
On-Demand Sampling:
Learning Optimally from Multiple Distributions ∗

Nika Haghtalab, Michael I. Jordan, and Eric Zhao

University of California, Berkeley

Abstract

Societal and real-world considerations such as robustness, fairness, social welfare
and multi-agent tradeoffs have given rise to multi-distribution learning paradigms,
such as collaborative [5], group distributionally robust [36], and fair federated
learning [27]. In each of these settings, a learner seeks to minimize its worst-
case loss over a set of n predefined distributions, while using as few samples as
possible. In this paper, we establish the optimal sample complexity of these learning
paradigms and give algorithms that meet this sample complexity. Importantly, our
sample complexity bounds exceed that of the sample complexity of learning a
single distribution only by an additive factor of n log(n)

ε2 . These improve upon the
best known sample complexity of agnostic federated learning by Mohri et al. [27]
by a multiplicative factor of n, the sample complexity of collaborative learning by
Nguyen and Zakynthinou [29] by a multiplicative factor logn

ε3 , and give the first
sample complexity bounds for the group DRO objective of Sagawa et al. [36]. To
achieve optimal sample complexity, our algorithms learn to sample and learn from
distributions on demand. Our algorithm design and analysis extends stochastic
optimization techniques to solve zero-sum games in a new stochastic setting.

1 Introduction

Pervasive needs for robustness, fairness, and multi-agent collaboration in learning have given rise to
multi-distribution learning paradigms (e.g., [5, 36, 27, 12]). In these settings, we seek to learn a model
that performs well on any distribution in a pre-defined set of interest. For fairness considerations,
these distributions may represent heterogeneous populations of different protected or socio-economic
attributes; in robustness applications, they may capture a learner’s uncertainty regarding the true
underlying task; and in muti-agent collaborative or federated applications, they may represent agent-
specific learning tasks. In these applications, the performance and optimality of a model is measured
by its worst test-time performance on a distribution in the set. We are concerned with this fundamental
problem of designing sample-efficient multi-distribution learning algorithms.

The sample complexity of multi-distribution learning differs from that of learning a single distribution
in several ways. On one hand, learning tasks of varying difficulty require different numbers of samples.
On the other hand, similarity or overlap among learning tasks may obviate the need to sample from
some distributions. This makes the use of a fixed per-distribution sample budget highly inefficient
and suggests that optimal multi-distribution learning algorithms should sample on demand. That is,
algorithms should take additional samples whenever they need them and from whichever distribution
they want them. On-demand sampling is especially appropriate when some population data is scarce
(as in fairness mechanisms in which samples are amended [32]); when the designer can actively
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Problem Sample Complexity Thm Best Previous Result

Collab. Learning UB ε−2
(
log |H|+ n log(n

δ
)
)

[4.1] ε−5 log
(
1
ε

)
log(n

δ
)(log |H|+ n) [29]

Collab. Learning LB ε−2(log |H|+ n log( k
δ
)) [4.2] ε−1n log(k/δ) [5]

GDRO/AFL UB ε−2
(
log |H|+ n log(n

δ
)
)

[4.1] ε−2
(
n log |H|+ n log(n

δ
)
)

[27]

GDRO/AFL UB ε−2
(
DH + n log(n

δ
)
)

[5.1] N/A

(Training error convg.) ε−2
(
DH + n log(n

δ
)
)

[5.2] ε−2DH (expected convergence only) [36]

Table 1: This table gives upper (UB) and lower bounds (LB) on the sample complexity of learning model class
H on n distributions. For the collaborative learning and AFL settings, the sample complexity upper bounds
refer to the problem of learning a randomized model of worst-case error OPT + ε or a deterministic classifier of
worst-case error 2OPT + ε. For the GDRO setting, sample complexity refers to learning a deterministic model
with worst-case error of R-OPT + ε, where R-OPT is the best worst-case error attainable in a convex compact
model space H . DH denotes the Bregman radius of H , and k = min {n, log |H|}. Sample complexity bounds
of Collaborative and Agnostic federated learning in existing works, extend to VC dimension and Rademacher
complexity. Our results also extend to VC dimension under some assumptions.

perturb datasets towards rare or atypical instances (such as in robustness applications [21, 44]); or
when sample sets represent agents’ contributions to an interactive multi-agent system [27, 6].

Blum et al. [5] demonstrated the benefit of on-demand sampling in the collaborative learning
setting, where all data distributions are realizable with respect to the same target classifier. This
line of work established that learning n distributions on-demand takes Õ (log(n)) times the sample
complexity of learning a single realizable distribution [5, 8, 29], whereas relying on batched uniform
convergence takes Ω̃ (n) times that of learning a single distribution [5]. However, beyond the
realizable setting, the best known multi-distribution learning results fall short of this promise: existing
on-demand sample complexity bounds for agnostic collaborative learning have highly suboptimal
dependence on ε, requiring Õ

(
log(n)/ε3

)
times the sample complexity of agnostically learning a

single distribution [29]. On the other hand, agnostic federated learning bounds [27] have been studied
only for algorithms that sample in one large batch and thus require Ω̃ (n) times the sample complexity
of a single learning task. Moreover, the test-time performance of some key multi-distribution methods,
such as group distributionally robust optimization [36], have not been studied from a provable or
mathematical perspective before.

