1+C times, and therefore we have:

Loss′K(GO) :=E[
K∑

k=1

I[uk ∈ GO](V ∗
1 (s1)− V πO

k(s1))]

≈RegretK/(1+C)(AlgO)

Loss′K(GE) :=E[
K∑

k=1

I[uk ∈ GE](V ∗
1 (s1)− V πE

k(s1))]

≈CRegretK/(1+C)(AlgE)

where Regret(·)(AlgO) and Regret(·)(AlgE) are originally defined in Def. 2.1, and they are exactly
the metric we used to measure the performance of AlgE and AlgO under our Frw. 1.

Based on our results in Sec. 4.1 and 4.2, we know that under our framework, it is possible to achieve
that:

Loss′K(GO) =RegretK/(1+C)(AlgO) = O(log
K

1 + C
) (4)

Loss′K(GE) =CRegretK/(1+C)(AlgE) = C · constant (5)

where constant means independence of K but may include dependence on other parameters such as
S,A,H,∆. Comparing with Eq.(2), (3), (4), and (5), we can see that users from GO will suffer less
regret than before because we “transfer” some the regret from GE to GO, and the additional regret
suffered by GO can be compensated in other forms as we discussed in Sec. 1.

14

Remark Besides, our methods and results can be applied to those scenarios suggested by the
decoupling setting [Avner et al., 2012, Rouyer and Seldin, 2020], where AlgE does not necessarily
interact with the environment, and we omit the discussion here.

C Lower Bounds

C.1 Regret Lower Bounds for Tabular MDP without Strictly Positive Gap Assumption

We first recall a Theorem from [Dann et al., 2017]:
Theorem C.1 (Theorem C.1 in [Dann et al., 2017]). There exist positive constant c, δ0 > 0, ε0 > 0,
such that for every ε ∈ (0, ε0), S ≥ 4, A ≥ 2 and for every algorithm Alg and n ≤ cASH3

ε2 there is a
fixed-horizon episodic MDP Mhard with time-dependent transition probabilities and S states and A
actions so that returning an ε-optimal policy after n episodes is at most 1− δ0.
Theorem 3.1. [Lower Bound for AlgE without Gap Assumption] There exist positive constants
c, ε0, δ0, such that, for arbitrary S ≥ 4, A ≥ 2, H ≥ 2,K ≥ c

ε20
H3SA, and arbitrary algorithm pair

(AlgO,AlgE), there must exist a hard tabular MDP Mhard, E(AlgO,AlgE),Mhard

[∑K
k=1 V

∗ − V πE
k

]
≥

δ0
√
cH3SAK, where the expectation is taken over the randomness of algorithms and MDP.

Proof. Suppose we have a pair algorithm (AlgO,AlgE), we can construct a PAC algorithm with AlgO

and AlgE, in the following way:

• Input: K.

• For k = 1, 2, ...,K, run AlgO to collect data and run AlgE to generate a sequence of policies
πE
1 , ..., π

E
K .

• Uniformly randomly select an index from {1, 2, ...,K}, and denote it as KPAC

• Output πE
KPAC

.

In the following, we denote such an algorithm as AlgPAC. Then, for an arbitrary MDP M , we must
have:

EAlgPAC,M
[V ∗ − V πKPAC] =

1

K
E(AlgO,AlgE),M [

K∑
k=1

V ∗ − V πk]

As a result of Markov inequality and that V ∗ − V π ≥ 0 for arbitrary π, for arbitrary ε > 0, we have:

Pr(V ∗ − V πKPAC ≥ ε) ≤
EAlgPAC,M

[V ∗ − V πKPAC]

ε
(6)

Since the above holds for arbitrary ε ∈ (0, ε0), by choosing ε = ε̄ :=
√

cH3SA/K, since K >
c
ε20
H3SA, we have ε̄ < ε0 and

Pr(V ∗ − V πKPAC ≥ ε̄) ≤
EAlgPAC,M

[V ∗ − V πKPAC]√
cH3SA/K

. (7)

Because K ≤ cH3SA/ε̄2, Thm. C.1 implies that, for AlgPAC, for arbitrary S ≥ 4, A ≥ 2, H ≥ 1,
there must exists a hard MDP Mhard, such that:

EAlgPAC,M
[V ∗ − V πKPAC]√

cH3SA/K
≥ δ0

and it is equivalent to:

E(AlgO,AlgE),M [

K∑
k=1

V ∗ − V πk] = K · EAlgPAC,M
[V ∗ − V πKPAC] ≥ δ0

√
cH3SAK (8)

which finishes the proof.

15

Remark C.2 (Regret lower bound when τE is used in Framework 1). Our techniques can be extended
to the case when τE are used by AlgO and AlgE, and establish the same O(

√
H3SAK) lower bound.

Because the only difference would be in this new setting, at iteration k, AlgO and AlgE will use 2k
trajectories to compute πO

k and πE
k , which only double the sample size comparing with k trajectories

in Framework 1. Therefore, with the same techniques (and choosing ε̄ =
√

cH3SA/(2K)), one can
obtain a lower bound which differs from Eq.(8) by constant.

C.2 Lower Bound for the Dependence on log dmin when |Π∗| = 1

In this section, because we will conduct discussion on multiple different MDPs, and in order to
distinguish them, we will introduce a subscript of M to highlight which MDP we are discussing.
Therefore, we revise some key notations and re-introduce them here.

Notation Given arbitrary tabular MDP M = {S,A,P, r,H}. We use Π∗
M to denote the set of

deterministic optimal policies of M . For each deterministic optimal policy π∗
M ∈ Π∗

M , we define
d
π∗
M

min to be the minimal non-zero occupancy of the reachable state action by π∗
M , i.e.

d
π∗
M

min := min
h,sh,ah

dπ
∗
M (sh, ah), s.t. dπ

∗
M (sh, ah) > 0 (9)

Then, we define:

dM,min := min
π∗
M∈Π∗

M

d
π∗
M

min, π∗
M,dmin

:= arg min
π∗
M∈Π∗

M

d
π∗
M

min, (10)

Different from regret analysis in online setting [Simchowitz and Jamieson, 2019, Xu et al., 2021,
Dann et al., 2021], our regret bound in Thm. 4.9 has additional dependence on log dπ

∗
, even if the

optimal policy is unique. In Thm. C.3, we show that the dependence of log dπ
∗

is unavoidable if we
do not have other assumptions about the behavior of AlgO besides Cond. 4.6. In another word, even
if constrained by satisfies Cond. 4.6, AlgO can be arbitrarily adversarial so that log dπ

∗
exists in the

lower bound. We defer the proof to Appx. C.2
Theorem C.3. For arbitrary S,A,H ≥ 3, arbitrary ∆min > 0 and dmin > 0, if there exists an
MDP M = {S,A,P, r,H} such that |S| = S, |A| = A dM,min = dmin and the minimal gap is
lower bound by ∆min, then there exists a hard MDP M+ = {S+,A,P+, r+, H} with |S+| = S+1,
minimal gap lower bounded by 3∆min/4 and dM+,min = dM,min/4, and an adversarial choice of
AlgO satisfying Cond. 4.6, such that when K is large enough, the expected Pseudo-Regret of AlgE is
lower bounded by:

EAlgO,M,AlgE [

K∑
k=1

V ∗ − V πE
k] ≥ O

(
(C1 + C2) log

C1 + C2

dM+,min∆min

)
Proof. The proof is divided into three steps.

Step 1: Construction of the Hard MDP Instance Now, we construct a hard MDP instance
M+ := {S+,A+,P+, r+, H} based on M by expanding the state space with an absorbing state
sabsorb for layer h ≥ 2 (we use h in sh,absorb to distinguish the absorbing state at different time step),
and define the transition and reward function by:

∀a1 ∈ A1, s2 ∈ S2, P+(s2,absorb|s1, a1) =
dM,min

4
,

P+(s2|s1, a1) = (1− dM,min

4
)P(s2|s1, a1)

r+(s1, a1) = (1− dM,min

4
)r(s1, a1)

∀h ≥ 2, sh ∈ Sh, ah ∈ Ah, P+(·|sh, ah) = P(·|sh, ah), r+(sh, ah) = r(sh, ah)

∀h ≥ 2, ah ∈ Ah, P+(sh+1,absorb|sh,absorb, ah) = 1

∀ H ≥ h ≥ 2, ah ∈ Ah, r(sh,absorb, ah) = ∆minI[ah = a∗h]

16

Briefly speaking, at the initial state, by taking arbitrary action, with probability dM,min/2, it will
transit to absorbing state at layer 2, and the agent can not escape from the absorbing state till the end
of the episodes. Besides, at the absorbing states, for each layer 2 ≤ h ≤ H , there always exists an
optimal action a∗h with reward ∆min and taking any the other actions will lead to 0 reward. Moreover,
M+ agrees with M for all the transition and rewards when h ≥ 2.

Easy to see that:

V ∗
M+(s1)−Q∗

M+(s1, a1) = (1− dM,min

4
)(V ∗

M (s1)−Q∗
M (s1, a1))

Therefore, if V ∗
M (s1)−Q∗

M (s1, a1) > 0, we still have:

V ∗
M+(s1)−Q∗

M+(s1, a1) ≥
3

4
(V ∗

M (s1)−Q∗
M (s1, a1)) ≥

3

4
∆min

Combining with the transition and reward functions in absorbing states, we can conclude that the gap
of M+ is still O(∆min).

Step 2: Construction of Adversarial AlgO Let’s use Π∗
M+ to denote the set of deterministic

optimal policies at MDP M+. It’s easy to see that, for arbitrary π∗
M+ ∈ Π∗

M+ , there must exists an
optimal policy π∗

M ∈ Π∗
M agrees with π∗

M+ at all non-absorbing states (and vice versa), i.e.

π∗
M+(sh) = π∗

M (sh), ∀h ∈ [H], sh ∈ Sh
Then, for arbitrary π∗

M+ ∈ Π∗
M+ , we have:

dπ
∗
M+ (sh,absorb) =

dM,min

4
≤ (1− dM,min

4
)dM,min < dπ

∗
M+ (sh′), ∀h′ ∈ [H], sh′ ∈ Sh′

which implies that

dM+,min =
dM,min

4
and sh,absorb are the hardest state to reach for all deterministic optimal policies. In the following, we
randomly choose an optimal deterministic policy π∗

M+ from Π∗
M+ , and randomly select one action

āH from AH with āH ̸= a∗H and fix them in the following discussion.

Based on the definition above, we define a deterministic policy in M+, which agree with π∗
M+ for all

states except sH :

∀h ∈ [H], πM+(sh) =

{
π∗
M+(sh), if sh ̸= sH,absorb,

āH , if sh = sH,absorb,
.

