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1 The Proof of Theorem 11

For the sake of simplicity, we use PCi to denote the pseudo-cube PCIν0 (cν0,i, L⌈log s⌉) and L to denote2

L⌈log s⌉ below. Suppose there is no overlap between the PCjs. We set the weight wj = |P ∩ PCj |3

for each 1 ≤ j ≤ k, and each center cν0,j ∈ Cν0
is a representative for the set P ∩ PCj (we can also4

view each cν0,j as a set of wj overlapping points in the space). Since we assume the pseudo-cubes5

are disjoint, we have
∑k

j=1 wj = n. Through Assumption 1, we have6

n
∣∣∣F̃ (θ)− F (θ)

∣∣∣
=

∣∣∣∣∣∣
∑

cν0,j∈Cν0

wjf(θ, cν0,j)−
∑
pi∈P

f(θ, xi)

∣∣∣∣∣∣
≤

k∑
j=1

∑
pi∈P∩PCj

|f(θ, cν0,j)− f(θ, pi)|

≤ nαLz + nβF (θ). (1)

For a given ϵ2, through Claim 1, if we set k = |Cν0 | =
(
( α
ϵ2
)

1
z 3⌈log s⌉ · 2

⌈log s⌉2+3⌈log s⌉+8
4

)ρ

, we7

have the radius8

r0 =
∆

k1/ρ
=

( ϵ2α )
1
z ∆

3⌈log s⌉ · 2
⌈log s⌉2+3⌈log s⌉+8

4

. (2)

Together with Lemma 1, the above radius directly implies L ≤ ( ϵ2α )
1
z ∆. Based on (1), we have9 ∣∣∣F̃ (θ)− F (θ)

∣∣∣ ≤ βF (θ) + ϵ2∆
z. (3)

So the set Cν0
with the weights {w1, · · · , wk} yields a (β, ϵ2)z-coreset.10

2 The Proof of Theorem 211

Without loss of generality, we assume all the k pseudo-cubes are not empty (otherwise, we can12

directly remove the empty pseudo-cubes). Then we consider the pseudo-cubes one by one. For PC1,13

we directly set w′
1 = w1 = |P ∩PC1| (in the following analysis, we use wi and w′

i to denote the exact14

and approximate weights for cν0,i, respectively). Suppose currently we have already obtained the15

values w′
1, · · · , w′

i0
, and try to determine the value for w′

i0+1. We define the following notations first.16
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Ii0 = {i | 1 ≤ i ≤ i0, w
′
i > 0}; (4)

Si0 = ∪i∈Ii0
PCi; (5)

τi0+1 =
|P ∩ (PCi0+1 \ Si0)|

|P ∩ PCi0+1|
; (6)

wi0+1 = |P ∩ (PCi0+1 \ Si0)|. (7)

Obviously, we have I1 = {1} and S1 = PC1.17

Our algorithm for computing the approximate weight w′
i0+1 is as follows. We take a uniform sample18

of m points from P ∩ PCi0+1 by using the sampling technique for relational data [4]. Each sampled19

point corresponds a binary random variable x: if it belongs to PCi0+1 \ Si0 , x = 1; otherwise, x = 0.20

Let g be the sum of these m random variables. Suppose τ is a fixed value ≤ 1/2 (the exact values of21

m and τ will be determined in the following analysis).22

• If g/m ≥ 2τ , set w′
i0+1 = g/m · |P ∩ PCi0+1|.23

• Else, set w′
i0+1 = 0.24

Informally speaking, if w′
i0+1 > 0, we call PCi0+1 as a “heavy pseudo-cube”; if w′

i0+1 = 0, we call25

PCi0+1 as a “light pseudo-cube”.26

Lemma 1 Let δ, λ ∈ (0, 1) and the sample size m ≥ 3
δ2τ log 2

λ . Then with probability at least 1− λ,27

|w′
i0+1 − wi0+1| is no larger than either δ · wi0+1 or 2

1−δ τ · |P ∩ PCi0+1|.28

Proof. We consider two cases: (1) τi0+1 ≥ τ and (2) τi0+1 < τ .29

For case (1), since m ≥ 3
δ2τ log 2

λ , from the Chernoff bound we know30

(1− δ)τi0+1 ≤ g/m ≤ (1 + δ)τi0+1 (8)

with probability at least 1− λ. If the obtained ratio g/m ≥ 2τ , according to our algorithm, we have31

w′
i0+1 = g/m · |P ∩ PCi0+1|, i.e.,32

(1− δ)wi0+1 ≤ w′
i0+1 ≤ (1 + δ)wi0+1. (9)

If the obtained ratio g/m < 2τ , according to our algorithm, we have w′
i0+1 = 0. Moreover, from the33

left-hand side of (8), we know34

(1− δ)τi0+1 ≤ 2τ. (10)