In this paper, we give a general framework for obtaining optimal and on-demand sample complexity
for three multi-distribution learning settings. Table 1 summarizes our results. All three settings
consider a set D of n distributions and a model class H. They evaluate the performance of a model h
(or a distribution over models) by its worst-case performance, maxD∈D RiskD(h). As a benchmark,
they consider the worst-case loss of the best model, i.e., OPT = minh∗∈H maxD∈D RiskD(h∗).
Importantly, all of our sample complexity upper bounds demonstrate only an additive increase of
ε−2n log(n/δ) over the sample complexity of a single learning task, compared to the multiplicative
factor increase required by existing works.

- Collaborative learning of Blum et al. [5]: For agnostic collaborative learning, our Theo-
rem 4.1 gives a randomized and a deterministic model that achieve performance guarantees
of OPT + ε and 2OPT + ε, respectively. Our algorithms have an optimal sample complexity of
O
(

1
ε2 (log(|H|) + n log(nδ ))

)
. This improves upon the work of Nguyen and Zakynthinou [29]

in two ways. First, it provides error bounds of OPT + ε for randomized classifiers, where only
2OPT + ε was previously established. Second, it improves the upper bound of Nguyen and
Zakynthinou [29] by a multiplicative factor of log(n)/ε3. In Theorem 4.2, we give a matching
lower bound on this sample complexity, thereby establishing the optimality of our algorithms.

- Group distributionally robust learning (group DRO) of Sagawa et al. [36]: For group DRO, we
consider a convex and compact model space H. Our Theorem 5.1 studies a model that achieves
an OPT + ε guarantee on the worst-case test-time performance of the model with an on-demand
sample complexity of O

(
1
ε2 (DH + n log(nδ )

)
. Our results also imply a high-probability bound
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for the convergence of group DRO training error that improves upon the (expected) convergence
guarantees of Sagawa et al. [36] by a factor of n.

- Agnostic federated learning of [27]: For agnostic federated learning, we consider a finite class
of hypotheses. Our Theorems 4.1 and 5.1 show that on-demand sampling can accelerate the
generalization of agnostic federated learning by a factor of n compared to batch results established
by Mohri et al. [27]. Our results also imply matching high-probability bounds to Mohri et al. [27]
on the convergence of the training error in the batched setting.

To achieve these results, we contribute new insights and techniques for solving stochastic zero-sum
games with sources of randomization that differ in both cost and quality. We frame the multi-
distribution learning problems as a stochastic zero-sum game with uncertain payoffs and utilize
stochastic mirror descent and a variational perspective to solve the game. In this case, the maximizing
player can be interpreted as a weight vector for distributions D, specifying from which distributions
future on-demand samples should be taken. These on-demand samples form a stochastic gradient for
the players. However, the quality of these estimators, the number of samples needed for them, and
whether they can be reused later on, differs between the two players. We extend the Stochastic Mirror
Descent framework to optimally trade off these asymmetric needs for samples. In Section 3 we give
an overview of this approach and its technical challenges and contributions.

1.1 Related Work

Learning models. There are many lines of work that study multi-distribution learning but which
have evolved independently in separate communities. The field of collaborative learning concerns
the learning of a shared machine learning model by multiple stakeholders that each desire a model
with low error on their own data distribution. The line of work initiated by Blum et al. [5] studies
on-demand sample complexity bounds for realizable collaborative learning and was later extended to
several related settings (e.g., [29, 8, 7, 30]). The agnostic federated learning framework of Mohri
et al. [27] poses an equivalent of the multi-distribution learning objective as a fair and intuitive target
for federated learning algorithms, and studies it in the offline setting with data-dependent analysis.
Multi-distribution learning also arises in distributionally robust optimization [4] as the Group DRO
problem [17], which is is motivated by deep learning applications with multiple deployment domains
or protected demographics. These works focus on an empirical perspective, but have discussed
training error convergence in offline settings [17, 36, 37]. Multi-distribution learning is also related
to a line of work on multi-source domain adaptation (e.g., [3, 24]) and multi-group fairness notions
(e.g., [35, 38, 13]). We describe these parallel threads in more detail in Section A.

Stochastic game equilibria. Our approach relates to a line of research on using online algorithms
to find min-max equilibria by playing no-regret algorithms against one another [34, 15, 31, 9, 10].
Online mirror descent (OMD) is one well-studied family of methods that can find approximate
minima of convex functions, and also approximate min-max equilibria of convex-concave games,
with high probability using noisy first-order information [33, 28, 16, 2]. We bring these online
learning tools to bear on the problem of finding saddle points in robust optimization formulations.
The primary technical difference between multi-distribution learning and traditional saddle-point
optimization problems is that we have sample access to distributions instead of noisy local gradients.