Now, we are ready to design the adversarial choice of AlgO satisfying the condition 4.6. We consider
the following algorithm:

AlgO(k) =

{
πM+ , if k ≤ ksup,

π∗
M+ , if k > ksup,

;

where ksup is defined to be:

ksup := sup
k∈N+

: {k ≤ 1

dM+,min∆min
(C1 + C2 log k)} ≈ O(

C1 + C2

dM+,min∆min
log

C1 + C2

dM+,min∆min
)

We can easily verify that Cond. 4.6 will not be violated, since

∀k ≥ 1,

K∑
k=1

V ∗ − V πO
k

≤dM+,min · (V ∗(s2,absorb)− V πO
k(s2,absorb)) ·min{k, ksup}

≤dM+,min · (V ∗(sH,absorb)− V πO
k(sH,absorb)) ·

1

dM+,min∆min
(C1 + C2 logmin{k, ksup})

=dM+,min ·∆min ·
1

dM+,min∆min
(C1 + C2 log k)

≤C1 + C2 log k

17

Step 3: Lower Bound of AlgE under the Choice of Adversarial AlgO Now, we can derive an
lower bound for AlgE. Since in the first ksup steps, AlgE can only observe what happens if action āH
is taken at sH,absorb, and therefore, it has no idea about which action among AH \ āH is the optimal
action a∗H . We useM+ to denote a set of MDPs by permuting the position of a∗H in M+. Since
|AH | = A, we have |M+| = A− 1 and M+ ∈M+.

Then, we uniformly sample an MDP fromM+ and run the adversarial AlgO above to generate the
data for AlgE to learn. We use M+

i with i = 1, 2..., A− 1 to refer to the MDPs inM+ and use index
i to refer to the position of the optimal action at sH,absorb in each MDP. For the simplicity of the
notation, we use A as the index to refer to the position of āH .

Because AlgE do not have prior knowledge about which MDP inM+ is sampled, we have:

EM̄+,AlgO,AlgE [

K∑
k=1

V ∗ − V πE
k]

≥EM̄+,AlgO,AlgE [

ksup∑
k=1

V ∗ − V πE
k]

=
1

A− 1

∑
i∈[A−1]

EM+
i ,,AlgO,AlgE [

ksup∑
k=1

V ∗ − V πE
k]

≥dM,min∆min

A− 1

ksup∑
k=1

∑
i∈[A−1]

∑
j∈[A],j ̸=i

PrAlgO,Mi
(πE

k(sH,absorb) = j)

(Drop the probability that πE
k is sub-optimal at non-absorbing states)

=
dM,min∆min

A− 1

ksup∑
k=1

(∑
j∈[A],j ̸=A−1

PrAlgO,Mi
(πE

k(sH,absorb) = j)

+
∑

i∈[A−2]

∑
j∈[A],j ̸=i

PrAlgO,Mi
(πE

k(sH,absorb) = j)
)

=
dM,min∆min

A− 1

ksup∑
k=1

(∑
i∈[A−2]

PrAlgO,Mi
(πE

k(sH,absorb) = i)

+
∑

i∈[A−2]

∑
j∈[A],j ̸=i

PrAlgO,Mi
(πE

k(sH,absorb) = j)
)

(AlgE can not distinguish between M+
i)

=
dM,min∆min

A− 1

ksup∑
k=1

(∑
i∈[A−2]

∑
j∈[A]

PrAlgO,Mi
(πE

k(sH,absorb) = j)

=
A− 2

A− 1
dM,min∆minksup

=O
(
(C1 + C2) log

C1 + C2

dM+,min∆min

)
= O

(
(C1 + C2) log

C1 + C2

dM,min∆min

)

18

D Analysis for Bandit Setting

D.1 The Optimality of AlgO in Alg 2

From Theorem 8.1 of [Lattimore and Szepesvári, 2020], we can show the following guarantee for the
UCB algorithm in Alg 2 with revised bonus function:

E[
K∑

k=1

µ1 − µπO
k
] ≤

∑
i:∆i>0

∆i +
1

∆i
(8α log f(K) + 8

√
πα log f(K) + 28)

=O(
∑

i:∆i>0

α

∆i
logAK)

where we assume K ≥ A. Since α is just at the constant level, the above regret still matches the
lower bound.

D.2 Analysis for LCB

Outline In this section, we establish regret bound for Alg. 2. We first provide the proof of two key
Lemma: Lem. 4.2 and Lem. 4.3. After that, in Lem. 4.3, we try to combine the above two results
and prove that for those arm i with ∆i > 0, when k is large enough, we are almost sure (with high
probability) that LCB will not take arm i. Finally, we conclude this section with the proof of Thm.
4.1.

Definition of cf Under the choice f(k) = 1 + 16A2(k + 1)2, we use cf to denote the minimal
positive constant independent with α,A and arbitrary ∆i with ∆i > 0, such that

∀∆i > 0,∀λ ∈ [1, 4A], as long as k ≥cf
αλ

∆2
i

log(1 +
αA

∆i
),

we have k ≥32αλ

∆2
i

log f(k) (11)

Lemma 4.2. [Blessing of Pessimism] With the choice that f(k) = 1 + 16A2(k + 1)2, for arbitrary
i with ∆i > 0, for the LCB algorithm in Alg 2, and arbitrary j satisfying ∆j < ∆i, we have:

Pr
(
{i = πE

k} ∩ {∆j < ∆i} ∩
{
Nj(k) ≥ 8α log f(k)

(∆j−∆i)2

})
≤ 2

k2α .

Proof.

Pr({i = πE
k} ∩ {∆j < ∆i} ∩ {Nj(k) ≥

8α log f(k)

(∆j −∆i)2
})

≤Pr({µ̂i(k)−

√
2α log f(k)

Ni(k)
≥ µ̂j(k)−

√
2α log f(k)

Nj(k)
} ∩ {∆j < ∆i} ∩ {Nj(k) ≥

8α log f(k)

(∆j −∆i)2
})

=Pr({µ̂i(k)− µi −

√
2α log f(k)

Ni(k)
≥ µ̂j(k)− µj + (∆j −∆i)−

√
2α log f(k)

Nj(k)
}

∩ {∆j < ∆i} ∩ {Nj(k) ≥
8α log f(k)

(∆j −∆i)2
})

≤Pr({µ̂i(k)− µi −

√
2α log f(k)

Ni(k)
≥ µ̂j(k)− µj +

√
2α log f(k)

Nj(k)
} ∩ {∆j < ∆i} ∩ {Nj(k) ≥

8α log f(k)

(∆j −∆i)2
})

≤Pr({µ̂i(k)− µi −

√
2α log f(k)

Ni(k)
≥ µ̂j(k)− µj +

√
2α log f(k)

Nj(k)
})

≤Pr({µ̂i(k)− µi −

√
2α log f(k)

Ni(k)
≥ 0}) + Pr({0 ≥ µ̂j(k)− µj +

√
2α log f(k)

Nj(k)
})

19

≤2/f(k)α ≤ 2/k2α

where the last but two step is because of the Azuma-Hoeffding’s inequality.

Lemma 4.3. [Property of UCB] With the choice that f(k) = 1 + 16A2(k + 1)2, there exists a
constant c, for arbitrary i with ∆i > 0 and arbitrary λ ∈ [1, 4A], in UCB algorithm, we have:
Pr(Ni(k) ≥ k

λ) ≤
2

k2α−1 , ∀k ≥ λ+ c · αλ
∆2

i
log(1 + αA

∆min
).

Proof. We choose cf defined in Eq.(11) to be the constant c in this Lemma.

The key idea of the proof is that, because Ni(k) ≤ k for all k, if Ni(k) ≥ ⌈k/λ⌉, there must exists an
iteration k̃ between ⌈k/λ⌉ − 1 and k, such that {Ni(k̃) = ⌈k/λ⌉ − 1} ∩ {Ni(k̃) = ⌈k/λ⌉} (i.e. k̃ is
the time step that UCB takes arm i for the ⌈k/λ⌉-th time). Therefore, for arbitrary fixed λ ∈ [1, A2],
when k ≥ λ+ cf · αλ∆2

i
log(1 + αλ

∆min
), we have:

Pr(Ni(k) ≥ k/λ) = Pr(Ni(k) ≥ ⌈k/λ⌉)

=

k−1∑
k̃=⌈k/λ⌉−1

Pr({Ni(k̃) = ⌈k/λ⌉ − 1, Ni(k̃ + 1) = ⌈k/λ⌉} ∩ {µ̂i∗(k̃) +

√
2α log f(k̃)

Ni∗(k̃)
≤ µ̂i(k̃) +

√
2α log f(k̃)

Ni(k̃)
})

(Union bound.)

=

k−1∑
k̃=⌈k/λ⌉−1

Pr({Ni(k̃) = ⌈k/λ⌉ − 1, Ni(k̃ + 1) = ⌈k/λ⌉}

∩ {µ̂i∗(k̃)− µi∗ +

√
2α log f(k̃)

Ni∗(k̃)
≤ µ̂i(k̃)− µi −∆i +

√
2α log f(k̃)

Ni(k̃)
})

(Subtract µi∗ at both sides)

≤
k−1∑

k̃=⌈k/λ⌉−1

Pr({Ni(k̃) = ⌈k/λ− 1⌉, Ni(k̃ + 1) = ⌈k/λ⌉} ∩ {µ̂i∗(k̃)− µi∗ +

√
2α log f(k̃)

Ni∗(k̃)
≤ 0})

+ Pr({Ni(k̃) = ⌈k/λ⌉ − 1), Ni(k̃) = ⌈k/λ⌉+ 1)} ∩ {0 ≤ µ̂i(k̃)− µi −∆i +

√
2α log f(k̃)

Ni(k̃)
})

(12)

≤
k−1∑

k̃=⌈k/λ⌉−1

Pr({µ̂i∗(k̃)− µi∗ +

√
2α log f(k̃)

Ni∗(k̃)
≤ 0})

+ Pr({Ni(k̃) = ⌈k/λ⌉ − 1), Ni(k̃ + 1) = ⌈k/λ⌉)} ∩ {0 ≤ µ̂i(k̃)− µi −

√
2α log f(k̃)

Ni(k̃)
})

(Under our choice of k, and Ni(k̃) = ⌈k/λ⌉ − 1, log f(k̃)

Ni(k̃)
≤ log f(k)

k/λ−1 ≤
∆2

i

8α)

≤
k−1∑

k̃=⌈k/λ⌉−1

Pr({µ̂i∗(k̃)− µi∗ +

√
2α log f(k̃)

Ni∗(k̃)
≤ 0}) + Pr({0 ≤ µ̂i(k̃)− µi −

√
2α log f(k̃)

Ni(k̃)
})

≤
k−1∑

k̃=⌈k/λ⌉−1

2

f(k̃)α
(Azuma-Hoeffding Inequality)

≤ 2k

f(k/λ− 1)α
=

2k

(16A2k2/λ2 + 1)α
≤ 2

k2α−1
(λ ∈ [1, 4A])

where the step (12) is because:

{µ̂i∗(k̃)− µi∗ +

√
2α log f(k̃)

Ni∗(k̃)
< µ̂i(k̃)− µi −∆i +

√
2α log f(k̃)

Ni(k̃)
}

20

∈{0 < µ̂i(k̃)− µi −∆i +

√
2α log f(k̃)

Ni(k̃)
} ∪ {µ̂i∗(k̃)− µi∗ +

√
2α log f(k̃)

Ni∗(k̃)
≤ 0}

Lemma D.1. Given an arm i, we separate all the arms into two parts depending on whether its
gap is larger than ∆i and define Glower

i := {ι|∆ι > ∆i/2} and Gupper
i := {ι|∆ι ≤ ∆i/2}. With the

choice that f(k) = 1 + 16A2(k + 1)2, there is a constant c, such that for arbitrary i with ∆i > 0,
for the LCB algorithm in Alg 2, we have:

Pr(i = πE
k) ≤ 2/k2α + 2A/k2α−1, ∀k ≥ ki := 8αc

(∑
ι∈Glower

i

1

∆2
ι

+
4|Gupper

i |
∆2

i

)
log(1 +

αA

∆min
)

(13)

where c is the constant considered in Lem. 4.3 (i.e. cf defined in Eq.(11)).

