
Adversarial Style Augmentation for Domain
Generalized Urban-Scene Segmentation

(Supplementary Material)

Zhun Zhong1∗† Yuyang Zhao2∗ Gim Hee Lee2 Nicu Sebe1
1 Department of Information Engineering and Computer Science, University of Trento

2 Department of Computer Science, National University of Singapore

A Details of Datasets in Domain Generalized Semantic Segmentation

For the synthetic-to-real domain generalization (DG), we use one of the synthetic datasets (GTAV [12]
or SYNTHIA [13]) as the source domain and evaluate the model performance on three real-world
datasets (CityScapes [2], BDD-100K [16], and Mapillary [11]).

Synthetic datasets. GTAV [12] contains 24,966 images with the size of 1914×1052. It is splited
into 12,403, 6,382, and 6,181 images for training, validating, and testing. SYNTHIA [13] contains
9,400 images of 960×720, where 6,580 images are used for training.

Real-world datasets. We use the validation sets of the three real-world datasets for evaluation.
CityScapes [2] contains 500 validation images of 2048×1024, collected primarily in Germany. BDD-
100K [16] and Mapillary [11] contain 1,000 validation images of 1280×720 and 2,000 validation
images of 1920×1080, respectively.

B Details of Single Domain Generalization in Image Classification

Digits includes five domains (MNIST [8], SVHN [10], MNIST-M [4], SYN [4], and USPS [7]) of
10 classes. We use MNIST as the source domain and evaluate the model performance on the other
4 domains. Following ADA [15], we use the ConvNet architecture [8] as the model and use Adam
optimizer with learning rate 10−4 for optimization. The overall training iteration is set to 10,000 with
a batch size of 32. We set the learning rate of AdvStyle to 20,0002.

PACS [9] contains four domains (Artpaint, Cartoon, Sketch, and Photo) of 7 classes. For evaluation,
we select one of them as the source domain and the other domains as the target domains. Following
RSC [6], we use the ResNet18 [5] pretrained on ImageNet [3] as the backbone and add a fully-
connected layer as the classification head. We train the model by SGD optimizer. The learning rate is
initially set to 0.004 and divided by 10 after 24 epochs. The model is trained for 30 epochs in total
with a batch size of 128. The learning rate of AdvStyle is set to 3.

Baseline. The baseline model is the vanilla empirical risk minimization (ERM) [14], which directly
uses the source domain to train the model with classification loss.

C Position of AdvStyle

We inject AdvStyle at different positions (0-4) to verify the effectiveness of image level augmentation.
0-th indicates the image level. 1st-4th indicate the outputs of 1st-4th layer of ResNet, respectively.

∗Equal contribution. † Corresponding author.
2Due to the absent of batch normalization layer, the gradient is very small on the style feature. Therefore, we

set a large learning rate for AdvStyle.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Results are shown in Table 1. We can find that injecting AdvStyle at 0th-2nd positions clearly
improves the performance and the best result is achieved by applying at 0-th position. Moreover,
applying AdvStyle at a deep layer (e.g., 3rd or 4th) fails to improve or even hurts the performance,
since more semantic content will be captured instead of styles as the layer deepens.

Table 1: Impact of injecting AdvStyle at different positions.
Position N/A 0 1 2 3 4

Mean 27.42 37.39 34.76 31.15 27.44 26.92

D Comparison of Adversarial Augmentations

AdvPixel [15] is a state-of-the-art method for domain generalized image classification. The main
difference between AdvPixel and AdvStyle is that AdvPixel learns pixel-wise adversarial example
while AdvStyle learns style-wise adversarial example. The model needs to produce the per-pixel
predictions in semantic segmentation. In such a context, AdvPixel may distort the semantic content
of original pixels during the pixel-wise adversarial learning. Instead, AdvStyle varies the style feature
of the image while retaining the semantic content of most pixels. Therefore, AdvStyle can well
guarantee the pixel-wise semantic consistency, making it more suitable for augmenting samples of
segmentation. As shown in Table 2, both AdvStyle and AdvPixel improve the performance, while
AdvStyle outperforms AdvPixel by 3.42% in mean mIoU. More interestingly, AdvPixel can serve to
enhance AdvStyle. We randomly select one adversarial augmentation from AdvPixel and AdvStyle
at each iteration. The performance yields an improvement of 0.81% in mean mIoU. The above results
verify the effectiveness of adversarial augmentations and the superiority of AdvStyle.

Table 2: Comparison of adversarial augmentations. Source: GTAV; Backbone: ResNet-50. CJ: Color
Jittering, GB: Gaussian Blur, AP: AdvPixel, Ours: AdvStyle.

CJ GB AP Ours CityScapes BDD Mapillary Mean

✓ ✓ - - 28.95 25.14 28.18 27.42
✓ ✓ ✓ - 35.42 33.28 33.23 33.97
✓ ✓ - ✓ 39.62 35.54 37.00 37.39
✓ ✓ ✓ ✓ 40.65 37.16 36.77 38.20

E Variants of AdvStyle

In this section, we investigate two variants of AdvStyle, which can further demonstrate the versatility
of AdvStyle. Also, we hope to provide some inspirations for future work.