2 Preliminaries

Let X be an instance space, Y a label space, and Z = X ×Y a space of datapoints. A data distribution
D is a joint probability distribution over Z . We consider a hypothesis class H of a subset of functions
mapping X to Y . With each distribution D, define a loss function ℓD : H×Z → [0, 1] measuring
the loss of hypothesis h on data point z ∈ Z . We write ℓD as ℓ when D is clear from context. We
denote the expected loss, i.e. risk, of a hypothesis h ∈ H under a data distribution D ∈ D by:

RiskD(h) := E
(x,y)∼D

[ℓD (h, (x, y))] .

Importantly, we only assume that ℓD’s are bounded and make no other assumptions on losses or
distributions. For a distribution over the hypothesis class, p ∈ ∆H, and a distribution over data
distributions, q ∈ ∆D, we refer to their expected loss by Riskq(p) := ED∼q [Eh∼p [RiskD(h)]].
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Collaborative Learning. We will use the collaborative PAC learning model of Blum et al. [5] and
its agnostic extensions by Nguyen and Zakynthinou [29]. In this setting, the goal is to guarantee
small risk for every distribution in a collection. Formally, given a set of data distributions D :=
{D1, . . . , Dn}, the goal of the learner is to learn a hypothesis h such that, with probability 1− δ,

max
D∈D

RiskD(h) ≤ OPT + ε, where OPT := min
h∈H

max
D∈D

RiskD(h). (1)

Group Distribution Robustness. We will also study the closely related setting of group distribu-
tionally robust optimization (Group DRO) of Sagawa et al. [36]. Formally, the group DRO setting
considers a model set Θ that is a convex compact subset of the Euclidean space and a convex loss
function ℓ : Θ × Z → [0, 1] that is assumed to be differentiable over Θ. Given a set of data
distributions D := {D1, . . . , Dn}, the learner seeks a model θ ∈ Θ, such that, with probability 1− δ,

max
D∈D

E
(x,y)∼D

[ℓ(θ, (x, y))] ≤ R-OPT + ε, where R-OPT := min
θ∈Θ

max
D∈D

E
(x,y)∼D

[ℓ(θ, (x, y))] . (2)

There is a close relationship between the Group DRO setting and collaborative learning. In particular,
when Θ = ∆(H) and H is finite, the two goals are analogous but with two exceptions: first, the Group
DRO could return a distribution over functions while collaborative learning requires the solution to
be a deterministic function, and second, R-OPT is potentially more competitive than OPT since it
allows randomization. We note that the group DRO setting is equivalent to the agnostic federated
learning framework of [27], thus our results for DRO extend to that setting as well.

Sample complexity. We are interested in the design of algorithms that achieve the above goals
while using a small number of samples from distributions D1, . . . , Dn. We formalize the sample
complexity by the total number of calls made to example oracles EX(Di). Each call EX(D) produces
an i.i.d. sample from D. We note that these example oracles also allow us to sample from any mixture
distribution q ∈ ∆D, e.g., by first selecting a Di according to the mixture and then calling EX(Di).

2.1 Technical Background

We will use tools and definitions from the literature on zero-sum games and no-regret learning
throughout the paper. This section provides a brief overview of these concepts.

Zero-Sum Games. A finite two-player zero-sum game is described by the tuple (A-, A+, ϕ) where
A- = {1, . . . , n} and A+ = {1, . . . ,m} are finite sets of actions and where ϕ : A- × A+ → [0, C].
In this game, the players choose mixed strategies over actions sets. These are distributions that are
denoted by a vector of probabilities p ∈ ∆A- and q ∈ ∆A+. The expected payoff of mixed strategies
is denoted by ϕ(p, q) = Ei∼p,j∼q [ϕ(i, j)]. The goal of the minimizing player is to minimize this
expected payoff and the maximizer seeks to maximize the expected payoff; that is, to solve

min
p∈∆A-

max
q∈∆A+

ϕ(p, q).

A pair (p, q) that solves this optimization problem is called a min-max equilibrium. Similarly, a
solution is called an ε-min-max equilibrium if neither player can unilaterally improve their objective
by more than ε. Formally, (p, q) is an ε-min-max equilibrium if both players’ regrets are at most ε,
i.e., Reg-Min(p, q) := ϕ(p, q)−mini∗∈A- ϕ(i

∗, q) ≤ ε and Reg-Max(p, q) := maxj∗∈A+ ϕ(p, j
∗)−

ϕ(p, q) ≤ ε. We will next describe methods that find ε-min-max equilibria by finding solutions (p, q)
for which Reg-Min(p, q) + Reg-Max(p, q) is at most ε. We describe a more general formulation for
convex-concave zero-sum games in Appendix B.1 which we will use for the Group DRO problem.