Proof. We want to remark that the constants in the definition of ki (i.e. 8 in “8αc” and 4 in
“”4|Gupper

i |”) can be replaced by others, but we choose them carefully in order to make sure some
steps in the proof of this Lemma and Thm. 4.1 can go through.

The main idea of the proof is to use Lem. 4.3 to show that, for those arm i with ∆i > 0, when k ≥ ki,
Nι(k) will be small for those ι ∈ Glower

i . As a result, there must exist an arm j ∈ Gupper
i , such that

Nj(k) is large than the threshold considered in Lem. 4.2 and therefore, with high probability, arm i
will not be preferred.

First, we try to apply Lem. 4.3 to upper bound the quantity Nj(k) for those arm j ∈ Glower
i . For each

j ∈ Glower
i , we define the following quantity, which measures the magnitude of 1/∆2

j with k:

γk,j :=
k

8αc
∆2

j
log(1 + αA

∆min
)
.

We only consider k ≥ ki, where we always have γk,j ≥ 1 based on the definition of ki.

Next, we separately consider two cases depending on whether γk,j > 2A or not.

Case 1: γk,j > 2A: In this case, ∆j is relatively large (or say more sub-optimal) comparing with
iteration k. For arbitrary k ≥ ki, we have

k =γk,j ·
8αc

∆2
j

log(1 +
αA

∆min
) ≥ 2A · 8αc

∆2
j

log(1 +
αA

∆min
) ≥ 2A+

2αcA

∆2
i

log(1 +
αA

∆min
).

which implies that k satisfying the condition of applying Lemma 4.3 with λ = 2A, and we can
conclude that:

Pr(Nk(j) ≥
k

2A
) ≤ 2

k2α−1
.

Case 2: γk,j ≤ 2A: Note that

4αc

∆2
j

log(1 +
αA

∆min
) =

k

2γk,j
.

Since 2γk,j locates in the interval [1, 4A] and:

k =γk,j ·
8αc

∆2
j

log(1 +
αA

∆min
) ≥ 2γk,j + 2γk,j ·

αc

∆2
j

log(1 +
αA

∆min
)

which satisfies the condition of applying Lem. 4.3 with λ = 2γk,j . Therefore, we have:

Pr(Nk(j) ≥
4αc

∆2
j

log(1 +
αA

∆min
)) = Pr(Nk(j) ≥

k

2γk,j
) ≤ 2

k2α−1
(14)

Combining the above two cases, we can conclude that, for arbitrary j ∈ Glower
i ,

Pr(Nj(k) ≥
k

2A
+
4αc

∆2
j

log(1+
αA

∆min
)) ≤ min{Pr(Nj(k) ≥

k

2A
),Pr(Nj(k) ≥

4αc

∆2
j

log(1+
αA

∆min
))} ≤ 2

k2α−1

21

which reflects that with high probability,
∑

j∈Glower
i

Nj(k) is small:

Pr(
∑

j∈Glower
i

Nj(k) ≥
k

2
+

∑
j∈Glower

i

4αc

∆2
j

log(1 +
αA

∆min
))

≤
∑

j∈Glower
i

Pr(Nj(k) ≥
k

2|Glower
i |

+
4αc

∆2
j

log(1 +
αA

∆min
))

(P (a+ b ≤ c+ d) ≤ P (a ≤ c) + P (b ≤ d))

≤
∑

j∈Glower
i

Pr(Nj(k) ≥
k

2A
+

4αc

∆2
j

log(1 +
αA

∆min
)) (|Glower

i | ≤ A)

≤2|Glower
i |

k2α−1
≤ 2A

k2α−1

Since
∑

j∈Gupper
i

Nj(k) +
∑

j∈Glower
i

Nj(k) = k, and note that,

k − (
k

2
+

∑
j∈Glower

i

4αc

∆2
j

log(1 +
αA

∆min
)) =

k

2
−

∑
j∈Glower

i

4αc

∆2
j

log(1 +
αA

∆min
) =

16αc|Gupper
i |

∆2
i

log(1 +
αA

∆min
)

we have:

Pr(
∑

j∈Gupper
i

Nj(k) ≤
16αc|Gupper

i |
∆2

i

log(1 +
αA

∆min
))

=Pr(
∑

j∈Glower
i

Nj(k) ≥
k

2
+

∑
j∈Glower

i

4αc

∆2
j

log(1 +
αA

∆min
))

≤ 2A

k2α−1

Therefore, w.p, 1− 2A
k2α−1 , there exists j ∈ Gupper

i , such that

Nj(k) ≥
1

|Gupper
i |

∑
j∈Gupper

i

Nj(k) ≥
16αc

∆2
i

log(1 +
αA

∆min
).

Recall our choice of c (Eq.(11)), the above implies that:

Nj(k) ≥
32α log f(k)

∆2
i

. (15)

Therefore,

Pr({i = πE
k} ∩ {k ≥ ki}) ≤Pr({i = πE

k} ∩ {k ≥ ki} ∩ {∃j ∈ Gupper
i : Nj(k) ≥

32α log f(k)

∆2
i

})

+ Pr({k ≥ ki} ∩ ¬{∃j ∈ Gupper
i : Nj(k) <

32α log f(k)

∆2
i

})

≤Pr({i = πE
k} ∩ {k ≥ ki} ∩ {∃j ∈ Gupper

i : Nj(k) ≥
32α log f(k)

∆2
i

}) + 2A

k2α−1

(Eq.(15))

≤Pr({i = πE
k} ∩ {k ≥ ki} ∩ {∃j ∈ Gupper

i : Nj(k) ≥
8α log f(k)

(∆j −∆j)2
}) + 2A

k2α−1

≤ 2

k2α
+

2A

k2α−1
(Lem. 4.2)

Lemma D.2 (Integral Lemma). For arbitrary k0 ≥ 1 and β > 1, we have:
∞∑

k=k0+1

1

kβ
≤
∫ ∞

k0

1

xβ
dx ≤ 1

(β − 1)kβ−1
0

22

Theorem 4.1. [Exploitation Regret] In Algorithm 2, by choosing arbitrary α > 1, there exists an
absolute constant c, such that, for arbitrary K ≥ 1, the pseduo-regret of AlgE is upper bounded by:
RegretK(AlgE) ≤ Õ

(
A

α−1 + α
∑

∆i>0(A− i)
(

1
∆i
− ∆i

∆2
i−1

))
where ∆0 :=∞ so ∆1

∆2
0
= 0.

Proof. Recall the definition of ki in Eq.(13) in Lem. D.1 above. For i ≥ 2, if ∆i ̸= ∆i−1, we have:

ki − ki−1 =αc
(∑

ι∈Glower
i

8

∆2
ι

−
∑

ι∈Glower
i−1

8

∆2
ι

+
32|Gupper

i |
∆2

i

−
32|Gupper

i−1 |
∆2

i−1

)
log(1 +

αA

∆min
)

≤αc
(
(|Glower

i | − |Glower
i−1 |)

32

∆2
i

+
32|Gupper

i |
∆2

i

−
32|Gupper

i−1 |
∆2

i−1

)
log(1 +

αA

∆min
)

(∀ι ∈ Glower
i \Glower

i−1 , we have 1/∆2
ι ≤ 4/∆2

i)

≤αc
(
(|Gupper

i−1 | − |G
upper
i |) 32

∆2
i

+
32|Gupper

i |
∆2

i

−
32|Gupper

i−1 |
∆2

i−1

)
log(1 +

αA

∆min
)

(|Gupper
i−1 |+ |Glower

i−1 | = |G
upper
i |+ |Glower

i | = A)

≤32αc|Gupper
i−1 |

(1

∆2
i

− 1

∆2
i−1

)
log(1 +

αA

∆min
).

and if ∆i = ∆i−1, we also have:

ki − ki−1 = 0 ≤ 32αc|Gupper
i−1 |

(1

∆2
i

− 1

∆2
i−1

)
log(1 +

αA

∆min
).

Moreover, for i = 1, with the extended definition that ∆0 =∞ (so that 1/∆2
0 = 0) and |Gupper

0 | = A,
we also have:

k1 :=8αc
(∑

ι∈Glower
1

1

∆2
ι

+
4|Gupper

1 |
∆2

1

)
log(1 +

αA

∆min
)

≤8αc
(∑

ι∈Glower
1

4

∆2
1

+
4|Gupper

1 |
∆2

1

)
log(1 +

αA

∆min
)

=
32αcA

∆2
1

log(1 +
αA

∆min
)

=32αc|Gupper
0 |(1

∆2
1

− 1

∆2
0

) log(1 +
αA

∆min
).

Therefore, we have (we denote kA :=∞ and k0 := 0):

lim
K→∞

RegretK(AlgE) =

∞∑
k=1

∑
j:∆j>0

Pr(j = πE
k)∆j

=

A∑
i=1

ki∑
k=ki−1+1

∑
∆j>0

Pr(j = πE
k)∆j

=

A∑
i=1

ki∑
k=ki−1+1

(∑
∆j≥∆i−1

Pr(j = πE
k)∆j +

∑
∆j<∆i−1

Pr(j = πE
k)∆j

)

≤
A∑
i=1

ki∑
k=ki−1+1

(∑
∆j≥∆i−1

(2

k2α
+

2A

k2α−1

)
∆j +

∑
∆j<∆i−1

Pr(j = πE
k)∆j

)
(Lemma D.1)

≤
A∑
i=1

ki∑
k=ki−1+1

(∑
∆j≥∆i−1

(2

k2α
+

2A

k2α−1

)
∆j +

∑
∆j≤∆i

Pr(j = πE
k)∆j

)
(∆i ≤ ∆i−1)

23

≤
A∑
i=1

∞∑
k=ki+1

(2

k2α
+

2A

k2α−1

)
+

A∑
i=1

ki∑
k=ki−1+1

∑
∆j≤∆i

Pr(j = πE
k)∆j

≤
A∑
i=1

∞∑
k=ki+1

2(A+ 1)

k2α−1
+

A∑
i=1

ki∑
k=ki−1+1

∑
∆j≤∆i

∆i

(Second term is maximized when Pr(i = πE
k) = 1.)

≤Õ(
A

α− 1
) +

A∑
i=1

∆i · (ki − ki−1)

(First term: Lemma D.2 and some simplification; Second term: Definition of ki.)

