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Abstract

We study the problem of off-policy evaluation (OPE) for episodic Partially Ob-
servable Markov Decision Processes (POMDPs) with continuous states. Motivated
by the recently proposed proximal causal inference framework, we develop a
non-parametric identification result for estimating the policy value via a sequence
of so-called V-bridge functions with the help of time-dependent proxy variables.
We then develop a fitted-Q-evaluation-type algorithm to estimate V-bridge func-
tions recursively, where a non-parametric instrumental variable (NPIV) problem is
solved at each step. By analyzing this challenging sequential NPIV problem, we
establish the finite-sample error bounds for estimating the V-bridge functions and
accordingly that for evaluating the policy value, in terms of the sample size, length
of horizon and so-called (local) measure of ill-posedness at each step. To the best
of our knowledge, this is the first finite-sample error bound for OPE in POMDPs
under non-parametric models.

1 Introduction

In practical reinforcement learning (RL), a representation of the full state which makes the system
Markovian and therefore amenable to most existing RL algorithms is not known a priori. Decision
makers are often facing so-called partial observability of the state information, which significantly
hinders the task of RL. In general, agents have to maintain all historical information and establish
a belief system on the hidden state for optimal decision making. A partially observable Markov
decision process (POMDP) is often used to model the data generating process. See examples in
robotics [Rafferty et al., 2011], precision medicine [Tsoukalas et al., 2015], stochastic game [Hansen
et al., 2004] and many others. However, it is well known that learning optimal policies in POMDP is
computationally intractable [Papadimitriou and Tsitsiklis, 1987]. The issue of partial observability
becomes more serious in the batch setting, where agents are not able to actively collect additional data
and further explore the environment. For example, standard off-policy evaluation (OPE) methods,
which aim to learn a policy value from the batch data generated from some behavior policy, would
fail to give a consistent estimate because of unobserved state variables.

Due to this practical concern, there is a recent line of research studying the OPE under the framework
of a confounded POMDP, where the behavior policy to generate the batch data is allowed to depend
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on some unobserved state variables [e.g., Tennenholtz et al., 2020, Nair and Jiang, 2021, Bennett
and Kallus, 2021, Shi et al., 2021]. Their identification results on the policy value are inspired by
the negative controls or so-called proxy variables in the literature of causal inference [e.g., Miao
et al., 2018a, Tchetgen Tchetgen et al., 2020]. A building block of these results is the existence of
some bridge functions, namely Q/V -bridge or weight-bridge functions, which are projections of
the Q/V -functions or importance weights defined over the original state space onto the observation
space. The corresponding statistical estimation of these bridge functions mainly relies on solving
linear integral equations [e.g., Kress, 1989]. Different from the tabular case studied by Tennenholtz
et al. [2020] and Nair and Jiang [2021] and linear models studied by Shi et al. [2021] theoretically,
solving linear integral equations with non-parametric models in the continuous state/observation
space are known to be challenging due to the potential ill-posedness [Chen and Reiss, 2011], leading
to slow statistical convergence rates. However, existing theoretical results developed by Bennett and
Kallus [2021] and Shi et al. [2021] require fast enough convergence rates for these bridge function
estimators in order to establish the asymptotic normality of their estimators for OPE, which could
be illusive when the problem is seriously ill-posed under non-parametric models. This is different
from the supervised learning where a fast enough convergence rate can be easily achieved under
non-parametric models. Therefore, to fill this important theoretical gap, it is necessary to study the
finite-sample performance of OPE of which bridge functions are estimated non-parametrically.

Motivated by these, in this paper, we study the OPE for confounded and episodic POMDPs with
continuous states, where we non-parametrically estimate V -bridge functions. Our main contribution
to the literature is three-fold. First, relying on some time-dependent proxy variables, we establish
a non-parametric identification result for OPE using V -bridge functions for time-inhomogeneous
confounded POMDPs. Based on the identification result, we develop a new fitted-Q-evaluation(FQE)-
type approach to estimating V -bridge functions recursively and obtain an estimator for OPE based
on the bridge function estimators. At each step of our algorithm, we propose to fit a non-parametric
instrumental variable (NPIV) regression using a min-max estimation method, i.e., solving a linear
integral equation with a non-parametric model. Our algorithm can be viewed as a sequential NPIV
estimation, which is not well studied in the literature. Second and most importantly, we establish the
finite-sample error bound for estimating V -bridge functions and accordingly that for evaluating the
policy value, in terms of the sample size, length of horizon and (local) measure of ill-posedness at
each step. Unlike the well studied standard NPIV model in the econometrics literature [e.g., Ai and
Chen, 2003, Newey and Powell, 2003] where the response variable is directly observed, the response
variable in our NPIV model at each step of the algorithm relies on the model estimate at its previous
step. This difference makes our theoretical analysis substantially difficult. By carefully characterizing
the statistical error due to the NPIV estimation at each step and more importantly, its propagation
effect on future estimates, we are able to establish the first finite-sample result of OPE for confounded
POMDPs under non-parametric models, which achieves a polynomial order over the length of horizon
and sample size. Finally, our theoretical results on the sequential NPIV estimation are generally
applicable to other sequential-type conditional moment restriction problems. The development of
the uniform finite-sample error bounds of the NPIV estimation, extending the pointwise result in the
previous literature such as Dikkala et al. [2020], may be of independent interest.