No-Regret Learning. We consider an online setting where an arbitrary set of operators,
g(1), . . . g(T ) ∈ E∗, is revealed sequentially to a learner who must choose a matching sequence
of actions, w(1), . . . w(T ), from a convex compact set Z ⊆ E . Here, E and E∗ respectively refer to
an arbitrary Euclidean space and its dual. We focus on a setting where an online learner commits
to action w(t) ∈ Z before seeing g(t), g(t+1), . . . and aims to achieve vanishing variational error
Errv(w(1:T )) defined by

Errv(w(1:T )) := max
w∗∈Z

1

T

T∑
t=1

〈
g(t), w(t) − w∗

〉
. (3)
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We will denote no-regret algorithms by their update rule Q : {Z × E∗} → Z, where {Z × E∗}
denotes the space of arbitrary length sequences of action-operator pairs. Given a history sequence
w(1), . . . , w(t) ∈ Z and operator sequence g(1), . . . , g(t) ∈ E∗, the algorithm returns w(t+1) =
Q
({

w(1), g(1)
}
, . . . ,

{
w(t), g(t)

})
. When the history is clear from context, we write w(t+1) =

Q
(
w(t), g(t)

)
as shorthand. For the particular case where Z = ∆n is a probability simplex, one such

algorithm is Exponential Gradient Descent (also known as Hedge):

Qhedge

({
w(1), g(1)

}
, . . . ,

{
w(t), g(t)

})
:=

w̃

∥w̃∥1
where w̃i := w

(t)
i exp

{
−ηg

(t)
i

}
, w̃ ∈ Rn (4)

where η is a user-defined step size, and w1 is a user-defined initial iterate. By default, we take
w1 =

[
1
n

]n
. The following lemma is a classical result on the variational error of exponential gradient

descent.
Lemma 2.1 ([40]). Let g(1), . . . , g(T ) ∈ Rn and Z = ∆n. Further assume

∥∥g(t)∥∥∞ ≤ C for all
timesteps t = 1, . . . , T . Choosing η =

√
log n/T , after T iterations of exponential gradient descent,

the outputs w(1), . . . , w(T ) satisfies,

Errv(w(1:T )) ≤ 3C

2

√
KL
(
w(T )||w(1)

)
T

.

3 Technical Overview of Our Approach

In this section, we provide an overview of our technical approach for addressing the sample complexity
of collaborative learning and group DRO problems. In later sections, we will refer to the approach
outlined in this section to sketch proofs and design algorithms. We will focus our exposition on
collaborative learning and briefly indicate how the same approach applies to the group DRO setting.

At a high level, we first frame collaborative learning as a zero-sum game with uncertain payoffs
and aim to use a variational perspective to learn its minmax equilibrium. We specifically choose
the variational perspective (instead of an arbitrary online learning approach), since it allows us to
linearize the effect of uncertain payoffs on the resulting error. We then use stochastic gradients to solve
the variational problem. Our stochastic gradients will rely on i.i.d. samples from the distributions
to estimate gradients both with respect to distributions over H and mixtures over D but with an
asymmetric bound on the bias and variance of the estimates. Along the way, we develop tools
and formalisms that handle the asymmetric cost of stochastic gradients and obtain optimal sample
complexity results. We now address these steps in more detail.

Collaborative Learning as Zero-Sum Games. When the hypothesis class H is finite, the collab-
orative learning problem with distribution set D corresponds to a zero-sum game (A-, A+, ϕ) with
A- = H, A+ = D, and ϕ(i, j) = Riskj(i), where i ∈ A- and j ∈ A+. Observe that the value of the
min-max solution is equivalent to R-OPT. It is not hard to see that any ε-min-max equilibrium (p, q)
of this game corresponds to a 2ε collaborative learning solution, i.e.,

E
h∼p

[
max
D∈D

RiskD(h)

]
≤ OPT + 2ε. (5)

This enables us to use tools that have been developed for solving zero-sum games in order to address
collaborative learning and group DRO settings. We will use a similar construction when hypothesis
class H has finite VC dimension, where A- will instead refer to an appropriate ε-cover of H.

Using the Variational Error to deal with Payoff Uncertainty. A sufficient condition for minimiz-
ing regret, and thus finding ε-min-max equilibrium, is minimizing the variational error (Equation 3).
In particular, for any finite zero-sum game (A-, A+, ϕ), defining Z = [∆A-,∆A+] and operators

g(t) =

[{
∂piϕ(p

(t), q(t))
}
i∈A-

,
{
−∂qjϕ(p

(t), q(t))
}
j∈A+

]
, (6)

ensures that variational error provides an upper bound on regret: Errv(w(1:T )) ≥ Reg-Min(p, q) +
Reg-Max(p, q), where w = (p, q) (see Fact C.1). In collaborative learning, when p(t) is the min-
player’s distribution over hypotheses and q(t) is max-player’s distribution over the mixtures, the
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gradient vectors refer to the risks of each hypothesis or distribution under q(t) or p(t) respectively:

g(t) = [g(t)- , g
(t)
+ ], g(t)- =

{
Riskq(t)(h)

}
h∈H , g

(t)
+ =

{
RiskD(p(t))

}
D∈D

. (7)

In the collaborative learning setting, we can only create noisy estimates ĝ for these gradients from
samples. No-regret algorithms are advantageous in this setting as they choose their tth iterate
w(t) before seeing the tth gradient g(t). This means that w(t) is independent of gradient noise,
ε(t) := g(t) − ĝ(t). We can thus linearize the noise and decompose variational error into the training
and generalization errors as follows

Errv(w(1:T )) ≤ max
w∗∈∆n

1

T

T∑
t=1

〈
ĝ(t), w(t) − w∗

〉
+ max

w∗∈∆n

1

T

T∑
t=1

〈
ε(t), w(t) − w∗

〉
. (8)

In contrast, generic no-regret algorithms that do not solve the variational inequality (e.g., when
one player plays Hedge and another plays clairvoyant best-response as used in existing work in
collaborative learning due to Blum et al. [5], Nguyen and Zakynthinou [29], Chen et al. [8]) nest the
generalization and training errors which leads to a multiplicative increase in sample complexity.