=Õ(
A

α− 1
) +

∑
i:∆i>0

∆i · (ki − ki−1)

≤Õ(
A

α− 1
) +

∑
∆i>0

32αc|Gupper
i−1 |

(1

∆i
− ∆i

∆2
i−1

)
log(1 +

αA

∆min
)

≈Õ

(
A

α− 1
+
∑
∆i>0

α|Gupper
i−1 |

(1

∆i
− ∆i

∆2
i−1

))
According to the definition, we always have |Gupper

i−1 | ≤ A− i+ 1, therefore,

lim
K→∞

RegretK(AlgE) = Õ

(
A

α− 1
+ α

∑
∆i>0

(A− i)
(1

∆i
− ∆i

∆2
i−1

))

E Behavior Analysis of Optimistic Algorithm

Definition E.1 (Definition of Events).

Ek,h,π := {πk,h(sh) ̸= πh(sh)}, Ẽk,h,π := Ek,h,π ∩
h⋂

h′=1

E∁k,h′−1,π, Ēk,π :=

H⋃
h=1

Ek,h,π,

Ek,h := {πk,h(sh) ̸∈ Π∗
h(sh)}, Ẽk,h, := Ek,h ∩

h⋂
h′=1

E∁k,h′−1, Ēk :=

H⋃
h=1

Ek,h

In another word, Ek,h,π means πk disagrees with π at state sh which occurs at step h, Ẽk,h,π means
the first disagreement between πk and π occurs at step h, and Ēk,π denotes the event that there exists
one state sh at some time step h ∈ [H] such that πk agrees with πk at sh.

Besides, Ek,h denotes the events that πk,h(sh) will not be taken by any optimal policy. Note that here
we use Π∗

h(sh) to denote the set of all possible optimal actions at state sh. Given a deterministic
optimal policy π∗, in general Ek,h ̸= Ek,h,π∗ when there are multiple optimal actions at one state.
Lemma E.2. For arbitrary reward function R, given a fixed deterministic policy π, we have:

V π
1 (s1)− V πk

1 (s1) =Eπk
[

H∑
h=1

I[Ẽk,h,π](V π
h (sh)− V πk

h (sh))]

Proof.

V π
1 (s1)− V πk

1 (s1) =I[E∁k,1,π]
(
Qπ

1 (s1, πk)−Qπk
1 (s1, πk)

)
+ I[Ek,1,π]

(
V π
1 (s1)− V πk

1 (s1)
)

=Eπk
[I[E∁k,1,π]

(
V π
2 (s2)− V πk

2 (s2)
)
] + I[Ẽk,1,π]

(
V π
1 (s1)− V πk

1 (s1)
)

(Ẽk,1,π = Ek,1,π by definition)

24

=Eπk
[I[E∁k,2,π ∩ E∁k,1,π]

(
Qπ

2 (s2, πk)−Qπk
2 (s2, πk)

)
]

+ Eπk
[I[Ek,2,π ∩ E∁k,1,π]

(
V π
2 (s2)− V πk

2 (s2)
)
] + I[Ẽk,1,π]

(
V π
1 (s1)− V πk

1 (s1)
)

=Eπk
[I[E∁k,2,π ∩ E∁k,1,π]

(
Qπ

2 (s2, πk)−Qπk
2 (s2, πk)

)
]

+ Eπk
[I[Ẽk,2,π]

(
V π
2 (s2)− V πk

2 (s2)
)
] + I[Ẽk,1,π]

(
V π
1 (s1)− V πk

1 (s1)
)

=...

=Eπk
[

H∑
h=1

I[Ẽk,h,π](V π
h (sh)− V πk

h (sh))]

Lemma E.3 (Relationship between Density Difference and Policy Disagreement Probability).

dπk(sh, ah) ≥ dπ(sh, ah)−min{Pr(Ēk,π|πk), d
π(sh, ah)}, ∀sh ∈ Sh, ah ∈ Ah, h ∈ [H]

where we use Pr(Ēk,π|πk) as a short note of Es1,a1,s2,a2...,sH ,aH∼πk
[Ēk,π].

Proof. By applying Lemma E.2 with δsh,ah
:= I[Sh = sh, Ah = ah] as reward function, we have:

dπ(sh, ah)− dπk(sh, ah) =V π
1 (s1; δsh,ah

)− V πk
1 (s1; δsh,ah

)

=Eπk
[

h∑
h′=1

I[Ẽk,h′,π](V
π
h′(sh′ ; δsh,ah

)− V πk

h′ (sh′ ; δsh,ah
))]

(V π
h′ = V πk

h′ = 0 for all h′ ≥ h+ 1)

≤Eπk
[

h∑
h′=1

I[Ẽk,h′,π]V
π
h′(sh′ ; δsh,ah

)] (V πk

h′ (s′h; δsh,ah
) ≥ 0)

≤Eπk
[

h∑
h′=1

I[Ẽk,h′,π]] (V π
h′(s′h; δsh,ah

) ≤ 1)

≤Es1,a1,s2,a2...,sH ,aH∼πk
[Ēk,π] = Pr(Ēk,π|πk)

which implies that,

dπk(sh, ah) ≥ dπ(sh, ah)− Pr(Ēk,π|πk)

Combining with dπk ≥ 0, we finish the proof.

Definition E.4 (Conversion to Optimal Deterministic Policy). Given arbitrary deterministic policy
π = {π1, ..., πH}, we use Π∗ ◦ π = {π∗

1 , ..., π
∗
H} to denote an optimal deterministic policy, such

that:

π∗
h(sh) =

{
πh(sh), if πh(sh) ∈ Π∗

h(sh);

Select(Π∗
h(sh)), otherwise.

where Select is a function which returns the first optimal action from Π∗
h(sh).

In another word, Π∗ ◦ π agrees with π if πh(sh) is one of the optimal action at state sh. Otherwise,
Π∗ ◦ π takes one of a fixed optimal action from Π∗

h(sh). In order to make sure Π∗◦ is a deterministic
mapping, we assume function Select only choose the first optimal action in Π∗(sh) (ordered by
index of action).

Theorem 4.7. For an arbitrary sequence of deterministic policies π1, π2, ..., πk, there must exist a
sequence of deterministic optimal policies π∗

1 , π
∗
2 , ..., π

∗
k, such that ∀h ∈ [H], sh ∈ Sh, ah ∈ Ah:

k∑
k̃=1

dπk̃(sh, ah) ≥
k∑

k̃=1

dπ
∗
k̃(sh, ah)−

1

∆min

(k∑
k̃=1

V ∗
1 (s1)− V

π
k̃

1 (s1)
)
.

25

Proof. For each πk, we construct an optimal deterministic policy π∗
k := Π∗ ◦ πk, where Π∗◦ is

defined in Def. E.4. By applying Lemma E.2 with the reward function in MDP, and π = π∗
k, we have:

V
π∗
k

1 (s1)− V πk
1 (s1) =Eπk

[

H∑
h=1

I[Ẽk,h,π∗
k
](V

π∗
k

h (sh)− V πk

h (sh))]

≥Eπk
[

H∑
h=1

I[Ẽk,h,π∗
k
](V

π∗
k

h (sh)−Q
π∗
k

h (sh, πk(sh)))]

≥Eπk
[

H∑
h=1

I[Ẽk,h,π∗
k
]∆min] = ∆min Pr(Ēk,π∗

k
|πk)

Therefore, we have:

Pr(Ēk,π∗
k
|πk) ≤

1

∆min
(V

π∗
k

1 (s1)− V πk
1 (s1))

By applying Lemma E.3, we have:

dπk(sh, ah) ≥ dπ
∗
k(sh, ah)−

1

∆min

(
V ∗
1 (s1)− V πk

1 (s1)
)
, ∀sh ∈ Sh, ah ∈ Ah, h ∈ [H]

After the same discussion for all k ∈ [K], and the above inequality of each k together, we have:

K∑
k=1

dπk(sh, ah) ≥
K∑

k=1

dπ
∗
k(sh, ah)−

1

∆min
(

K∑
k=1

V ∗
1 (s1)− V πk

1 (s1)
)

Corollary E.5 (Unique Optimal Policy). When |Π∗| = 1, Thm. 4.7 implies that:

K∑
k=1

dπk(sh, ah) ≥ Kdπ
∗
(sh, ah)−

1

∆min
(

K∑
k=1

V ∗
1 (s1)− V πk

1 (s1)
)

Theorem 4.8. [The existance of well-covered optimal policy] Given an arbitrary tabular MDP, and
an arbitrary sequence of deterministic optimal policies π∗

1 , π
∗
2 , ...π

∗
k (π∗

i may not equal to π∗
j for

arbitrary 1 ≤ i < j ≤ k when there are multiple deterministic optimal policies), there exists a
(possibly stochastic) policy π∗

cover such that ∀h ∈ [H],∀(sh, ah) ∈ Sh ×Ah with dπ
∗
cover(sh, ah) > 0:

k∑
k̃=1

dπ
∗
k̃(sh, ah) ≥

k

2
· d̃π

∗
cover(sh, ah), with d̃π

∗
cover(·, ·) := max

{
d∗h,min(·, ·)

(|Zh,div|+ 1)H
, dπ

∗
cover(·, ·)

}
.

where Z∗
h,div := {(sh, ah) ∈ Sh × Ah|∃π∗, π̃∗ ∈ Π∗, s.t. dπ

∗
(sh) > 0, dπ̃

∗
(sh) = 0}, and

d∗h,min(sh, ah) := minπ∗∈Π∗ dπ
∗
(sh, ah) subject to dπ

∗
(sh, ah) > 0.

Proof. For arbitrary h ∈ [H], we define:

NI∗
K
(sh, ah) :=

K∑
k=1

I[dπ
∗
k(sh, ah) > 0]

In another word, NI∗
K
(·, ·) denotes the number of optimal policies in the sequence, which can hit

state sh and take action ah.

Next, we define Z∗
h, Z insuff

h and Πh,insuff as

Z∗
h :={(sh, ah) ∈ Sh,Ah|∃π∗ ∈ Π∗, s.t. dπ

∗
(sh, ah) > 0}

Z insuff
h :={(sh, ah)|(sh, ah) ∈ Z∗

h : NI∗
K
(sh, ah) <

K

2(|Z∗
h,div|+ 1)H

}

I insuff
h :={k ∈ [K] : ∃(sh, ah) ∈ Z insuff

h , s.t. dπk(sh, ah) > 0}

26

In a word, Z∗
h is the collection of states actions reachable by at least one optimal policy, Z insuff

h is a
collection of “insufficiently hitted” states actions at step h, which are only covered by a small portion
of optimal policies in the sequence, and I insuff

h is a collection of the index of the optimal policies in
the sequence, which cover at least one state action pair in Z insuff

h .