2 Related Work

Recently there is a surge of interest in studying OPE with unobserved variables in the sequential
decision making problem. Specifically, Zhang and Bareinboim [2016] are among the first who
proposed the framework of confounded MDPs, which essentially considers i.i.d. confounders in
the dynamic system and therefore preserves the Markovian property. Along this direction, OPE
methods are developed under various identification conditions such as partial identification using
sensitivity analysis [Namkoong et al., 2020, Kallus and Zhou, 2020, Bruns-Smith, 2021], instrumental
variable or mediator assisted OPE [Liao et al., 2021, Li et al., 2021, Shi et al., 2022] and many
others. Another line of research focuses on more general confounded POMDP models , where the
Markovian assumption is violated, under which several point estimation results were developed such
as the aforementioned proxy variables related methods [Tennenholtz et al., 2020, Deaner, 2018, Ying
et al., 2021, Bennett and Kallus, 2021, Nair and Jiang, 2021, Shi et al., 2021], spectral methods in
undercomplete POMDPs [Hsu et al., 2012, Anandkumar et al., 2014, Jin et al., 2020] and predictive
state representation related methods [Littman and Sutton, 2001, Singh et al., 2012, Cai et al., 2022].
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Our proposed method, which uses proxy variables for OPE, is closely related to those recently
developed by Bennett and Kallus [2021], Shi et al. [2021], and Ying et al. [2021]. Bennett and
Kallus [2021] and Ying et al. [2021] studied episodic POMDPs (or complex longitudinal studies)
and mainly focused on developing asymptotic normality results of their policy value estimators.
Their results rely on some high level rate conditions on the bridge function estimation, which are
unknown if they would be satisfied when using non-parametric models due to the aforementioned
measure of ill-posedness. Shi et al. [2021] mainly focused on time-homogeneous infinite-horizon
POMDPs and developed asymptotic normality for their estimators under similar high-level conditions,
which therefore has the same issue. Besides, while Shi et al. [2021] also established finite-sample
bounds for their bridge function estimation and corresponding OPE, they only study the tabular
case or linear/parametric models, where the issue of ill-posedness does not exist. In this paper, we
provide a systematic investigation on the estimation of V -bridge functions and establish finite-sample
guarantees for them and the corresponding OPE under non-parametric models. Specifically, we
tackle the challenging episodic setting, where V -bridge functions are estimated sequentially. Without
carefully controlling the effect of ill-posedness at each step and its propagation effect on future steps,
the estimation error for these V -bridge functions and also that for OPE could be exponentially large
in terms of the length of horizon. Motivated by the chaining argument in the empirical process theory,
we successfully disentangle the effects of ill-posedness on the current step and future steps separately
and thus establish finite-sample bounds for V -bridge functions and OPE both with a polynomial
dependence on the length of horizon, which are new theoretical results we contribute to the literature.

Since our V -bridge function estimation can be formulated as a sequential NPIV problem, it is natually
related to classical NPIV estimations, which have been extensively studied in the econometrics
literature [see, e.g., Newey and Powell, 2003, Ai and Chen, 2003, 2012, Hall and Horowitz, 2005,
Chen and Reiss, 2011, Chen and Christensen, 2018, Darolles et al., 2011, Blundell et al., 2007, for
earlier reference]. Recently there is also a growing interest in the min-max estimation for NPIV
models [see, e.g., Muandet et al., 2020, Dikkala et al., 2020, Hartford et al., 2017, for some recent
developments]. As commented before, existing theoretical results for standard NPIV models cannot
be directly applied to our setting due to the sequential structure of our FQE algorithm, so we need
to develop new theory to address our setting. Technically, in order to establish a polynomial-order
finite-sample error bound over the length of horizon for OPE, which is particularly important in RL,
we decompose the measure of ill-posedness at each step of our sequential NPIV estimation into two
components: the so-called (local) measure of one-step transition ill-posedness and the standard (local)
measure of ill-posedness [e.g., Chen and Pouzo, 2012]. Thanks to this novel decomposition, the effect
of the first component on the estimation error of V -bridge functions and OPE is multiplicative but can
be properly controlled while that of the second component could be large but is only cumulative. See
Theorem 6.1. Finally, we remark that Ai and Chen [2012] also studied the sequential NPIV estimation
problem, where the non-parametric components are estimated jointly. However, this method could be
computationally inefficient in RL with a long horizon. More importantly, their results are built on the
nested structure among conditional moment restriction models, which are not satisfied in our setting.

3 Preliminaries and Notations

In this section, we introduce the framework of discrete-time confounded POMDPs and its related OPE
problem. Consider an episodic and confounded POMDP denoted byM = (S,U ,A, T,P, r), with S
and U as the observed and unobserved continuous state spaces respectively, A as the discrete action
space, T as the length of horizon, P = {Pt}Tt=1 as the transition kernel over S × U ×A to S × U ,
and r = {rt}Tt=1 as the reward function over S × U × A. S can also be treated as the observation
space in the classical POMDP. Then the process ofM can be summarized as {St, Ut, At, Rt}Tt=1
with St and Ut as observed and unobserved state variables, At as the action, and Rt as the reward,
where rt(s, u, a) = E[Rt | St = s, Ut = u,At = a] for any (s, u, a) ∈ S × U ×A. For simplicity,
we assume that |Rt| ≤ 1 uniformly in 1 ≤ t ≤ T .