Leveraging Noisy Stochastic Gradients. We will work with stochastic estimators of g. These are
functions ĝ : ξ ×∆A- ×∆A+ of some external source of randomness, ξ ∈ ξ, and a strategy profile
of interest. For collaborative learning, the randomness source ξ is an i.i.d.-sampled data point from
an appropriate mixture of distributions and the estimator ĝ is then the empirical loss on this sample,
which is an unbiased and bounded estimator in the range of the loss function, i.e., [0, 1].

Interestingly, estimators of these stochastic gradients have an asymmetric need for data. As seen in
Equation 7, the min-player’s gradient g-(p, q) includes the risk of every hypothesis h ∈ H for the
same data distribution q. Therefore, an unbiased estimator ĝ-(p, q) can be constructed from a single
call to an example oracle EX(q). We call this source of randomness ξq and say that its cost is r− = 1.
While ξq costs 1 unit, the randomness it provides is specialized to the point of inquiry, that is, it
cannot be used for estimating other ĝ-(p, q

′). We call this source of randomness and its associated
unbiased estimation a locally unbiased estimator.

On the other hand, the max-player’s gradient g+(p, q) includes the risk of the same hypothesis p on
every distribution D ∈ D. Therefore, an unbiased estimator ĝ+(p, q) requires n samples, i.e., a call
to every example oracle EX(Di). We call this source of randomness producing n samples ξp and
say that its cost is r+ = n. Importantly, while ξp costs n unit, the randomness it provides can be
reused for estimating other gradients, that is, it can provide an unbiased and bounded estimators for
all ĝ+(p

′, q′). We call this source of randomness and its associated unbiased estimator a globally
unbiased estimator. To emphasize the fact that this source of randomness is agnostic to (p, q) we
refer to it by ξ⊥ hereafter. We refer the reader to Appendix B.2 for a more formal definition and
description of these asymmetries.

Minimizing Regret with Asymmetric Cost. With the goal of minimizing sample complexity in
mind, it is essential that we reuse randomness ξ⊥ across n time steps of variational algorithms. To
do this, we introduce a stochastic variational approach in Algorithm 1 that accommodates different
sampling frequencies for the minimizing and maximizing players. This will decouple the sample
complexity of the minimizing agent (who requires a time horizon of at least log(A-) ≈ log(H)) and
the maximizing agent. Lemma 3.1 proves this decoupling allows us to find an ε-min-max equilibrium
with an additive n+ log(H) sample complexity instead of a multiplicative n log(H).

Algorithm 1 uses the same randomness ξ⊥(a) of cost r for estimating g+(p
t, qt) for all t ∈ [ar +

1, . . . , a(r + 1)]. On the other hand, the algorithm uses fresh randomness ξ(t) of cost 1 to estimate
g-(p

t, qt) for every time step t. The total randomness cost of this algorithm is thus 2T because
iteration of the outer loop incurs 2r cost.

Lemma 3.1. Let (A-, A+, ϕ) be a finite zero-sum game. Assume there exists ξq
(t)

of cost 1 providing
locally unbiased estimates ĝ-(·) and there exists ξ⊥(a) of cost r providing globally unbiased estimates
ĝ+(·). With probability 1− δ, Algorithm 1 returns an ε-min-max equilibrium of the game, so long as

T ≥ 18

ε2

(
max

{
9 log |A-|

4
, 8 log

(
r + 1

δ

)}
+max

{
9 log |A+|

4
,
8r2

r + 1
log

(
r + 1

δ

)})
. (9)

Moreover, the total cost of randomness incurred by the algorithm is at most 2T .
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Algorithm 1 Finding Equilibria in Finite Zero-Sum Games with Asymmetric Costs.
Output: Mixed strategy profile (p, q) ∈ ∆A- ×∆A+;
Input: Action sets A-, A+, cost r ∈ Z+, timesteps T , iterates p(1), q(1), gradient estimators ĝ-, ĝ+;
for a = 1, 2, . . . , ⌈T/r⌉ do

Realize ξ⊥
(a)

at cost r; // Sample datapoints from every distribution.
for t = ar + 1− r, . . . , ar do

Realize ξq
(t)

at cost 1; // Sample from adversary-selected distribution.

Estimate gradients: ĝ(t)+ = ĝ+

(
ξ⊥

(a)

, p(t), q(t)
)
, ĝ(t)- = ĝ-

(
ξq

(t)

, p(t), q(t)
)

;

Run Hedge updates: p(t+1) = Qhedge

(
p(t), ĝ

(t)
+

)
, q(t+1) = Qhedge

(
q(t), ĝ

(t)
+

)
;

end for
end for
Return the uniformly mixed strategies p = 1

T

∑T
t=1 p

(t) and q = 1
T

∑T
t=1 q

(t);

Proof sketch. Our approach uses Equation 8 to decompose the variational error into training error
and generalization error. Since exponential gradient descent is known to bound the training error
(as shown in Lemma C.4), it only remains to bound the generalization error (the second term in
Equation 3). We note that in expectation each summand

〈
ε(t), w(t) − w∗〉 is zero. This is because

ε(t) = g(t) − ĝ(t) and ĝ(t) are unbiased estimators. Therefore, the sum of these terms has an intuitive
martingale interpretation and could be bounded by the Azuma-Hoeffding inequality.