Therefore, τi0+1 ≤ 2τ
1−δ . That means35

|w′
i0+1 − wi0+1| = wi0+1 ≤ 2

1− δ
τ · |P ∩ PCi0+1|. (11)

For case (2), from the additive form of the Chernoff bound, we have g/m ≤ 2τ with probability at36

least 1− λ. Then we have37

|w′
i0+1 − wi0+1| = wi0+1 ≤ τ · |P ∩ PCi0+1| ≤

2

1− δ
τ · |P ∩ PCi0+1|. (12)

Combining (9), (11), and (12), we complete the proof. □38

Lemma 2 Suppose 2
1−δ τ < 1/k and τi0+1 ≤ 2τ

1−δ . There exists at least one î ∈ Ii0 , such that39

|P ∩
(
PCi0+1 ∩ (Sî \ Sî−1)

)
| ≥ 1

k
|P ∩ PCi0+1|. (13)

If î = 1, we set S0 = ∅.40

Proof. From the definition of the Sis, we have41

S0 ⊂ S1 ⊂ · · · ⊂ Si0 . (14)
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So we have42

PCi0+1 = (PCi0+1 \ Si0)
⋃(

∪i0
i=1

(
PCi0+1 ∩ (Si \ Si−1)

))
. (15)

It implies43

|P ∩ PCi0+1| = |P ∩ PCi0+1 \ Si0 |+
i0∑
i=1

|P ∩ PCi0+1 ∩ (Si \ Si−1)|. (16)

Since i0 + 1 ≤ k, from the Pigeonhole principle, we know there exists at least one î ∈ Ii0 , such that44

|P ∩
(
PCi0+1 ∩ (Sî \ Sî−1)

)
| ≥ 1

k |P ∩ PCi0+1|. □45

Below, we analyze the error induced by the approximate weight w′
i0+1. If g/m ≥ 2τ , from Lemma 1,46

we know that w′
i0+1 ∈ (1± δ)wi0+1. So it only induces an extra factor 1± δ to the objective value.47

Thus, we should require (1 + δ)(1 + β) ≤ 1 + ϵ1, i.e.,48

δ ≤ ϵ1 − β

1 + β
. (17)

Then we focus on the other case, w′
i0+1 is set to be 0, i.e., PCi0+1 is a “light pseudo-cube”. From49

Lemma 2 we know there exists at least one î ∈ Ii0 , such that |P ∩
(
PCi0+1 ∩ (Sî \ Sî−1)

)
| ≥50

1
k |P ∩ PCi0+1|. Since PCi0+1 ∩ (Sî \ Sî−1) ⊂ Sî \ Sî−1, we have51

|P ∩ (Sî \ Sî−1)| ≥
1

k
|P ∩ PCi0+1|. (18)

Actually, the set Sî \ Sî−1 = PCî \ Sî−1, so (18) implies52

wî = |P ∩ (PCî \ Sî−1)| ≥
1

k
|P ∩ PCi0+1|. (19)

Also, since PCî and PCi0+1 are neighbors, we have53

||cν0 ,̂i
− cν0,i0+1|| ≤ 2L. (20)

As a consequence, for any θ in the hypothesis space, the error induced by setting w′
i0+1 = 0 is54

wi0+1 · f(θ, cν0,i0+1) ≤ 2

1− δ
τ · |P ∩ PCi0+1| · f(θ, cν0,i0+1)

≤ 2

1− δ
τk · wî

(
(1 + β)f(θ, cν0 ,̂i

) + α(2L)z
)

=
2τk

1− δ
(1 + β) · wîf(θ, cν0 ,̂i

) +
2τk

1− δ
α · (2L)z · wî,

where the first inequality comes from Lemma 1, and the second inequality comes from Assumption 1,55

(19), and (20). To guarantee the total multiplicative error no larger than ϵ1 and the additive error no56

larger than ϵ2, we need the following two inequalities for setting the value of τ :57

2τk

1− δ
(1 + β) · k ≤ ϵ1 (21)

2τk

1− δ
α · (2L)z · k ≤ ϵ2∆

z. (22)

Note that we add an extra factor k in the above two inequalities, because there are at most k light58

pseudo-cubes. Based on the fact ( ∆
2L )

z ≥ ( 12 (
α
ϵ2
)1/z)z from Theorem 1 (usually z is a fixed constant),59

it is sufficient to set60

τ ≤ Θ(
ϵ1
k2

). (23)

Together with (17), we obtain the sample size61

m ≥ Θ(
k2

(ϵ1 − β)2ϵ1
log

k

λ
), (24)

where we replace the probability parameter λ by λ/k to take the union bound over all the k pseudo-62

cubes.63
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3 Assumption 1 for The Applications64

kc-Clustering1. Let kc ∈ Z+. A feasible solution θ for the kc-clustering problem is a set of kc65

centers in Rd, and each data point is assigned to the nearest center. The objective function of the66

kc-means clustering problem is as follows:67

F (θ) =
1

n

n∑
i=1

min
c∈θ

∥pi − c∥22. (25)