Note that we must have Z insuff
h ⊂ Zh,div), because if one state action pair sh, ah is reachable by

arbitrary deterministic policy, then NI∗
k
(sh, ah) = K. Then, we have:

|I insuff
h | < |Z insuff

h | · K

2(|Zh,div|+ 1)H
≤ |Zh,div| ·

K

2(|Zh,div|+ 1)H
≤ K

2H

We define Isuff
1:H := IK \

⋃H
h=1 I

insuff
h . Intuitively, Isuff

1:H is the set including the indices of optimal
policies in the sequence only hitting those states which are covered by most of the other optimal
policies. In fact, Isuff

1:H is non-empty since:

|Isuff
1:H | ≥ K − K

2H
·H =

K

2

We use π∗
Isuff
1:H

to denote the average mixture policy over {π∗
i : i ∈ Isuff

1:H}, a direct result is that:

K∑
k=1

dπ
∗
k(sh, ah) ≥

∑
k∈Isuff

1:H

dπ
∗
k(sh, ah) = |Isuff

1:H | · d
π∗
Isuff
1:H ≥ K

2
· d

π∗
Isuff
1:H

On the other hand, for all sh, ah such that d
π∗
Isuff
1:H (sh, ah) > 0, we must have (sh, ah) ̸∈ Z insuff

h , and
therefore:

K∑
k=1

dπ
∗
k(sh, ah) ≥

K

2(|Zh,div|+ 1)H
d∗h,min(sh, ah)

Combining the above two inequalities, we finish the proof.

F Analysis of Pessimistic Value Iteration

In this section, we provide analysis for Alg. 3. Our analyses base on an extension of the Clipping
Trick in [Simchowitz and Jamieson, 2019] into our setting.

F.1 Underestimation and Some Concrete Choices of Bonus Term

Lemma F.1 (Underestimation). Given a Bonus satisfying Cond. 4.4, for arbitrary dataset Dk

consisting of k trajectories by a sequence of policies π1, ..., πk, by running Alg 3 with Dk and the
bonus term b(·, ·) returned by Bonus(Dk, δk), on the events EBonus defined in Cond. 4.4:

∀h ∈ [H],∀sh ∈ Sh, ah ∈ Ah, Q̂h(sh, ah) ≤ QπQ̂,h(sh, ah) ≤ Q∗(sh, ah) (16)

where we use πQ̂ = {πQ̂,1, ..., πQ̂,H} to denote the greedy policy w.r.t. Q̂.

Proof. We only prove the first inequality holds, since the second one holds directly because of the
definition of optimal policy.

First of all, VH+1 = 0 ≤ V
πQ̂

H+1 holds directly, which implies that Eq.(16) holds at step h = H as a
result of the deterministic reward function.

Now, we conduct the induction. Suppose Eq.(16) already holds for h+ 1, which implies that:

V̂h+1(sh+1) = Q̂h+1(sh+1, πQ̂,h+1(sh+1)) ≤ Q
πQ̂

h+1(sh+1, πQ̂,h+1(sh+1)) = V
πQ̂

h+1(sh+1) (17)

then, at step h, we have:

Qh(sh, ah)−QπQ̂(sh, ah) =P̂hV̂h+1(sh, ah)− bh(sh, ah)− PhV
π
h+1(sh, ah)

= (P̂h − Ph)V̂h+1(sh, ah)− bh(sh, ah)︸ ︷︷ ︸
part 1

+Ph(V̂h+1 − V
πQ̂

h+1)(sh, ah)︸ ︷︷ ︸
part 2

As we can see, part 1 is non-positive with probability 1− δ as a result of Cond. 4.4, while part 2 is
also less than or equal to zero because of the induction condition in Eq.(17).

27

Choice 1: Naive Bound According to Hoeffding inequality, with probability 1− δ/(SAH), we
have the following holds for each sh, ah, h

|P̂hVh+1 − PhVh+1| ≤ ∥P̂h − Ph∥1∥Vh+1∥∞ ≤ ∥P̂h − Ph∥1H ≤ c1HS

√
log(SAH/δ)

N(sh, ah)

which implies that condition 4.4 holds with probability 1− δ as long as:

bh(N, δ) := HS

√
log(SAH/δ)

N

Choice 2: Adaptive Bonus Term based on the “Bernstein Trick” One can also consider an
analogue of the bonus term functions in Alg. 3 of [Simchowitz and Jamieson, 2019], which is
originally designed for optimistic algorithms. We omit the discussions here.

F.2 Definition of “Surplus” in Pessimistic Algorithms and the Clipping Trick

We consider the pessimistic algorithm, and denote the estimation of value function as Q̂, V̂ . We
assume they are pessimistic estimation, i.e.:

V ∗
h (sh) = Q∗

h(sh, π
∗) ≥ Q∗

h(sh, πQ̂) ≥ V πk

h (sh) ≥ Q̂h(sh, πQ̂) ≥ Q̂h(sh, π
∗).

Definition F.2 (Definition of Surplus in Pessimistic Algorithm setting). We define the surplus in
Pessimistic Algorithm setting:

Ek,h(sh, ah) =r(sh, ah) + PhV̂k,h+1(sh, ah)− Q̂k,h(sh, ah).

Because of the underestimation, different from the surplus in overestimation cases [Simchowitz
and Jamieson, 2019], here we flip the role between Q̂ and r + PV̂ to make sure the quantity is
non-negative (with high probability).

Based on our definition, we have the following lemma:
Lemma F.3. Under the same condition as Lemma F.1, for arbitrary h, sh, the policy πPVI

k returned
by Alg.3 satisfying:

V
πPVI
k

h (sh)− V̂k,h(sh) =EπPVI
k
[

H∑
h′=h

Ek,h′(sh′ , ah′)|sh]

Moreover, for arbitrary optimal deterministic or non-deterministic policy π∗, we have:

V ∗
h (sh)− V̂k,h(sh) ≤V ∗

h (sh)− Q̂k,h(sh, π
∗) ≤ Eπ∗ [

H∑
h′=h

Ek,h′(sh′ , ah′)]

Proof.

V
πPVI
k

h (sh)− V̂k,h(sh)

=Eah∼πPVI
k
[r(sh, ah) + PhV

πPVI
k

h+1 (sh, ah)− Q̂k,h(sh, ah)± PhV̂k,h+1(sh, ah)]

=EπPVI
k
[r(sh, ah) + PhV̂k,h+1(sh, ah)− Q̂k,h(sh, ah) + Ph(V

πPVI
k

h+1 − V̂k,h+1)(sh, ah)]

=EπPVI
k
[

H∑
h′=h

Ek,h′(sh′ , ah′)|sh]

Besides, given arbitrary optimal policy π∗, we have:

V ∗
h (sh)− V̂k,h(sh)

=V ∗
h (sh)− Q̂k,h(sh, π

PVI
k) ≤ V ∗

h (sh)− Q̂k,h(sh, π
∗) (πPVI

k is greedy policy w.r.t. Q̂k)

28

=Eah∼π∗ [r(sh, ah) + PhV̂k,h+1(sh, ah)− Q̂k,h(sh, ah) + Ph(V
∗
h+1 − V̂k,h+1)(sh, ah)]

≤Eπ∗ [

H∑
h′=h

Ek,h′(sh′ , ah′)]

Lemma F.4. Under the same condition as Lemma F.1, we have:

Ek,h ≤ min{H − h+ 1, 2B1

√
log(B2/δk)

Nk,h(sh, ah)
}.

Proof.

Ek,h :=r(sh, ah) + PhV̂k,h+1(sh, ah)− Q̂k,h(sh, ah)

=PhV̂k,h+1 − P̂k,hV̂k,h+1 + bk,h(sh, ah) ≤ 2bk,h(sh, ah) ≤ 2B1

√
log(B2/δk)

Nk,h(sh, ah)
.

On the other hand, because the reward function is always locates in [0, 1] and Q̂ is always larger than
zero, we have Ek,h(sh, ah) ≤ H − h+ 1 ≤ H .

In the following, we define

Ëk,h(sh, ah) := clip[Ek,h(sh, ah)|εClip].

where εClip := ∆min

2H+2 , and Clip[x|ε] := x · I[x ≥ ε]. Then, we recursively define

Q̈π
k,h(sh, ah) = Eπh

[r(sh, ah)− Ëk,h(sh, ah) + PhV̈
π
k,h+1(sh, ah)|sh, ah], V̈ π

k,h(sh) := Q̈π
k,h(sh, πh)

Note that although different optimal policies π∗ and π̃∗ have the same optimal value V ∗, V̈ π∗
may no

longer equal to V̈ π̃∗
because they may have different state occupancy and V̈ depends on E. Therefore,

in the following, when we consider the V̈ for optimal policies, we will always specify which optimal
policy we are referring to.

Lemma F.5 (Relationship between V̈ π∗
, V πPVI

k and V̂k,h). Under the same condition as Lemma F.1,
for arbitrary optimal policy π∗, we have:

V̈ π∗

k,h(sh) ≤ V̂k,h(sh) + (H − h+ 1)εClip ≤ V πPVI
k (sh) + (H − h+ 1)εClip

Proof. Note that:

Ëk,h(sh, ah) ≥ Ek,h(sh, ah)− εClip

Therefore,

V ∗
h (sh)− V̈ π∗

h (sh) =Eπ∗ [

H∑
h=h′

Ëk,h′(sh′ , ah′)|sh]

≥Eπ∗ [

H∑
h′=h

Ek,h′(sh′ , ah′)− εClip|sh]

≥V ∗
h (sh)−min{Q̂k,h(sh, π

∗), V̂k,h(sh)} − (H − h+ 1)εClip (Lemma F.3)

≥V ∗
h (sh)−min{QπPVI

k

h (sh, π
∗), V

πPVI
k

h (sh)} − (H − h+ 1)εClip
(Underestimation (Lemma F.1))

Therefore,

V̈ π∗

k,h(sh) ≤ V̂k,h(sh) + (H − h+ 1)εClip ≤ V
πPVI
k

h (sh) + (H − h+ 1)εClip

29

F.3 Additional Lemma for the Analysis of the Regret of AlgE when Optimal Deterministic
Policies are non-unique

We first introduce a useful Lemma related to the clipping operator from [Simchowitz and Jamieson,
2019]

Lemma F.6 (Lemma B.3 in [Simchowitz and Jamieson, 2019]). Let M ≥ 2, a1, ...am ≥ 0 and
ε ≥ 0. Clip[

∑m
i=1 ai|ε] ≤ 2

∑m
i=1 Clip[ai| ε

2m].

Next, based on definition of dmin in Eq.(10), we have the following Lemma:

Lemma F.7. Given arbitrary deterministic policy π, if π ̸∈ Π∗, we have:

V ∗
1 (s1)− V π

1 (s1) ≥ dmin∆min

Proof. We use π∗ := Π∗ ◦ π to denote the converted deterministic optimal policy, where Π∗◦ is
defined in Def. E.4. As a direct application of Lemma E.2, we have:

V ∗
1 (s1)− V π

1 (s1) =V π∗

1 (s1)− V π
1 (s1) = E[

H∑
h=1

I[Ẽh](V π∗

h (sh)− V π
h (sh))]

≥∆minE[
H∑

h=1

I[Ẽh]]

≥∆min Pr(Ẽhinit
)

≥∆mindmin

where we use Ẽh to denote the event that at step h, π first disagrees with π∗, or equivalently, π first
take non-optimal action; in the second inequality, we define hinit := minh∈[H], s.t. Pr(Ẽh) > 0.
Besides, the last inequality is because:

Pr(Ẽhinit
) =

∑
shinit

∈Shinit

I[π∗
h(sh) ̸= πh(sh)]d

π(sh)

=
∑

shinit
∈Shinit

I[π∗
h(sh) ̸= πh(sh)]d

π∗
(sh)

≥
∑

shinit
∈Shinit

I[π∗
h(sh) ̸= πh(sh)]dmin

≥dmin

where the last step is because, according to the definition of hinit, there is at least one sh ∈ Sh such
that I[π∗

h(sh) ̸= πh(sh)] = 1.