The goal of OPE in a confounded POMDP is to evaluate the performance of a target policy using
the batch data collected by some behavior policy. In this paper, the target policy we focus on is a
sequence of functions mapping from the state space S to a probability mass function over the action
space A, denoted by π = {πt}Tt=1, where πt(a | s) is the probability of choosing an action At = a
given the state value St = s. We remark that our proposed identification results stated in Section 4
can be generalized to other policies such as history-dependent ones. Given a target policy π, define
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its state value function as
V πt (s, u) = Eπ[

∑T
t′=tRt′ | St = s, Ut = u], for every (s, u) ∈ S × U , (1)

where Eπ denotes the expectation with respect to the distribution whose action at decision time t
follows πt for any t ≥ 1. We consider the batch setting, where the observed action At is generated
by some behavior policy π̃bt depending on both St and Ut for 1 ≤ t ≤ T . We aim to use the batch
data to estimate the policy value of a target policy π, which is defined as

V(π) = E[V π1 (S1, U1)], (2)
where E denotes the expectation with respect to the behavior policy. Due to the unobserved Ut,
standard OPE methods that rely on the Markovianity will give bias estimations. In the following, we
introduce an identification result for estimating the policy value using some proxy variables.

Notations: For two sequences {$(n)}n≥1 and {θ(n)}n≥1, the notation $(n) & θ(n) (resp. $(n) .
θ(n)) means that there exists a sufficiently large constant (resp. small) constant c1 > 0 (resp. c2 > 0)
such that $(N) ≥ c1θ(N) (resp. $(n) ≤ c2θ(n)). We use $(n) � θ(n) when $(n) & θ(n) and
$(n) . θ(n). For any random variable X , we use Lq{X} to denote the class of all measurable
functions with finite q-th moments for 1 ≤ q ≤ ∞. Then the Lq-norm is denoted by ‖ • ‖Lq{X}.
When there is no confusion in the underlying distribution, we also write it as ‖ • ‖Lq or ‖ • ‖q. In
particular, ‖ • ‖∞ denotes the sup-norm. In addition, we use Big O and small o as the convention.

4 Identification Results

Inspired by the proximal causal inference recently proposed by Tchetgen Tchetgen et al. [2020],
we develop a non-parametric identification result for estimating V(π), which is similar to those
by Bennett and Kallus [2021] and Shi et al. [2021]. Assume that we can additionally observe the
so-called reward-inducing proxy variables Wt that are only related to the action At through (St, Ut)
and action-inducing proxy variables Zt that are only related to the reward Rt through (St, Ut) at each
decision time t. See Figure 1 for a directed acyclic graph (DAG) to illustrate their relationships and
a time series data example in Miao et al. [2018b]. For another example, the action-inducing proxy
variables Zt can be defined as the observed history before time t, then Zt and related arrows in Figure
1 can be removed. Detailed assumptions and discussion are given in Appendix A. Denote the spaces
of {Zt}Tt=1 and {Wt}Tt=1 byW and Z respectively.

Ut−1

St−1

Zt−1

Wt−1

At−1

Rt−1

Ut
St

Zt

Wt

At

Rt

Ut+1

St+1

Zt+1

Wt+1

At+1

Rt+1

Figure 1: A representative DAG to illustrate the variables involved in the confounded POMDP.

Since the states {Ut}Tt=1 are unmeasured, we cannot estimate the value function by the celebrated
Bellman equation. However, with the help of confounding proxies {Wt, Zt}Tt=1, the value of a target
policy π can be non-parametrically identified using observed variables under proper assumptions.

To proceed, we define a class of V -bridge functions (or V -bridges for short) {vπt }Tt=1 defined over
W ×S such that for every (s, u) ∈ S × U and t ≥ 1,

E [vπt (Wt, St) | Ut = u, St = s] = Eπ
[∑T

t′=tRt′
∣∣∣Ut = u, St = s

]
. (3)

If such V -bridges exist, then we obtain the following identification result for the policy value in (2).
Proposition 4.1 (Identification). If there exist {vπt }Tt=1 that satisfy (3), then the value of target policy
π can be identified by V(π) = E[vπ1 (W1, S1)].

Note that V -bridges {vπt }Tt=1 that satisfy (3) are not necessarily unique, but we can uniquely identify
V(π) based on any of them. Next, we provide a theoretical guarantee for the existence of V -bridges
{vπt }Tt=1 in terms of a sequence of linear integral equations.
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Theorem 4.1. For a POMDP model of which variables satisfy the relationships illustrated in Figure 1
and some regularity conditions given in Appendix A, there always exist V -bridges {vπt }Tt=1 satisfying
(3). With vπT+1 = 0, a particular sequence of V -bridges {vπt }Tt=1 can be obtained by solving the
following linear integral equations:

E
{
qπt (Wt, St, At)−Rt − vπt+1(Wt+1, St+1) | Zt, St, At

}
= 0, (4)

where {qπt }Tt=1 are Q-bridges defined overW ×S ×A such that

E [qπt (Wt, St, At) | Ut = u, St = s,At = a] = Eπ
[∑T

t′=tRt′
∣∣∣Ut = u, St = s,At = a

]
, (5)

for every (s, u, a) ∈ S × U × A and t ≥ 1, and vπt (w, s) =
∑
a∈A πt(a | s)qπt (w, s, a). Clearly

Q-bridges {qπt }Tt=1 also exist.