Similarly, the objective function of the kc-center clustering is68

F (θ) = max
p∈P

min
c∈θ

||p− c||2. (26)

And the objective function of the kc-median clustering is69

F (θ) =
1

n

n∑
i=1

min
c∈θ

||p− c||2. (27)

Obviously for the kc-center and kc-median problems, we have α = 1, β = 0, and z = 1. For the70

kc-means problem, we consider any two points p, q ∈ Rd. Denote by cp, cq ∈ θ the nearest centers71

to p and q, respectively. Without loss of generality, we can assume f(θ, p) ≥ f(θ, q). Let ϵ ∈ (0, 1).72

Then we have73

|f(θ, p)− f(θ, q)| = ∥p− cp∥22 − ∥q − cq∥22
≤ ∥p− cq∥22 − ∥q − cq∥22
= ∥p− q + q − cq∥22 − ∥q − cq∥22
= ∥p− q∥22 + 2 ⟨p− q, q − cq⟩

= ∥p− q∥22 + 2

〈
1√
ϵ
(p− q),

√
ϵ(q − cq)

〉
≤ ∥p− q∥22 +

1

ϵ
∥p− q∥22 + ϵ∥q − cq∥22

= (1 +
1

ϵ
)∥p− q∥22 + ϵf(θ, q). (28)

Therefore, we have β = ϵ, α = O( 1ϵ ), and z = 2 for the kc-means clustering problem.74

Logistic Regression. Logistic regression is a widely used binary classification model with each data75

point pi having the label yi ∈ {0, 1} [2]. Denote g(t) := 1
1+e−t , and the objective function of logistic76

regression is:77

F (θ) = − 1

n

n∑
i=1

(
yi log g (⟨pi, θ⟩) + (1− yi) log (1− g (⟨pi, θ⟩))

)
. (29)

Note that we compute the coresets for two classes separately, i.e., the label can be viewed as a fixed78

number (either 1 or 0). Denote f ′(θ, t) as the derivative of f(θ, t) (where t = ⟨p, θ⟩). Obviously,79

|f ′(θ, t)| < 1. We consider arbitrary two points p, q ∈ Rd. Also we assume that they have the same80

label. Thus, we have81

|f(θ, ⟨p, θ⟩)− f(θ, ⟨q, θ⟩)| ≤ | ⟨p, θ⟩ − ⟨q, θ⟩ |
= | ⟨p− q, θ⟩ |
≤ ∥θ∥2 · ∥p− q∥2. (30)

Therefore we have α = O(∥θ∥2), β = 0, and z = 1.82

SVM with Soft Margin. The objective function of the soft margin SVM [1] is as follows:83

min
ω,b,ξi

1
2∥ω∥2 + λ

∑n
i=1 ξi (31)

s.t. yi(ω
Txi + b) ≥ 1− ξi
ξi ≥ 0, i ∈ [n].

Specifically, λ is a constant number and ξi can be set to be hinge loss ℓhinge(z) = max(0, 1− z) or84

logistic loss ℓlog(z) = log(1+exp(−z)), where z = yi(ω
Txi+ b). Through the similar calculations85

as the logistic regression, we have α = O(∥θ∥2), β = 0, z = 1.86

1We use “kc” instead of “k” to avoid being confused with the coreset size k
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4 Experimental results87

We evaluate the performance of our relational coreset on three popular machine learning problems, the88

kc-means clustering, SVM with soft margin, and logistic regression. The experimental results suggest89

that our method can achieve promising performances on large-scale data sets, where the coreset90

size is significantly smaller than the design matrix. Moreover, our coreset can be constructed very91

efficiently with low runtime. Our approach is in general at least 40 times faster than the end-to-end92

time of the traditional relational learning framework. In terms of the kc-means clustering problem,93

comparing with the recently proposed Rk-means[3] algorithm, our coreset method can achieve a94

better solution with lower construction time and coreset size, especially when the number of tables95

is relatively larger. All the experimental results were obtained on a server equipped with 3.0GHz96

Intel CPUs and 384GB main memory. Our algorithms were implemented in Python with PostgreSQL97

12.10.98

Data sets and Queries. We design three different join queries on the following two real relational99

data sets.100

(1)HOME CREDIT2 is a relational data set used for credit forecasting. It contains 7 tables including101

the historical credit and financial information for each applicant. The dataset has the binary labels.102

We use 5 of these tables to design two different queries to extract the design matrix.103

• QUERY 1 (Q1) is a multi-way acyclic join that involves 5 tables, and the returned design104

matrix contains about 4.0× 108 rows with 19 features. The total size is about 60GB.105