F.4 Upper Bound for the Regret of AlgE

Theorem 4.5. By running Algorithm 3 with confidence level δk, a function Bonus satisfying Condition
4.4, and a dataset D = {τ1, ...τk} consisting of k complete trajectories generated by executing a
sequence of policies π1, ..., πk, on the event EBonus defined in Condition 4.4:

V ∗
1 (s1)− V

πPVI
k

1 (s1) ≤ 2Eπ∗

[
H∑

h=1

Clip

[
min

{
H, 2B1

√
log(B2/δk)

Nk,h(sh, ah)

}∣∣∣∣∣ εClip

]]
. (1)

where π∗ can be an arbitrary optimal policy, εClip := ∆min

2H+2 if |Π∗| = 1 and εClip := dmin∆min

2SAH if
|Π∗| > 1, where dmin := minπ∈Π∗,h∈[H],sh∈Sh,ah∈Ah

dπ(sh, ah) subject to dπ(sh, ah) > 0.

Proof. We separately discuss the cases when there are unique or multiple deterministic optimal
policies.

30

Case 1: Unique Deterministic Optimal Policy For arbitrary h, sh, suppose πPVI
k (sh) ̸∈ Π∗(sh),

we have:
V ∗
h (sh)− V̈ π∗

k,h(sh) ≥V ∗
h (sh)− V̂k,h(sh)− (H − h+ 1)εClip

≥1

2

(
V ∗
h (sh)− V̂k,h(sh)

)
+

1

2

(
V ∗
h (sh)− V

πPVI
k

h (sh)
)
− ∆min

2

≥1

2

(
V ∗
h (sh)− V̂k,h(sh)

)
+

1

2

(
V ∗
h (sh)−Q∗

h(sh, π
PVI
k)

)
− ∆min

2

=
1

2

(
V ∗
h (sh)− V̂k,h(sh)

)
+

∆h(sh, π
PVI
k (sh))

2
− ∆min

2

≥1

2

(
V ∗
h (sh)− V̂k,h(sh)

)
Recall the definition of Events in Def.E.1, and note that when the optimal policy is unique, the events
Ẽk,h,π∗ , Ēk,h,π∗ collapse to Ẽk,h, Ēk,h, respectively. For arbitrary optimal policy π∗, we have:

V ∗
1 (s1)− V̈ π∗

1 (s1) =V π∗

1 (s1)− V̈ π∗

1 (s1)

=I[Ek,1]
(
V ∗
1 (s1)− V̈ π∗

1 (s1)
)
+ I[E∁k,1]

(
V ∗
1 (s1)− V̈ π∗

1 (s1)
)

≥I[Ek,1]
1

2

(
V ∗
1 (s1)− V̂k,1(s1)

)
+ I[E∁k,1]P(V ∗

2 − V̈ π∗

2)(s1, π
∗)

≥...

≥1

2
Eπ∗ [

H∑
h=1

I[Ẽk,h](V ∗
h (sh)− V̂k,h(sh))]

Besides, on the other hand,

V ∗
1 (s1)− V

πPVI
k

1 (s1) =I[Ek,1](V π∗

1 − V
πPVI
k

1 (s1)) + I[E∁k,1](V π∗

1 −Q
πPVI
k

1 (s1, π
∗))

=I[Ek,1](V π∗

1 − V
πPVI
k

1 (s1)) + I[E∁k,1]P1(V
∗
2 − V

πPVI
k

2)(s1, π
∗))

=...

=EπPVI
k
[

H∑
h=1

I[Ẽk,h](V π∗

h (sh)− V
πPVI
k

h (sh))]

≤EπPVI
k
[

H∑
h=1

I[Ẽk,h](V π∗

h (sh)− V̂k,h(sh))]

Combining the above two results and Lemma F.4, we finish the discussion for Case 1.

Case 2: Non-unique Optimal Deterministic Policies From Lemma F.3, we know that,

V ∗
1 (s1)− V

πPVI
k

1 (s1) ≤ V ∗
1 (s1)− V̂k,1(s1) ≤Eπ∗ [

H∑
h=1

Ek,h(sh, ah)]

where π∗ can be arbitrary optimal policy. Combining with Lemma F.7, we know that:

V ∗
1 (s1)− V

πPVI
k

1 (s1) ≤Clip[Eπ∗ [

H∑
h=1

Ek,h(sh, ah)]|dmin∆min]

≤2
H∑

h=1

∑
sh∈Sh,ah∈Ah

Clip[dπ
∗
(sh, ah)Ek,h(sh, ah)|

dmin∆min

2SAH
]

(Lemma F.6)

≤2
H∑

h=1

Eπ∗ [Clip[Ek,h(sh, ah)|
dmin∆min

2SAH
]]

where the last inequality is because Clip[αx|ε] < αClip[x|ε] as long as α < 1. Combining with
Lemma F.4, we finish the proof.

31

Next, we introduce a useful Lemma from [Dann et al., 2017]:
Lemma F.8 (Lemma 7.4 in [Dann et al., 2017]). Let Fi for i, 1... be a filtration and X1, ...Xn be a
sequence of Bernoulli random variables with Pr(Xi = 1|Fi−1) = Pi with Pi beingFi−1-measurable
and Xi being Fi measurable. It holds that

Pr(∃n :

n∑
i=1

Xi <

n∑
i=1

Pi/2−W) ≤ e−W

Definition of Good Events We first introduce some notations about good events which holds with
high probability. We override the definition in Cond. 4.4 by assigning δ = δk = 1/kα at iteration k,
i.e.:

EBonus,k :=
⋂

h∈[H],sh∈Sh,ah∈Ah

{
|P̂k,hVk,h+1(sh, ah)− PhVk,h+1(sh, ah)| < bk,h(sh, ah)}

∩ {bk,h(sh, ah) ≤ B1

√
log(B2 · kα)
Nk,h(sh, ah)

}
,

with bk = {bk,1, ..., bk,H} ← Bonus(Dk, 1/k
α).

Besides, we use ECon,k to denote the concentration event that

ECon,k :=
⋂

h∈[H],sh∈Sh,ah∈Ah

{Nk,h(sh, ah) ≥
1

2

k∑
k′=1

dπ
O
k′ (sh, ah)− α log(SAHk)}

Finally, we use EAlgO,k to denote the good events that the regret of AlgO is only at the level log k:

EAlgO,k := {
k∑

k̃=1

V ∗
1 (s1)− V

πO
k̃

1 (s1) < C1 + αC2 log k}

Based on Cond. 4.4, Cond. 4.6 and Lemma F.8, we have:

Pr(EAlgO,k) ≥ 1− 1

kα
, Pr(EBonus,k) ≥ 1− 1

kα

Pr(ECon,k) ≥ 1− SAH · exp(−α log(SAHk)) = 1− SAH

(SAHk)α
≥ 1− 1

kα

Lemma F.9. [One Step Sub-optimality Gap Conditioning on Good Events] At iteration k, on the
good events EBonus,k, ECon,k and EAlgO,k, the sub-optimality gap of πE

k can be upper bounded by:

(i) when |Π∗| = 1 (i.e. the optimal deterministic policy is unique):

V ∗
1 (s1)− V πE

k(s1) ≤ 2Eπ∗

[H∑
h=1

Clip
[
I[k < τ̄π

∗

sh,ah
]} ·H + I[k ≥ τ̄π

∗

sh,ah
] ·B1

√
8α log(B2k)

kdπ∗(sh, ah)

∣∣∣εClip

]]
(ii) when |Π∗| > 1 (i.e. there are multiple optimal deterministic policy):

V ∗
1 (s1)− V πE

k(s1) ≤ 2Eπ∗
cover

[H∑
h=1

Clip
[
I[k < τ̄

π∗
cover

sh,ah]} ·H + I[k ≥ τ̄
π∗

cover
sh,ah] ·B1

√
4α log(B2k)

kd̃π
∗
cover(sh, ah)

∣∣∣ε′Clip

]]
where εClip := ∆min

2H+2 and ε′Clip := dmin∆min

2SAH ; π∗
cover and d̃π

∗
cover(sh, ah) are defined in Thm. 4.8;

besides,

τ̄πsh,ah
:= cτ

α(C1 + C2)

dπ(sh, ah)∆min
log

αSAH(C1 + C2)

dπ(sh, ah)∆min
, τ̄

π∗
cover

sh,ah := c′τ
α(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

log
αSAH(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

.

for some constant cτ , c′τ .

Proof. We first discuss the case when |Π∗| = 1.

32

Case 1: unique optimal deterministic policy As a result of Thm. 4.5, on the event EBonus,k, we
show that the sub-optimality gap of πE

k can be upper bounded by:

V ∗
1 (s1)− V

πE
k

1 (s1) ≤2Eπ∗ [

H∑
h=1

Ëk,h(sh, ah)] =

H∑
h=1

∑
sh,ah

dπ
∗
(sh, ah)Ëk,h(sh, ah)

Because of Lemma F.4, the above further implies that:

V ∗
1 (s1)− V

πE
k

1 (s1) ≤2Eπ∗ [dmin{H − h+ 1, 2B1

√
α log(B2k)

Nk,h(sh, ah)
}].

Because of Thm. 4.7, on the event ECon,k and EAlgO,k, we further have:

Nk,h(sh, ah) ≥
1

2

k∑
k′=1

dπ
O
k′ (sh, ah)− α log(SAHk)

≥1

2

k∑
k′=1

dπ
∗
k′ (sh, ah)− α log(SAHk)− 1

∆min
(C1 + αC2 log k)

≥k

2
dπ

∗
(sh, ah)− α log(SAHk)− 1

∆min
(C1 + αC2 log k)

Now, we define that,

τπ
∗

sh,ah
:= inf

t:∀t′≥t
{1
4
tdπ

∗
(sh, ah) ≥ α log(SAHt) +

1

∆min
(C1 + αC2 log t)}

there must exists a constant cτ independent with C1, C2, α, d
π∗
(sh, ah) and ∆min, such that:

∀h ∈ [H], sh ∈ Sh, ah ∈ Ah, τπ
∗

sh,ah
≤ τ̄π

∗

sh,ah
:= cτ

α(C1 + C2)

dπ∗(sh, ah)∆min
log

αSAH(C1 + C2)

dπ∗(sh, ah)∆min
.