Theorem 4.1 guarantees the existence of both V -bridges and Q-bridges, and also provides a natural
procedure (4) to find {vπt }Tt=1 and eventually estimate the policy value V(π). Then based on
Proposition 4.1 and Theorem 4.1, we can perform OPE via Algorithm 1 in the population level.
Specifically at each step we will solve (4) via a non-parametric model, which is a NPIV problem.

Algorithm 1: Identification of V(π)

1 Input: {(St,Wt, Zt, At, Rt)}Tt=1, a target policy π = {πt}Tt=1.
2 Let vπT+1 = 0.
3 Repeat for t = T, . . . , 1:
4 Solve vπt and qπt by E

{
qπt (Wt, St, At)−Rt − vπt+1(Wt+1, St+1) | Zt, St, At

}
= 0 with

vπt (Wt, St) ,
∑
a∈A πt(a | St)qπt (Wt, St, a).

5 Output: V(π) = E[vπ1 (W1, S1)].

5 Estimation

In this section, we discuss how to estimate V(π) using batch data based on results given in Theorem
4.1 and Algorithm 1. Let a pre-collected training dataset be Dn = {(St,i,Wt,i, Zt,i, At,i, Rt,i)

T
t=1 :

i = 1, . . . , n}, which consists of n i.i.d. copies of the observable trajectory (St,Wt, Zt, At, Rt)
T
t=1

of a confounded POMDP. Following Algorithm 1, we develop a FQE-type approach where we
propose to solve a min-max problem for estimating vπt at the t-th step using the idea of Dikkala et al.
[2020], and then apply Proposition 4.1 for OPE.

For convenience, we first rewrite the linear integral equations (4) for solving V -bridges in terms of
operators. Define an operator P̃t : L2{R×W×S} → L2{Z×S×A} such that [P̃tg](Zt, St, At) =
E[g(Rt,Wt+1, St+1) | Zt, St, At] for any g ∈ L2{R × W × S}. Define another operator Pt :
L2{W ×S ×A} → L2{Z × S ×A} such that for any h ∈ L2{W ×S ×A}, [Pth](Zt, St, At) =
E [h(Wt, St, At) | Zt, St, At] . Motivated by (4), we define the V-bridge transition operator Pπt :
L2{R ×W × S} → L2{W × S} such that

Pπt g = 〈πt,Ptg〉 , where Ptg = Pt
−1P̃tg for all g ∈ L2{R ×W × S}.

In particular, 〈πt(· | St), [Ptg](Wt, St, ·)〉 ,
∑
a∈A πt(a | St)[Ptg](Wt, St, a), and P̃tg is invertible

by Pt. The invertibility is ensured by Assumption 8 in Appendix A.

Then by the definition of V -bridges and (4), we can identify {vπt }Tt=1 via solving

vπt = Pπt (vπt+1 +Rt), for t ≥ 1. (6)

To find the estimated V-bridges {v̂πt }Tt=1, it suffices to estimate Pπt . Note that one can regard (6) as
a series of conditional moment model restrictions and we propose to solve them via a sequential
NPIV estimation. In particular, at the t-th step, we adopt the min-max estimation method proposed
by Dikkala et al. [2020] to estimate Pπt non-parametrically as follows: P̂πt g =

〈
πt, P̂tg

〉
, where

P̂tg/(T − t+ 1) = arg min
h∈H(t)

[
sup
f∈F(t)

{
Ψt,n(h, f, g)−λ(‖f‖2F(t) +

M

δ2
‖f‖2n)

}
+λµ‖h‖2H(t)

]
, (7)
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where ‖f‖2n = n−1
∑n
i=1 f

2(Zt,i, St,i, At,i) for f ∈ F (t). H(t) on W × S × A and F (t) on
Z × S × A are two user-defined function spaces endowed with norms ‖ • ‖H(t) and ‖ • ‖F(t)

respectively, λ, µ,M, δ > 0 are tuning parameters, and

Ψt,n(h, f, g) = n−1∑n
i=1[h(Wt,i, St,i, At,i)−(T−t+1)−1g(Rt,i,Wt+1,i, St+1,i)]f(Zt,i, St,i, At,i),

where g(Rt,Wt+1, St+1) = Rt + ḡ(Wt+1, St+1) for some ḡ ∈ G(t+1) onW × S, endowed with
norm ‖ • ‖G(t+1) .

The rational behind (7) is that when λ, λµ→ 0 and λM/δ2 � 1, the following two population-version
min-max optimization problems
min
h∈H(t)

sup
f∈F(t)

E[h(Wt, St, At)− (T − t+ 1)−1g(Rt,Wt+1, St+1)]f(Zt, St, At)− 1
2f

2(Zt, St, At),

min
h∈H(t)

E{E[h(Wt, St, At)− (T − t+ 1)−1g(Rt,Wt+1, St+1) | Zt, St, At]}2,

have the same solution h when the space F (t) of testing functions is rich enough. Note that
(T − t+ 1)−1 used above and in (7) are for scaling purpose.

After T steps, we output our estimator for the policy value based on the empirical counterpart of
Proposition 4.1. Our FQE-type algorithm is summarized in Algorithms 2 and 3 in Appendix E.

6 Theoretical Results

In this section, we establish the finite-sample bounds for the L2 error of estimating V -bridge vπ1
and the error of OPE, in terms of the sample size, length of horizon and two (local) measures of
ill-posedness. Our bounds also rely on the critical radii of certain spaces related to the user-defined
function spacesH(t) and F (t) in (7), and also G(t) of V -bridge functions.