There is a subtlety here, however. When we reuse the maximizing player’s randomness over r
rounds, we create correlations between these terms in the generalization error that cannot be directly
accommodated by a martingale. The trick here is to note that these correlations are entirely contained
in r-length periods. So, we can partition our sequence to r martingales and bound each one. This
completes the proof. See Appendix C.1 for detailed proof of this lemma.

Derandomization. The ε-min-max equilibria (p, q) returned by Exponentiated Gradient Descent
gives a probability distribution p over the hypothesis class H that achieves the collaborative learning
bound. To obtain a deterministic hypothesis, we can instead work with hMaj

p whose predictions are
p-weighted majority votes over the hypotheses in H. As stated below, the error of this deterministic
classifier is approximately bounded by the expected error of p.

Lemma 3.2. For any p ∈ ∆H, maxD∈D RiskD(hMaj
p ) ≤ 2maxD∈D RiskD(p).

This lemma in particular implies that for any ε-min-max equilibria (p, q), we have

max
D∈D

RiskD(hMaj
p ) ≤ 2R-OPT + 4ε ≤ 2OPT + 4ε.

4 Collaborative Learning Bounds

In this section, we characterize the sample complexity of collaborative learning by providing tight
upper and lower bounds for this problem. We describe Algorithm 2, which attains near-optimal
sample complexity by on-demand sampling: iteratively selecting distributions to sample from.

4.1 Sample Complexity Upper Bounds

We are now prepared to describe our collaborative learning algorithm and guarantees, using the tools
we developed in Section 3. Algorithm 2 is a direct application of Algorithm 1 to a zero-sum game
with action sets A- = H, A+ = D and payoff ϕ(h,D) = RiskD(h). Here, ξq

(t)

makes one call to
EX(q(t)) and ξ⊥(a) makes one call to EX(D) for each D ∈ D. In other words, Algorithm 2 constructs
distributions p(t) ∈ ∆H and q(t) ∈ ∆D by running the Hedge update. The gradient estimators
used by Hedge are the empirical losses on a set of independent random variables. In particular,
the minimizing player uses gradients ℓD(h, z(t)) for all h ∈ H for a single sample z(t) ∼ EX(D)
with D ∼ q(t) and the maximizing player uses gradients ℓD(p(t), zaD) for all distributions D ∈ D

7



Algorithm 2 On-Demand Agnostic Collaborative Learning.
Input: Hypothesis class H, distribution set D with n := |D|;
Initialize: p(1) = [1/ |H|]|H|, q(1) = [1/n]n, and iterations T = 36

ε2 (9 log (|H|) + 35n log(n/δ));
for a = 1, 2, . . . , ⌈T/n⌉ do

For all D ∈ D, sample datapoint zaD from EX(D) .
for t = an+ 1− n, . . . , an do

Sample z(t) from EX(D) with D ∼ q(t) and estimate ĝ(t)- = [ℓD(h, z(t))]h∈H, ĝ
(t)
+ =

[ℓD(p(t), zaD)]D∈D;

Run Hedge updates: p(t+1) = Qhedge
(
p(t), ĝ(t)-

)
, q(t+1) = Qhedge

(
q(t), ĝ

(t)
+

)
;

end for
end for
Return: probability distribution over H given by the uniform mixture 1

T

∑T
t=1 p

(t).

where a single sample zaD ∼ EX(D) is drawn per distribution and is reused for all time steps
t ∈ [(a− 1)n+ 1, . . . , an].

Our main result in this section bounds the sample complexity of Algorithm 2.
Theorem 4.1. For any finite hypothesis class H and unknown set of distributions D, with probability
1− δ, Algorithm 2 returns a distribution p ∈ ∆H such that

E
h∼p

[
max
D∈D

RiskD(h)

]
≤ OPT + ε and max

D∈D
RiskD(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

log|H|+n log(n/δ)
ε2

)
.

Proof sketch. By construction, Lemma 3.1 guarantees that with probability at least 1− δ, the pair
(p, q) is an ε/2-min-max equilibrium for the corresponding zero-sum game. As shown by Equation 5,
p is a randomized classifier that meets the collaborative learning objective, i.e., its expected worst-case
error is OPT + ε. By Lemma 3.2, the corresponding deterministic classifier hMaj

p has worst-case
error of 2OPT + ε. This bounds the error of the resulting classifier.

To bound the sample complexity, Lemma 3.1 shows that the randomness cost of Algorithm 1 is at most
2t. Since the cost of randomness is exactly the total number of samples we take from our example
oracles, the total sample complexity of Algorithm 2 is 2t ∈ O

(
ε−2 (log |H|+ n log(n/δ))

)
.