Easy to check that, for arbitrary k ≥ τ̄π
∗

sh,ah
, on the good events, we can verify that Nk,h ≥

k
4d

π∗
(sh, ah) ≥

τ̄π∗
sh,ah

4 dπ
∗
(sh, ah) ≥ cτ

4 > 0, and as a result, we have:

V ∗
1 (s1)− V

πE
k

1 (s1)

≤2Eπ∗

[H∑
h=1

Clip
[
min{H − h+ 1, 2B1

√
α log(B2k)

Nk,h(sh, ah)
}
∣∣∣εClip

]]

≤2Eπ∗

[H∑
h=1

Clip
[
I[k < τ̄π

∗

sh,ah
]} ·H + I[k ≥ τ̄π

∗

sh,ah
] ·B1

√
α log(B2k)

kdπ∗(sh, ah)/4

∣∣∣εClip

]]
Case 2: multiple optimal deterministic policies The discussion are similar. As a result of Thm.
4.8, on the event ECon,k and EAlgO,k, we further have:

Nk,h(sh, ah) ≥
k

4
·max{

d∗h,min(sh, ah)

(|Zh,div|+ 1)H
, dπ

∗
cover(sh, ah)} − α log(SAHk)− 1

∆min

(K∑
k=1

V ∗
1 (s1)− V πk

1 (s1)
)

≥k

4
d̃π

∗
cover(sh, ah)− α log(SAHk)− 1

∆min
(C1 + αC2 log k)

Similarly, we define that,

τ
π∗

cover
sh,ah := inf

t:∀t′≥t
{ t
8
d̃π

∗
cover(sh, ah) ≥ α log(SAHt) +

1

∆min
(C1 + αC2 log t)}

there must exists a constant c′τ independent with C1, C2, α, d̃
π∗

cover(sh, ah) and ∆min, such that:

∀h ∈ [H], sh ∈ Sh, ah ∈ Ah, τ
π∗

cover
sh,ah ≤ τ̄

π∗
cover

sh,ah := c′τ
α(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

log
αSAH(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

.

33

For arbitrary k ≥ τ̄
π∗

cover
sh,ah , on the good events, we can verify that Nk,h ≥ k

8d
π∗

cover(sh, ah) > 0, and as
a result, we have:

V ∗
1 (s1)− V

πE
k

1 (s1) ≤ 2Eπ∗
cover

[H∑
h=1

Clip
[
I[k < τ̄

π∗
cover

sh,ah]} ·H + I[k ≥ τ̄
π∗

cover
sh,ah] ·B1

√
8α log(B2k)

kd̃π
∗
cover(sh, ah)

∣∣∣ε′Clip

]]

Now, we are ready to prove the main theorem.

Theorem 4.9. By running an Algorithm satisfying Condition 4.6 as AlgO, running Alg 3 as AlgE with
a bonus term function Bonus satisfying Condition 4.4 and δk = 1/kα, for some constant α > 1, for
arbitrary K ≥ 1, the exploitation regret of AlgE can be upper bounded by:

(i) When |Π∗| = 1 (unique optimal deterministic policy):

RegretK(AlgE) ≤O
(H∑

h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

(C1 + C2

∆min
log

SAH(C1 + C2)

dπ∗(sh, ah)∆min
+

B1H

∆min
log

B2H

dπ∗(sh, ah)∆min

))
.

(ii) When |Π∗| > 1 (non-unique optimal deterministic policies):

RegretK(AlgE) ≤ O
(H∑

h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

(C1 + C2

∆min
log

SAH(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

+
B1SAH

dmin∆min
log

B2SAH

dmin∆min

))
.

where π∗
cover and d̃π

∗
cover(sh, ah) are introduced in Theorem 4.8.

Proof. Because the expectation and summation are linear, we have:

E[
K∑

k=1

V ∗ − V πE
k] =

K∑
k=1

E[V ∗ − V πE
k]

Therefore, in the following, we first provide an upper bound for each E[V ∗ − V πE
k]. Note that the

expected regert at step k can be upper bounded by:

EAlgO,M,AlgE [V ∗
1 (s1)− V

πE
k

1 (s1)]

=Pr(EBonus,k ∩ ECon,k ∩ EAlgO,k)EAlgO,M,AlgE [V ∗
1 (s1)− V

πE
k

1 (s1)|EBonus,k ∩ ECon,k ∩ EAlgO,k]

+ Pr(E∁Bonus,k ∪ E∁Con,k ∪ E∁AlgO,k)EAlgO,M,AlgE [V ∗
1 (s1)− V

πE
k

1 (s1)|E∁Bonus,k ∪ E∁Con,k ∪ E∁AlgO,k]

≤Pr(EBonus,k ∩ ECon,k ∩ EAlgO,k)EAlgO,M,AlgE [V ∗
1 (s1)− V

πE
k

1 (s1)|EBonus,k ∩ ECon,k ∩ EAlgO,k] +
3H

kα

Easy to see that limK→∞
∑K

k=1
1
kα < α

α−1 <∞ as long as α > 1, therefore, in the following, we
mainly focus on the first part, and separately discuss its upper bound for the case when |Π∗| = 1 or
|Π∗| > 1.

Case 1: |Π∗| = 1 (Unique Optimal Policy) We use π∗ to denote the unique optimal policy and
define:

τπ
∗

sh,ah,εClip
:= inf

t,∀t′≥t
{B1

√
α log(B2t)

tdπ∗(sh, ah)/4
< εClip}

Recall that εClip := ∆min/(2H + 2), it’s easy to verify that, there exists a constant cClip such that,

τπ
∗

sh,ah,εClip
≤ τ̃π

∗

sh,ah,εClip
:= cClip

αH2

dπ∗(sh, ah)∆2
min

log
αB2H

dπ∗(sh, ah)∆min

34

Then, we have:

lim
K→∞

K∑
k=1

2Eπ∗

[H∑
h=1

Clip
[
I[k < τ̄π

∗

sh,ah
]} ·H + I[k ≥ τ̄π

∗

sh,ah
] ·B1

√
α log(B2k)

kdπ∗(sh, ah)/4

∣∣∣εClip

]]

=2Eπ∗

[H∑
h=1

(τ̄π∗
sh,ah∑
k=1

H +

K∑
k=τ̄π∗

sh,ah
+1

Clip
[
B1

√
α log(B2k)

kdπ∗(sh, ah)/4

∣∣∣εClip

])]

≤2Eπ∗ [

H∑
h=1

τ̄π∗
sh,ah∑
k=1

H] + 2Eπ∗

[H∑
h=1

∫ τ̃π∗
sh,ah,εClip

x=τ̄π∗
sh,ah

B1

√
α log(B2x)

xdπ∗(sh, ah)/4
dx]

≤2Eπ∗ [

H∑
h=1

τ̄π∗
sh,ah∑
k=1

H] + 2

H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

B1

√
4αdπ∗(sh, ah)

∫ τ̃π∗
sh,ah,εClip

x=τ̄π∗
sh,ah

√
log(B2x)

x
dx

For the first part, we have:

Eπ∗ [

H∑
h=1

τ̄π∗
sh,ah∑
k=1

H] =

H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

dπ
∗
(sh, ah) ·H · τ̄π

∗

sh,ah

≤cτ
αH(C1 + C2)

∆min
·

H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

log
αSAH(C1 + C2)

dπ∗(sh, ah)∆min

For the second part, we have:

Eπ∗

[H∑
h=1

∫ τ̃π∗
sh,ah,εClip

x=τ̄π∗
sh,ah

B1

√
α log(B2x)

xdπ∗(sh, ah)/4
dx]

≤
H∑

h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

B1

√
4αdπ∗(sh, ah)

∫ τ̃π∗
sh,ah,εClip

x=τ̄π∗
sh,ah

√
log(B2x)

x
dx

≤2
H∑

h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

B1

√
4αdπ∗(sh, ah) · 2(

√
τ̃π∗
sh,ah,εClip

logB2τ̃π
∗

sh,ah,εClip
−
√
τ̄π∗
sh,ah

logB2τ̄π
∗

sh,ah
)

(Lemma F.10)

≤c2
αB1H

∆min

H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

log
αB2H

dπ∗(sh, ah)∆min

where in the last step, we drop the term −
√
τ̄π∗
sh,ah

logB2τ̄π
∗

sh,ah
, and c2 is a constant.

Combining the above results, we have:

EAlgO,M,AlgE [

K∑
k=1

V ∗
1 (s1)− V

πE
k

1 (s1)]

≤
K∑

k=1

3H

kα
+ cτ

α(C1 + C2)

∆min
·

H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

log
αSAH(C1 + C2)

dπ∗(sh, ah)∆min

+ c2
αB1H

∆min

H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

log
αB2H

dπ∗(sh, ah)∆min

35

≤ 3αH

α− 1
+ cAlgE ·

(H∑
h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

α(C1 + C2)

∆min
log

αSAH(C1 + C2)

dπ∗(sh, ah)∆min
+

αB1H

∆min
log

αB2H

dπ∗(sh, ah)∆min

)

where cAlgE is some constant.

Case 2: |Π∗| > 1 (Non-Unique Optimal Policy) Similar to the discussion above, we define:

τ
π∗

cover
sh,ah,ε′Clip

:= inf
t,∀t′≥t

{B1

√
8α log(B2t)

td̃π
∗
cover(sh, ah)

< ε′Clip}

Recall that ε′Clip := dmin∆min/(2SAH), it’s easy to verify that, there exists a constant cClip such
that,

τ
π∗

cover
sh,ah,ε′Clip

≤ τ̃
π∗

cover
sh,ah,ε′Clip

:= cClip
α(SAH)2

d̃π
∗
cover(sh, ah)(dmin∆min)2

log
αB2SAH

d̃π
∗
cover(sh, ah)dmin∆min

Following a similar discussion, we have:

lim
K→∞

K∑
k=1

2Eπ∗
cover

[H∑
h=1

Clip
[
I[k < τ̄

π∗
cover

sh,ah]} ·H + I[k ≥ τ̄
π∗

cover
sh,ah] ·B1

√
8α log(B2k)

kd̃π
∗
cover(sh, ah)

∣∣∣ε′Clip

]]

≤2Eπ∗
cover

[

H∑
h=1

τ̄
π∗

cover
sh,ah∑
k=1

H] + 2

H∑
h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

B1

√
8αdπ

∗
cover(sh, ah)

∫ τ̃
π∗

cover
sh,ah,ε′Clip

x=τ̄
π∗

cover
sh,ah

√
log(B2x)

x
dx

≤c′τ
αH(C1 + C2)

∆min
·

H∑
h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

log
αSAH(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

+ c′2
αB1SAH

dmin∆min

H∑
h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

log
αB2SAH

dmin∆min
(Note that d̃π

∗
cover ≥ dπ

∗
cover)

Therefore, we have:

EAlgO,M,AlgE [

K∑
k=1

V ∗
1 (s1)− V

πE
k

1 (s1)]

≤ 3αH

α− 1
+ c′AlgE ·

(H∑
h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

α(C1 + C2)

∆min
log

αSAH(C1 + C2)

d̃π
∗
cover(sh, ah)∆min

+
αB1SAH

dmin∆min
log

αB2SAH

dmin∆min

)

Lemma F.10 (Computation of Integral). Suppose p ≥ 1, b ≥ a ≥ e/p, then we have:∫ b

a

√
log px

x
dx ≤ 2(

√
b log pb−

√
a log pa)

Proof.∫ b

a

√
log px

x
dx ≤

∫ b

a

1√
x log px

+

√
log px

x
dx = 2

∫ b

a

(
√

x log px)′ = 2(
√
b log pb−

√
a log pa)

36

G Doubling Trick for AlgO Satisfying Cond. G.1

As we briefly mentioned in Sec.4.2.2, Cond.4.6 may not holds for some algorithms with near-optimal
regret guarantees. For example, in [Simchowitz and Jamieson, 2019, Xu et al., 2021, Dann et al.,
2021], although these algorithms are anytime, they require a confidence interval δ as input at the
beginning of the algorithm and fix it during the running, which we abstract into the Cond.G.1 below:

Condition G.1 (Alternative Condition of AlgO). AlgO is an algorithm which returns a deterministic
policies πO

k̃
at each iteration k̃, and for arbitrary fixed k ≥ 2, with probability 1 − δ, we have the

following holds:

k∑
k̃=1

V ∗
1 (s1)− V

πO
k̃

1 (s1) ≤ C1 + C2 log
k

δ

where C1, C2 are some parameters depending on S,A,H and ∆h(sh, ah) and independent with k.