1. Technical preliminaries. Before presenting our main results, we first introduce some concepts
from the empirical process theory [Wainwright, 2019].
Definition 6.1 (Local Rademacher Complexity). Given any real-valued function class F defined
over a random vector X and any radius δ > 0, the local Rademacher complexity is given by

Rn(F , δ) = Eε,X [supf∈F :‖f‖n≤δ |n
−1
∑n
i=1 εif(Xi)|], (8)

where {Xi}ni=1 are i.i.d. copies of X and {εi}ni=1 are i.i.d. Rademacher random variables.

By bounding the local Rademacher complexity, which measures the complexity of the functional
class F locally in a neighborhood of the ground truth, we can control the error rate of the proposed
V -bridge estimator in each step. A crucial parameter for local Rademacher complexity of a function
class F is called critical radius.
Definition 6.2 (Critical Radius). Assume that F is a star-shaped function class, i.e. αf ∈ F for any
f ∈ F and scalar α ∈ [0, 1], and also that F is b-uniformly bounded, i.e., ‖f‖∞ ≤ b <∞, ∀f ∈ F .
The critical radius of F , denoted by δn, is the solution to the inequalityRn(F , δ) ≤ δ2/b.

Additional Notations: We assume that the test functions f belong to a star shaped, symmetric space
F (t) ⊆ L2(Z × S ×A) endowed with norm ‖ · ‖F(t) . For brevity of notation, hereafter we suppress
the time-step indicator (t) in the context unless necessary. For a function space F , we define
αF = {αf : f ∈ F}, for some α ∈ R. Define FB = {f ∈ F : ‖f‖2F ≤ B}, for any B > 0. Define
the projected root mean squared error ‖projtf‖2 =

√
E{E[f(X) | Zt, St, At]}2, for any squared

integrable f with respect to the conditional distribution of X given (Zt, St, At).

Standard (Local) Measures of ill-posedness: Let τ̄1 = supg∈G(1) ‖g(W1, S1)‖2/‖E[g(W1, S1) |
Z1, S1]‖2 be the measure of ill-posedness for G(1)(W1 × S1) projected on Z1 × S1. Let τt =
suph∈H(t) ‖h(Wt, St, At)‖2/‖projth(Wt, St, At)‖2 be the standard measure of ill-posedness for
H(t)(W ×S ×A) projected on Z ×S ×A. It can be seen that τ̄1, τt ≥ 1 for t ≥ 1. Indeed we only
require measuring τ̄1 and τt locally. See more details in Appendix C.

2. Results. We first give Assumption 1 used to develop our theoretical results below.
Assumption 1. For each t = 1, . . . , T ,
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(1) Closeness. For any g ∈ G(t+1), Pt(g +Rt) ∈ H(t); For any h ∈ H(t), 〈πt, h〉 ∈ G(t).

(2) For any h ∈ (T − t)H(t+1), we have ‖Pt
(
Rt+〈πt+1,h〉
T−t+1

)
‖2H(t) ≤ ‖ h

T−t‖
2
H(t+1) .

(3) There exists a constant CG > 0 such that ‖ 〈πt, h〉 ‖2G(t) ≤ CG‖h‖2H(t) , for h ∈ H(t).

(4) qπt ∈ (T − t+ 1)H(t)(W,S,A) and ‖qπT ‖2H(T ) ≤MH, where MH > 0 is a constant.

(5) Testing function classF (t) is sufficiently rich such that there existsL > 0, ‖f∗−projtht‖2 ≤ η
(t)
n ,

where f∗ ∈ arg min
f∈F(t)

L2‖ht‖2H

‖f − projtht‖2, for all ht ∈ H(t).

(6) Behavior policies: there exists a constant bπ such that πbt (a | s) , E[π̃bt (a | Ut, St) | St = s] ≥
bπ > 0 for all (s, a) ∈ S ×A.

Assumption 1 (1) is similar to Bellman completeness, which has been widely used in RL without
unobserved states [e.g., Antos et al., 2008]. Note that both G(t) andH(t) can be chosen as infinite-
dimensional spaces, e.g., RKHSs. Hence this assumption is relatively mild. Assumption 1 (2) requires
the operator Pt to be bounded, which can be ensured under some continuity conditions on transition
kernels [Kress, 1989]. Assumption 1 (3) is a technical condition for controlling the complexity of
G by H. Assumption 1 (4) essentially assumes that we can model qπ (and vπ) correctly at each
t-step, which is again mild asH(t) for t ≥ 1 can all be chosen as infinite-dimensional spaces. This
assumption is also called realizability of value functions, which is commonly seen in the literature
of RL [e.g., Antos et al., 2008]. Assumption 1 (5) is imposed to ensure that the space of testing
functions F is large enough so that we are able to capture the conditional expectation operator in
each min-max estimation (7). Assumption 1 (6) basically requires a full coverage of our batch data
generating process induced by the behavior policy, which is widely used in OPE [Precup, 2000, Antos
et al., 2008]. Next, we provide a key decomposition of the L2 error for V -bridge estimation.

Theorem 6.1 (Error decomposition). Under Assumption 1 (1) and (6), we can decompose the L2

error of the estimated V -bridge by

‖vπ1 − v̂π1 ‖2 ≤ τ̄1
∑T
t=1{Πt

t′=1C
(t)
t′,t′−1}τt‖πt/πbt‖∞‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2,

where the measures of one-step transition ill-posedness C(t)
1,0 , 1 and C(t)

t′,t′−1, 2 ≤ t′ ≤ t ≤ T are
defined after Corollary 6.2.