• QUERY 2 (Q2) is a multi-way acyclic join that involves 4 tables, and the returned design106

matrix contains 8.0× 107 rows with 17 features. The total size is about 11GB.107

(2)YELP3 is a relational data set that contains the information of user reviews in business. The data108

set has no label so we just use it for the clustering task. We use 3 main tables to design a join query109

that forms the design matrix.110

• QUERY 3 (Q3) is a chain acyclic join that involves 3 tables, and the returned design matrix111

contains about 5.7× 106 rows with 24 features. The total size is about 1.1GB.112

These three queries are designed as follows:113

Q1 = SELECT ∗ FROM Application as App, Bureau as Bur

Previous as Pre, CreditCard as Cre, Installments as Ins

WHERE App.sid = Bur.sid AND App.sid = Pre.sid

AND Cre.pid = Pre.pid AND Ins.pid = Pre.pid;

(32)

Q2 = SELECT ∗ FROM Application as App, Previous as Pre,

CreditCard as Cre, Installments as Ins

WHERE App.sid = Pre.sid AND Cre.pid = Pre.pid

AND Ins.pid = Pre.pid;

(33)

Q3 = SELECT ∗ FROM Review as Rev, Usr, Business as Bus

WHERE Rev.uid = Usr.uid AND Rev.bid = Bus.bid.
(34)

Baseline methods. We consider two baseline methods for comparison. (1) ORIGINAL: construct114

the complete design matrix P by preforming the join query, and run the training algorithm directly on115

P ; (2) Rk-MEANS: the relational kc-means algorithm [3]. It first performs the κ-means (κ ∈ (0, kc])116

on each table and then constructs a grid coreset of size κs; (3) RCORE: our proposed relational117

coreset approach. The experimental results of RCORE and Rk-MEANS are averaged over 10 trials.118

2https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=89722
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Results. We consider both the running time and optimization quality. We record the runtime that119

includes the design matrix/coreset construction time and the training time. We define “Speedup” as120

the ratio of the ORIGINAL’s end-to-end time to RCORE’s time. For the optimization quality, we take121

the objective value F (θ∗) obtained by ORIGINAL as the baseline; we define “Approx.”= F (θ)−F (θ∗)
F (θ∗) ,122

where F (θ) is the objective function value obtained by RCORE.123

Coreset size 200 400 600 800 1000

Construction time of P (s) 2403

Construction + training time of RCore(s) 208 288 363 446 531

SVM
training time on P (s) > 21600

Speedup > 115.10× > 83.32× > 65.96× > 53.80× > 45.20×
Approx. 0.92 0.31 0.27 0.16 0.02

LR
training time on P (s) 686

Speedup 106.86 77.36 61.24 49.95 41.97

Approx. 0.43 0.52 0.42 0.24 0.13

Table 1: The results of SVM and logistic regression on Q2.

Coreset size 200 400 600 800 1000

Construction time of P (s) 10687

Construction + training time of RCore(s) 228 335 430 529 630

SVM
training time on P (s) -

Speedup > 46.71× > 31.86× > 24.81× > 20.19× > 16.94×
Loss 0.40± 0.18 0.33± 0.14 0.36± 0.14 0.32± 0.08 0.24± 0.03

LR
training time on P (s) -

Speedup > 46.71× > 31.86× > 24.81× > 20.19× > 16.94×
Loss 4.13± 1.70 3.21± 0.90 3.39± 1.53 3.17± 0.56 3.07± 0.31

Table 2: The results of SVM and logistic regression on Q3.

We compare ORIGINAL and RCORE on Q2 and Q3. We consider the SVM and logistic regression124

(LR) models, and the results are shown in Table 1 and Table 2, respectively. Note that the runtimes125

for training SVM and logistic regression on our coreset are always less than 1 second, and thus the126

end-to-end runtimes of RCORE on both the models are almost the same. For Q3, we cannot obtain127

F (θ∗) due to the memory limit, so we only report the losses.128

For the kc-means clustering problem, we compare the performances of RCORE and Rk-MEANS129

under the three queries. According to the setting in [3], κ can be less than kc. In our experiment,130

we set kc = 10, and set κ = {6, 7, 8, 9, 10} for Rk-MEANS. Figure 1 and 2 illustrate the obtained131

coreset construction times and corresponding losses. The results suggest that when the number of132

tables is small (s = 3), our RCORE has a similar coreset construction time with Rk-MEANS but133

a lower loss. When s is relatively larger, the advantages of our RCORE in terms of the runtime134

and optimization quality become more significant. Moreover, as the increasing of coreset size, our135

RCORE has a decreasing trend in loss, while the performance of Rk-MEANS is relatively unstable.136
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Figure 1: Construction time of RCORE and Rk-MEANS

Figure 2: Average loss of RCORE and Rk-MEANS
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