As a result, no matter how small δ is chosen at the beginning, when k ≥ ⌈1/δ⌉, the Cond. 4.6 can
not be directly guaranteed. To overcome this issue, we present a new framework in Alg 5 inspired by
doubling trick.

Algorithm 5: Tiered RL Algorithm with Doubling Trick
1 Input: α > 1.
2 K0 = 1, k = 1, πE

1,1 ← AlgE({}).
3 for n = 1, 2, ... do
4 Kn ← 2Kn, δn−1 = 1/Kα

n , Dn,1 ← {}
5 for k = 1, ...,Kn do
6 // Here we do not update πE

7 πO
n,k+1 ← AlgO(Dn,k, δn).

8 πE
n,k+1 =

{
πE
n−1,Kn−1/2+⌈k/2⌉, If k ≤ Kn/2,

AlgE(Dn,k, 1/k
α), Otherwise.

9 τk+1 ∼ πO
n,k+1

10 Dn,k+1 = Dn,k ∪ τn,k+1

11 end
12 end

The basic idea is to iteratively run AlgO satisfying Cond.G.1 from scratch while gradually doubling
the number of iterations (i.e. Kn) and shrinking the confidence level δn rather than runnning with
a fixed δ forever. Besides, another crucial part is the computation of πE

k . Instead of continuously
updating πE with the data collected before, we only update the exploitation policy when k ≥ Kn/2
for each outer loop n. As we will discuss in Lemma G.2, AlgE

n,k will behave as if the dataset is
generated by another online algorithm satisfying Cond. 4.6, and therefore, the analysis based on
Cond. 4.6 can be adapted here, which we summarize to Thm. G.3 below.

Lemma G.2. By running an algorithm satisfying Cond. G.1 in Alg. 5 as AlgO, for arbitrary n ≥ 1
and Kn/2 + 1 ≤ k < Kn/2, we have:

Pr(

K∑
k=1

V ∗ − V πO
n,k > C ′

1 + αC ′
2 log k) ≤ 1/kα

with C ′
1 = C1 + (α+ 1)C2 log 2 and C ′

2 = α+1
α C2.

Proof. Based on Cond. G.1, we know that:

Pr(

k∑
k′=1

V ∗
1 (s1)− V

πO
k′

1 (s1) > C1 + C2 log
k

δn
) ≤ δn

37

Since δn = 1/Kα
n and k ≥ Kn/2, we have:

Pr(

k∑
k′=1

V ∗
1 (s1)− V

πO
k′

1 (s1) > C1 + (1 + α)C2 log 2k)

=Pr(

k∑
k′=1

V ∗
1 (s1)− V

πO
k′

1 (s1) > C1 + C2 log(2k)
1+α)

≤Pr(

k∑
k′=1

V ∗
1 (s1)− V

πO
k′

1 (s1) > C1 + C2 log
k

δn
) ((2k)1+α ≥ 2kKα

n > k/δn)

≤δn ≤ 1/kα

Now, we are ready to upper bound the regret of AlgE:

Theorem G.3. By choosing an arbitrary algorithm satisfying Cond. G.1 as AlgO, choosing Alg. 3 as
AlgE and choosing a bonus function satisfying Cond. 4.4 as Bonus, the Pseudo regret of πE

n,k in Alg.
5 can be upper bounded by:

(i) |Π∗| = 1 (unique optimal deterministic policy):

E[
N∑

n=1

Kn∑
k=1

V ∗
1 (s1)− V πE

n,k] ≤ 2H +
9αH

α− 1

+ 3cAlgE ·
(H∑

h=1

∑
sh,ah:

dπ∗
(sh,ah)>0

α(C ′
1 + C ′

2)

∆min
log

αSAH(C ′
1 + C ′

2)

dπ∗(sh, ah)∆min
+

αB1H

∆min
log

αB2H

dπ∗(sh, ah)∆min

)

(ii) |Π∗| > 1 (non-unique optimal deterministic policies):

E[
N∑

n=1

Kn∑
k=1

V ∗
1 (s1)− V πE

n,k] ≤ 2H +
9αH

α− 1

+ 3c′AlgE ·
(H∑

h=1

∑
sh,ah:

dπ∗
cover (sh,ah)>0

α(C ′
1 + C ′

2)

∆min
log

αSAH(C ′
1 + C ′

2)

d̃π
∗
cover(sh, ah)∆min

+
αB1SAH

dmin∆min
log

αB2SAH

dmin∆min

)

where C ′
1 = C1 + (α+ 1)C2 log 2 and C ′

2 = α+1
α C2.

Remark G.4 (O(log2 K)-Regret of AlgO). Although the regret of AlgE stays constant under this
framework, it is easy to verify that the pseudo-regret of AlgO will be O(log2 K) as a result of the
doubling trick, which is worse than O(logK) up to a factor of logK. Therefore, more rigorously
speaking, the regret of AlgO will be almost near-optimal.

Proof. The key observation is that one can decompose the total expected regret into two parts:

E[
N∑

n=1

Kn∑
k=1

V ∗ − V πE
n,k] =E[

N∑
n=1

Kn/2∑
k=1

V ∗ − V πE
n,k] + E[

N∑
n=1

Kn∑
k=Kn/2+1

V ∗ − V πE
n,k]

=2E[
N−1∑
n=0

Kn∑
k=Kn/2+1

V ∗ − V πE
n,k] + E[

N∑
n=1

Kn∑
k=Kn/2+1

V ∗ − V πE
n,k]

≤2K0H + 3E[
N∑

n=1

Kn∑
k=Kn/2+1

V ∗ − V πE
n,k] (18)

Therefore, all we need to do is to upper bound the second part of Eq.(18). As a result of Lemma G.2,
we can apply Lemma F.9 to upper bound the regret of the policy sequence {{πE

n,k}Nn=1}
Kn

k=Kn/2+1,

38

Figure 2: Simulation results with S = A = H = 5 and different ∆min, averaged over 10 different
random seeds. Error bars show double the standard errors, which correspond to 95% confidence
intervals. Our choice of AlgE can achieve constant regret as predicted by theory. We can also see the
tendency that larger ∆min will result in smaller accumulative regret.

since the Cond. 4.6 is satisfied when generating those policies. Therefore, the Pseudo regret
E[
∑N

n=1

∑Kn

k=Kn/2+1 V
∗ − V πE

n,k] can be upper bounded by extending the results in Thm. 4.9 here,
and we finish the proof.

H Experiments

H.1 Experiment Setup

Environment We test our algorithms in tabular MDPs with randomly generated transition and
rewards functions. To generate the MDP, for each layer h and each state action pair (sh, ah), we first
sample a random vector P(·|sh, ah), where each element is uniformly sampled from {1, 2, 3..., 10},
and then normalize it to a valid probability vector. Besides, the reward function is set to ξ/10 where
ξ is randomly generated from {1, 2, ..., 10} to make sure it locates in [0, 1].

Algorithm We implement the StrongEuler algorithm in [Simchowitz and Jamieson, 2019] as AlgO

and construct the same adaptive bonus term (Alg. 3 in [Simchowitz and Jamieson, 2019]) for AlgE to
match Cond. 4.4. Although for the convenience of analysis, in our Framework 1, we do not consider
to use the data generated by AlgE, in experiments, we use both τO and τE, which slightly improves
the performance. Besides, in practice, we observe that the bonus term is quite loose, and it will take a
long time before the estimated Q/V value fallen in the interval [0, H], which is the value range of
true value functions. Therefore, we introduce a multiplicator α and adjust the bonus term from bk,h
to α · bk,h, and set α = 0.25 for both AlgO and AlgE.

H.2 Results

We test the algorithms in tabular MDPs with S = A = H = 55. Although the minimal gap ∆min

is hard to control since we generate the MDP in a random way, we filter out three random seeds in
MDP construction, which correspond to minimal gaps (approximately) equal to 0.0015, 0.003 and
0.009, respectively. We report the accumulative regret in Fig. 2.

As predicted by our theory, AlgE can indeed achieve constant regret in contrast with the continuously
increasing regret of AlgO, which demonstrates the advantage of leveraging tiered structure.

5The code can be find in https://github.com/jiaweihhuang/Tiered-RL-Experiments.

39

https://github.com/jiaweihhuang/Tiered-RL-Experiments

	Introduction
	Preliminary and Problem formulation
	Lower Bound of Regret(AlgE) without Gap Assumption
	Pessimism in the Face of Uncertainty and Constant Regret
	Warm-Up: Gap-Dependent Regret Bound for Stochastic Multi-Armed Bandits
	Constant Regret of AlgE in Tabular MDPs
	Pessimistic Value Iteration as AlgE and its Property
	Choice and Analysis of AlgO
	Main Results and Analysis
	Interpretation of Results in Tabular RL

	Conclusion
	Detailed Related Work
	More Discussion about Framework. 1 and Motivating Examples
	Lower Bounds
	Regret Lower Bounds for Tabular MDP without Strictly Positive Gap Assumption
	Lower Bound for the Dependence on logdmin when |*|=1

	Analysis for Bandit Setting
	The Optimality of AlgO in Alg 2
	Analysis for LCB

	Behavior Analysis of Optimistic Algorithm
	Analysis of Pessimistic Value Iteration
	Underestimation and Some Concrete Choices of Bonus Term
	Definition of ``Surplus'' in Pessimistic Algorithms and the Clipping Trick
	Additional Lemma for the Analysis of the Regret of AlgE when Optimal Deterministic Policies are non-unique
	Upper Bound for the Regret of AlgE

	Doubling Trick for AlgO Satisfying Cond. G.1
	Experiments
	Experiment Setup
	Results