An analogue of Theorem 4.1 (Theorem C.3) holds for the case of infinite hypothesis classes of
bounded Littlestone dimension with a sample complexity of O

(
ε−2 (Little(H) + n log(n/δ))

)
. A

similar result also holds with dependence on the VC dimension of H only (which is smaller than
its Littlestone dimension) when additional assumptions hold. For example, if a hypothesis class H′

is known in advance that is an ε-net of H with respect to every distribution in D, one can instead
run Algorithm 2 with a hypothesis class H′. Such an ε-net of size nε−O(VCD(H)) necessarily exists;
for example, the union of ε-nets with respect to each distribution D ∈ D. It is also not strictly
necessary to know an ε-net in advance. Instead, one can compute a net from samples or from other
information about distributions in D. In Appendix C.5, we explore a range of assumptions that allow
us to compute such an ε-net from samples, without incurring a significant increase in the sample
complexity of Theorem 4.1.

We end this subsection with a few remarks about our sample complexity upper bound.
Remark 4.1. One question left open by these results is, for agnostic multi-distribution learning,
whether it is possible to achieve sample complexity rates of O

(
ε−2 (log(n)VCD(H) + n log(n/δ))

)
without any additional assumptions or a priori knowledge of an ε-net. It also remains open whether
the log(n) factor in the log(n)VCD(H)/ε2 term is necessary for some VC classes, as Theorem 4.1
proves it is not necessary for some (e.g., finite) VC classes.
Remark 4.2. Theorem 4.1 improves over the best-known sample complexity for agnostic collab-
orative learning by Nguyen and Zakynthinou [29] in two ways, giving an OPT + ε bound for
randomized classifiers instead of their 2OPT + ε bound, and improving their sample complexity of
O
(

1
ε5

(
log(n) log(|H|) log

(
1
ε

)
+ n log

(
n
δ

)))
by a multiplicative factor of 1

ε3 log (n) log
(
1
ε

)
.
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Remark 4.3. For constants ε and δ, our sample complexity of O (log(|H|) + n log n) appears to
violate the lower bound of Ω (log(|H|) log n+ n log log |H|) due to Chen, Zhang, and Zhou [8].
This discrepancy is due to a small error in the proof of that lower bound, which we have verified in
private communications with the authors. In the next subsection, we give lower bounds on the sample
complexity of collaborative learning that match our upper bounds.

4.2 Sample Complexity Lower Bound

We now provide matching lower bounds for agnostic collaborative learning. Our lower bounds
hold for collaborative learning algorithms obtaining error of R-OPT + ε, using a randomized or
deterministic hypothesis. We call an algorithm an (ε, δ)-collaborative learning algorithm if for any
collaborative instances it attains an error of R-OPT + ε with probability at least 1− δ.

Theorem 4.2. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm A.
There exists a collaborative learning problem (H,D) with |D| = n and |H| = 2d, on which A takes
at least Ω

(
1
ε2 (log |H|+ |D| log(min {|D| , log |H|} /δ))

)
samples.

Proof sketch. We defer the formal proof of this theorem to Appendix C.3 and sketch the main ideas
here. Let X = {1, . . . , d}, Y = {+,−}, and H be the set of all functions X → Y . Our construction
combines two sets of hard distributions. Consider the case when n = d · η for some η ∈ Z. First,
we can reduce to a d-armed multi-arm bandit exploration problem giving us an Ω

(
d log(1/δ)/ε2

)
.

Second, we construct η hard instances on η corresponding points. Since the learning algorithms has
to solve each problem it has to incur a loss of η · d log(d/δ)/ε2.

5 Group DRO and Agnostic Federated Learning

The results we describe in the collaborative learning setting can be generalized to the group DRO
setting, and equivalently, agnostic federated learning.

Theorem 5.1. Consider a group distributionally robust problem (Θ,D) with convex compact unit-
diameter parameter space Θ of Bregman radius DΘ (Definition B.11), and convex loss ℓ : Θ×Z →
[0, C]. A variant of Algorithm 2 (in particular Algorithm 4 in Appendix 4.1), returns θ ∈ Θ such that

maxD∈D Ez∼D [ℓ(θ, z)] ≤ R-OPT + ε, using a number of samples that is O
(

DΘC2+nC2 log(n/δ)
ε2

)
.

The proof of this lemma is deferred to Appendix 4.1 and is similar to the proof of Theorem 4.1
except that it uses a generalization of Lemma 3.1 for general convex-concave games. This theorem
establishes a generalization bound for the problem of group distributionally robust optimization [36]
and improves, by a factor of n, existing sample complexity bounds for agnostic federated learning
[27]. This improvement is attained by sampling data on-demand, whereas [27] only chooses a fixed
distribution over groups/clients to sample from; this highlights the importance of adapting one’s
sampling strategy on-the-fly when learning robust models.

Another important question is how fast the training error of stochastic gradient descent converges
for the group DRO/AFL settings and was considered by Sagawa et al. [36]. We can transfer our
generalization guarantees for on-demand settings into batch settings and achieve the following
corollary, which improves on the convergence guarantees of Sagawa et al. [36] by a factor of n.