Theorem 6.1 shows that there are four key components for upper bounding theL2 error of v̂π1 . The first
component is the probability ratio ‖πt/πbt‖∞, which is used to measure the distributional mismatch
between the target and behavior policies. The second component is ‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2,
the one-step projected error of P̂t to Pt, where v̂πt+1 is the estimate for vπt+1 depending on the
observed data after t-step. We remark that this is different from the analysis in the standard NPIV
estimation with a directly measured outcome. Hence the results, e.g., from Dikkala et al. [2020],
cannot be directly applied to bound this component. The last two components are related to the (local)
measure of ill-posedness. The third component τt is the measure of ill-posedness for characterizing
the difficulty of estimating qπt by (4) using H(t) at the t-th step. {τt}Tt=1 are similar to those used
in the standard NPIV estimation such as Chen and Reiss [2011], and the effect of each τt on the
upper bound is cumulative. The last component {Πt

t′=1C
(t)

t′,t′−1}
T
t=1 quantify the propagation effect of

estimation errors in previous steps on the last step of estimating vπ1 , which is multiplicative in terms
of C(t)

t′,t′−1. We call C(t)

t′,t′−1 the measure of one-step transition ill-posedness from t′ to t′ − 1 related
to t-step NPIV estimations. Next we provide detailed bounds for the second and last components.
The discussion of the third component can be found in Appendix C.4.

Component 2: one-step projected error. In the following, we show that ‖projt(P̂t−Pt)(v̂πt+1 +Rt)‖2
is bounded by the critical radii of some spaces defined as ballsH(t)

B , G(t+1)
CG(T−t+1)MH

in hypothesis

spaces H(t), G(t+1) respectively and a ball F (t)
3M in testing space F (t), for some fixed constants

M,B > 0 such that functions in H(t)
B and F (t)

3M have uniformly bounded ranges in [−1, 1] for all
1 ≤ t ≤ T . Let

Ω(t) = {(st, wt, zt, at, st+1, wt+1) 7→ r(h∗g(wt, st, at)− g(wt+1, st+1))f(zt, st, at) :

g ∈ G(t+1)
CG(T−t+1)MH

, f ∈ F (t)
3M , r ∈ [0, 1]}, and
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Ξ(t) = {(st, wt, zt, at) 7→ r[h− h∗g](wt, st, at)fL
2B(zt, st, at) :

h ∈ H(t), h− h∗g ∈ H
(t)
B , g ∈ G(t+1)

CG(T−t+1)MH
, r ∈ [0, 1]},

where h∗g ∈ H(t) is the solution to E [h(Wt, St, At)− g(Wt+1, St+1) | Zt, St, At] = 0, and fL
2B =

arg min
f∈F(t)

L2B

‖f−projt(h−h∗g)‖2 for a given L > 0. An upper bound for ‖projt(P̂t−Pt)(v̂πt+1 +

Rt)‖2 is given in Theorem 6.2.

Theorem 6.2. Suppose that Assumption 1 holds. Let δ(t)
n = δ̄

(t)
n +c0

√
log(c1T/ζ)

n for some universal

constants c0, c1 > 0 where δ̄(t)
n is the upper bound of the critical radii ofF (t)

3M , Ω(t) and Ξ(t). Assume
that the approximation error in Assumption 1 (5) can be bounded by η(t)

n ≤ δ(t)
n . Furthermore, letting

tuning parameters satisfy Mλ � (δ
(t)
n )2 and µ ≥ O(L2 +M/B), with probability at least 1− ζ , we

have

‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2 .MH(T − t+ 1)2δ(t)
n for all 1 ≤ t ≤ T .

Depending on the choices of H(t), G(t+1), and F (t), we can obtain different finite-sample error
bounds of the one-step projected error for each t. Below we provide two examples.

Corollary 6.1. Let F (t), H(t) and G(t+1) be VC-subgraph classes with VC dimensions V(F (t)),
V(H(t)) and V(G(t+1)) respectively. Then with probability at least 1− ζ, for all 1 ≤ t ≤ T ,

‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2 . (T − t+ 1)2.5
√

log(c1T/ζ) max{V(F(t)),V(H(t)),V(G(t+1))}
n .

The definition of the VC-subgraph class can be found in, e.g., Wainwright [2019]. This is a broad class.
For example, if one lets each of F (t), H(t) and G(t+1) be a linear space F = {θ>φ(·) : θ ∈ Rd}
with basis functions φ(·), then V(F) = d+ 1. Then the upper bound for the one-step projected error
becomes O((T − t+ 1)2.5d/

√
n).

Corollary 6.2. LetH(t), G(t+1) and F (t) be reproducing kernel Hilbert spaces (RKHSs) equipped
with kernelsKH(t) , KG(t+1) andKF(t) respectively. For a given positive definite kernelK, we denote
its nonincreasing eigenvalue sequence by {λ↓j (K)}∞j=1. We consider two scenarios for {λ↓j (K)}∞j=1.

(1) Polynomial eigen-decay: If λ↓j (KH(t)) ≤ aj−2αH , λ↓j (KG(t+1)) ≤ aj−2αG and λ↓j (KF(t)) ≤
aj−2αF for constants αH, αG , αF > 1/2 and a > 0, then under the assumptions in Theorem 6.2,
with probability at least 1− ζ, for all 1 ≤ t ≤ T , we have

‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2 . (T − t+ 1)2.5
√

log(c1T/ζ)n
− 1

2+max{1/αH,1/αG ,1/αF} log(n).

(2) Exponential eigen-decay: If λ↓j (KH(t)) ≤ a1e
−a2j

βH , λ↓j (KG(t+1)) ≤ a1e
−a2j

βG and

λ↓j (KF(t)) ≤ a1e
−a2j

βF , for constants a1, a2, βH, βG , βF > 0, then under the assumptions in
Theorem 6.2, with probability at least 1− ζ, for all 1 ≤ t ≤ T , we have

‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2 . (T − t+ 1)2.5

{√
(logn)1/min{βH,βG ,βF}

n +
√

log(c1T/ζ)
n

}
.

Kernels of the two types of eigen-decay considered above are very common. For example, the kernel
of the α-order Soblev space with α > 1/2, has a polynomial eigen-decay while the Gaussian kernel
has an exponential eigen-decay, with β = 2 for Lebesgue measure on real line and β = 1 on a
compact domain [Wei et al., 2017].

Components 4: measure of one-step transition ill-posedness. We first provide more insights on
{Πt

t′=1C
(t)
t′,t′−1}Tt=1 before providing an upper bound. We formally define the local measure of

one-step transition ill-posedness C(t)
t′+1,t′ recursively based on C(t)

t,t−1 to C(t)
2,1 as

C
(t)
t′+1,t′ , sup

g∈G(Wt′+1×St′+1)

‖Eπt′ [g(Wt′+1, St′+1) | Zt′ , St′ ]‖2
‖E[g(Wt′+1, St′+1) | Zt′+1, St′+1]‖2

, subject to

‖E[g(Wt′+1, St′+1) | Zt′+1, St′+1]‖2 . τt(T − t+ 1)2δ(t)
n ‖πt′/πbt′‖∞

∏t−1
s=t′+1 C

(t)
s+1,s,
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with C
(t)
t+1,t , 1 for each t = 1, . . . , T . For C(t)

t,t−1, we can upper bound ‖E[v̂π(Wt, St) | Zt, St]‖2 by
the projected error ‖projt(P̂t −Pt)(v̂πt+1 +Rt)‖2 multiplied by the ill-posedness τt. By Theorem
6.2, the projected error can be well controlled by δ(t)

n with high probability, so C
(t)
t,t−1 can be defined

locally. Therefore, we can provide an upper bound for the denominator sequentially and define all
C

(t)

t′+1,t′ locally, which indicates that all C(t)

t′+1,t′ could be small.

For example, if we use the observed history as the action-inducing proxy, then σ(Z1 × S1) ⊂
σ(Z2 × S2) ⊂ · · · ⊂ σ(ZT × ST ) is a filtration. In this case,

∏t
t′=2 C

(t)

t′,t′−1 are expected to be small

for t ≥ 2 if the target policy is stationary. While this can enlarge the critical radii δ(t)
n due to the

dimension of the action-inducing proxy, this only affects one-step errors. See detailed discussion in
Appendix B. Motivated by this, it is reasonable to impose Assumption 2 below on C(t)

t′+1,t′ .
Assumption 2. For every t ≥ 2 and 2 ≤ m ≤ t, C(t)

m,m−1 ≤ 1 + at
mαt with time-dependent constants

at > 0, αt ≥ α > 1.

Corollary 6.3. If Assumption 2 holds, then
∏t
t′=1 C

(t)
t′,t′−1 ≤ exp{atζ(αt)}, where ζ(αt) =∑∞

n=1(1/n)αt is uniformly bounded for t ≥ 1.

Main result: error bounds for V -bridge estimation and OPE. Define trans-ill =
max1≤t≤T exp{atζ(αt)} and let illmax = τ̄1 max1≤t≤T τt‖πt/πbt‖∞. Summarizing all afore-
mentioned results, we have the following main theorem based on the polynomial eigen-decay case in
Corollary 6.2. Other cases can be found in Appendix B.
Theorem 6.3 (Finite-sample error bounds for V -bridges and policy value). Under Assumptions 1
and 2, and assumptions in Theorem 6.2 and Corollary 6.2 (1), with probability at least 1− ζ , we have

‖vπ1 − v̂π1 ‖2 . illmax × trans-ill× T 7/2
√

log(c1T/ζ)n
− 1

2+max{1/αH,1/αG ,1/αF} log(n), and

|V(π)− V̂(π)| . illmax × trans-ill× T 7/2
√

log(c1T/ζ)n
− 1

2+max{1/αH,1/αG ,1/αF} log(n).