Corollary 5.2. Under the same assumptions of Theorem 5.1, we give a procedure (see Appendix 4.1)
that minimizes GDRO/AFL training error within ε of R-OPT with probability at least 1− δ in fewer
samples than O

(
DΘC2+nC2 log(n/δ)

ε2

)
.

6 Empirical Analysis of On-Demand Sampling for Group DRO

This section describes experiments where we adapt our on-demand sampling-based multi-distribution
learning algorithm for deep learning applications. In particular, we compare our algorithm against the
de-facto standard multi-distribution learning algorithm for deep learning, Group DRO (GDRO) [36].
As GDRO is designed for use with offline-collected datasets, to provide an accurate comparison, we
modify our algorithm to work on offline datasets (i.e., with no on-demand sample access).
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Resampling Multi-Distribution Learning (R-MDL). To adapt our multi-distribution learning
algorithm, Algorithm 2, for deep learning applications, we replace its hypothesis-selecting no-regret
learning algorithm with a minibatch gradient descent algorithm. We can further adapt our algorithm
to offline datasets by simulating on-demand sampling on the empirical distributions of datasets. This
modified algorithm, R-MDL, is described in full in Algorithm 5.

In contrast, the GDRO algorithm is also minibatch gradient descent but samples minibatches uniformly
from all distributions. Datapoints in each minibatch are importance weighted according to their
distribution of origin, where a no-regret algorithm adversarially weights each distribution. Though
effective, this GDRO method is brittle and requires tricks like unconventionally strong regularization
[36]. Our theory of on-demand sampling suggests that R-MDL should mollify this brittleness.

Experiment Setting In Table 2, we replicate the Group DRO experiments of Sagawa et al. [36]
and compare the standard GDRO algorithm with our R-MDL algorithm (Algorithm 5). We fine-
tune Resnet-50 models (convolutional neural networks) [18] and BERT models (transformer-based
network) [11] on the image classification datasets Waterbirds [36, 41] and CelebA [23] and the natural
language dataset MultiNLI [42] respectively. We train these models in 3 settings: with standard
hyperpameters, under strong weight decay (ℓ-2) regularization, or under early stopping.

Worst-Group Accuracy Gap in Avg. vs. Worst-Group Acc.

ERM GDRO R-MDL ERM GDRO R-MDL

St
an

da
rd

R
eg

.

Waterbirds 60.0 (1.9) 76.9 (1.7) 86.4 (1.4) 37.3 (1.9) 20.5 (1.7) 8.1 (1.4)

CelebA 41.1 (3.7) 41.7 (3.7) 88.9 (2.3) 53.7 (3.7) 53 (3.7) 3.4 (2.3)

MultiNLI 66.3 (1.6) 66.6 (1.6) 70.3 (1.5) 16.2 (1.6) 15.6 (1.6) 4.5 (1.5)

St
ro

ng
R

eg
.

Waterbirds 21.3 (1.6) 84.6 (1.4) 89.4 (1.2) 74.4 (1.6) 12 (1.4) 0.4 (1.3)

CelebA 37.8 (3.6) 86.7 (2.5) 88.8 (2.3) 58 (3.6) 6.8 (2.5) 1.2 (2.3)

E
ar

ly
St

op

Waterbirds 6.7 (1.0) 85.8 (1.4) 87.1 (1.3) 87.1 (1.0) 7.4 (1.4) 5.6 (1.3)

CelebA 25.0 (3.2) 88.3 (2.4) 90.6 (2.2) 69.6 (3.2) 3.5 (2.4) 0.7 (2.2)

MultiNLI 66.0 (1.6) 77.7 (1.4) 43.1 (1.7) 16.8 (1.6) 3.7 (1.4) 18.3 (1.7)

Table 2: Worst-group accuracy (our primary performance metric) and the gap between worst-group accuracy
and average accuracy, of empirical risk minimization (ERM), Group DRO (GDRO), and our R-MDL algorithm
in three experiment settings—standard hyperparameters (Standard Reg.), inflated weight decay regularization
(Strong Reg.), and early stopping (Early Stop)—and on three datasets—Waterbirds, CelebA, and MultiNLI.
Figures are percentages evaluated on the test split of each dataset, with standard deviation in parentheses. R-MDL
consistently outperforms GDRO and performs reliably with or without strong regularization.

R-MDL consistently outperforms GDRO and ERM. In every dataset and in almost every setting,
R-MDL significantly outperforms GDRO and ERM in worst-group accuracy. In addition, whereas
GDRO and ERM have large gaps between worst-group accuracy and average accuracy, R-MDL has
almost matching worst-group and average accuracies. This indicates that R-MDL is more effective at
prioritizing learning on difficult groups.

R-MDL is robust to regularization strength. R-MDL retains high worst-group accuracy even
without strong regularization. These results challenge the observation of Sagawa et al. [36] that
strong regularization is critical for the performance of Group DRO methods. This suggests that the
brittleness of GDRO is due to reweighting rendering the adversary too weak. In contrast, R-MDL
provides a robust multi-distribution learning method with significantly less hyperparameter sensitivity.
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