Theorem 6.3 provides the first finite-sample error bound for OPE under confounded and episodic
POMDPs in terms of the sample size, length of horizon and two (local) measures of ill-posedness.
Without considering the measures of ill-posedness, the derived error bound for V -bridge func-
tion nearly achieves the optimal L2-convergence rate in the classical non-parametric regression
[Stone, 1982]. Moreover, our OPE error bound depends on a polynomial order of T , i.e., T 7/2,
which is larger than the standard O(T 3) in the OPE without unobserved variables. However,
when the function class consider in (7) grows with the sample size n, illmax will also in-
crease and therefore the convergence rates in Theorem 6.3 could be much slower. Next we
study a case when we can control the local measures of ill-posedness {τt}Tt=1, by assuming
that λmin(Γ

(t)
m ) ≥ νm for all 1 ≤ t ≤ T almost surely and other regularity conditions in

Lemma C.1, where Γ
(t)
m , E

{
E[e

(t)
I (Wt, St, At) | Zt, St, At]E[e

(t)
I (Wt, St, At) | Zt, St, At]>

}
with e(t)

I = (e
(t)
1 , . . . , e

(t)
m ) as the first m eigenfunctions of kernel KH(t) . Similar conditions can

be imposed to control τ̄1, which is omitted here for simplicity. Let η(n, T, ζ, αH, αF , αG , b) ,

T
7(αH−1/2)+10b

2(αH−1/2)+4b
(√

log(c1T/ζ)n
− 1

2+max{1/αH,1/αG ,1/αF} log(n)
) αH−1/2

αH−1/2+2b , with b defined below.
Corollary 6.4. If assumptions in Theorem 6.3 holds and νm ≥ m−2b for some b ≥ 0, then

‖vπ1 − v̂π1 ‖2 . τ̄1 max1≤t≤T ‖πt/πbt‖∞ × trans-ill× η(n, T, ζ, αH, αF , αG , b),

|V(π)− V̂(π)| . τ̄1 max1≤t≤T ‖πt/πbt‖∞ × trans-ill× η(n, T, ζ, αH, αF , αG , b).

Corollary C.5.2 considers the mildly ill-posed case, i.e., νm ≥ m−2b, and shows that the local
measure of ill-posedness can deteriorate convergence rate of v̂π1 significantly. If b is large relative to
αH or further severely ill-posed case is considered (i.e., νm decays exponentially fast, see Appendix
C.5.2), then the convergence rate of V -bridge estimation could be much slower and the typical
requirement on the nuisance parameter for achieving asymptotic normality for the policy value will
fail. On the other hand, it can be seen that when b = 0, the finite sample error bounds match the
results in Theorem 6.3.

7 Simulation
In this section, we perform a simulation study to evaluate the performance of our proposed OPE
estimation and to verify the finite-sample error bound of our OPE estimator in Theorem 6.3.
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Let S = R2, U = R,W = R,Z = R, and A = {1,−1}. At time t, the hidden state Ut, two
proximal variables Zt, Wt satisfy the following multivariate normal distribution given (St, At):

(Zt,Wt, Ut) | (St, At) ∼ N

[α0 + αaAt + αsSt
µ0 + µaAt + µsSt
κ0 + κaAt + κsSt

]
,Σ =

 σ2
z σzw σzu

σzw σ2
w σwu

σzu σwu σ2
u

 , (9)

where parameters are given in the Appendix.

The behavior policy is given by π̃bt (At | Ut, St) = expit
{
−At

(
t0 + tuUt + t>s St

)}
, where

t0 = 0, tu = 1, and t>s = [−0.5,−0.5]. Then by Assumption 1 (6), πbt (At | St) =
expit{−At

(
t0 + tuκ0 + (ts + tuκs)

>St
)
}. The initial S1 is uniformly sampled from R2. At

time t, given (St, Ut, At), we generate St+1 = St + AtUt12 + eSt+1
, where 12 = [1, 1]> and the

random error eSt+1 ∼ N ([0, 0]>, I2) with I2 denoting the 2-by-2 identity matrix. The reward is
given by Rt = expit

{
1
2At(Ut + [1,−2]St)

}
+ et, where et ∼ Uniform[−0.1, 0.1]. One can verify

that our simulation setting satisfies the conditions in Section A.1 so that our method can be applied.
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Figure 2: Simulation results for OPE errors |V̂(π)− V(π)|. Mean absolute errors (solid lines) and
their standard error bands (shaded regions) are displayed for different combinations of (n, T ).

We choose F (t) and H(t) as RKHSs endowed with Gaussian kernels, with bandwidths selected
according to the median heuristic trick by Fukumizu et al. [2009] for each 1 ≤ t ≤ T . The pool of
scaling factors SCALE contains 30 positive numbers spaced evenly on a log scale between 0.001 to
0.05. The number of cross-validation partition K = 5. The true target policy value of π is estimated
by the mean cumulative rewards of 50, 000 Monte Carlo trajectories with policy π. We compare our
OPE estimator V̂(π) with the target policy value by computing mean absolute error (MAE) for each
setting of (n, T ), as reported in Figure 2. Figure 2 validate the derived finite-sample error bound of
our OPE estimator in Theorem 6.3. Specifically, Figure 2 (a) shows that the OPE estimation error is
polynomial in T , but with an order slightly smaller than O(T 7/2) as stated in Theorem 6.3. Figure 2
(b) shows that the convergence rate in terms of the sample size n for our OPE estimator is slower
than O(n−1/2), which also justifies our theoretical results.

8 Discussion

In this paper, we propose a non-parametric identification and estimation method for OPE in episodic
confounded POMDPs with continuous states, relying on time-dependent proxy variables. We develop
a fitted-Q-evaluation-type algorithm for estimating the V -bridge functions sequentially and for OPE
based on the estimated V -bridges. The first finite-sample error bound for estimating the policy value
under confounded POMDPs is established, which achieves a polynomial order with respect to the
sample size and the length of horizon. Our OPE results can serve as a foundation for developing new
policy optimization algorithms in the confounded POMDP, which We will leave for future work.
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