AdvStyle in local patches. AdvStyle can be applied to not only the whole image but also the local
patches. Specifically, we split each image into 4 patches evenly (top left, top right, bottom left, and
bottom right), and regard the channel-wise mean and standard deviation of each patch as learnable
parameters (four 6-dim features). Then the model is trained in the same way as AdvStyle. As
shown in the Table 3, AdvStyle-Patches can further improve the performance on BDD and Mapillary.
However, the mean improvement over all domains is marginal.

AdvStyle in LAB color space. AdvStyle is applied to RGB space in this paper, but it can also be
applied to other color space, e.g., LAB color space. To verify this, we first convert the RGB-sample
to the counterpart LAB-sample and obtain the learnable mean and standard deviation. Then, we
reconvert the LAB-sample to RGB-sample for adversarial learning and model optimization. This
manner enables us to implement AdvStyle in the LAB space as well as to use the ImageNet-pretrained
parameters. As shown in the Table 3, LAB-based AdvStyle (AdvStyle-LAB) also significantly
improves the performance on unseen domains but achieves lower results than RGB-based AdvStyle
on two of the three benchmarks. On the other hand, converting between RGB and LAB will increase
the training time due to the extra computation costs.

2

Table 3: Results of AdvStyle variants. The backbone is ResNet-50.
Methods (GTAV→) CityScapes BDD Mapillary Mean

Baseline [1] 28.95 25.14 28.18 27.42
AdvStyle-LAB 37.09 32.89 37.13 35.70
AdvStyle-Patches 39.50 36.37 37.42 37.76

AdvStyle 39.62 35.54 37.00 37.39

F Quantitative Understanding of AdvStyle

To demonstrate the effectiveness of AdvStyle in narrowing the domain shift, we provide the quan-
titative analysis on the distribution of different datasets. Specifically, we computed the histograms
of pixel values of four datasets (GTAV [12], CityScapes [2], BDD-100K [16], Mapillary [11]) and
the AdvStyle-augmented dataset of GTAV which is generated by 4 epochs. The bin size is set to
8. For each dataset, the histograms of RGB channels are normalized by L1-norm and re-scaled (×)
by #bins, and then are concatenated as the histogram feature. We estimate the distribution distance
between two datasets by computing the KL-distance between their histogram features. Results are
reported in Table 4. We can observe that the AdvStyle-augmented dataset has a smaller distance to
real datasets, verifying that AdvStyle can narrow the gap between synthetic and real data.

Table 4: Comparison of KL-distance between different datasets.
Source CityScapes ↓ BDD ↓ Mapillary ↓ Mean ↓
GTAV 0.5867 0.3421 0.3211 0.4166
Adv-GTAV 0.5587 0.3217 0.3058 0.3954

G Algorithm and Pytorch-Like Pseudo-Code

The training procedure and Pytorch-like pseudo-code are shown in Alg. 1 and Fig. 1, respectively.

Algorithm 1: The training procedure of AdvStyle.

1: for i in max_iter do
2: Sample mini-batch X with Nb images;
3: // Stage 1: Adversarial Style Learning.
4: Compute channel-wise mean µ, standard deviation σ and normalized images X̄ with Eq. 2;
5: Initialize adversarial style feature: µ+ ← µ, σ+ ← σ;
6: Compute adversarial segmentation loss −Lseg;
7: Optimize µ+ and σ+ with Eq. 3;
8: // Stage 2: Robust Model Training.
9: Generate adversarial images X+ with X̄ , µ+ and σ+ by Eq. 4;

10: Compute the overall training loss Lseg(θ;X) + Lseg(θ;X+) by Eq. 5;
11: Optimize the segmentation model F : θ ← θ − α∇θ (Lseg(θ;X) + Lseg(θ;X+));
12: end for
13: Return F parameterized with θ.

H More Visualizations

Segmentation Results. In Fig. 2, Fig. 3, and Fig. 4, we provide more segmentation results for the
baseline and “baseline+AdvStyle”.

Examples of AdvStyle. In Fig. 5, we illustrate more examples generated by AdvStyle.

3

 Inputs: labeled source domain S , segmentation model F parameterized by θ, batch size N b,
total training iterations max_iter, adversarial learning rate γ, and model learning rate α.

 Outputs: Optimized model F parameterized with θ.

I Limitations

The main limitation of AdvStyle lies in the increase of training time. The computational cost of
AdvStyle is almost double of that of the baseline since one more forward-backward process is required
to generate style-adversarial examples. Another limitation is that despite generating hard examples,
AdvStyle cannot address severe environmental change in practice, e.g., rainy and snowy weather,
since such conditions cannot be represent purely by style features. Those conditions, e.g., rain, snow
and fog, can be added to source samples and adversarial-augmented samples manually to alleviate
the problem.

import torch

def AdvStyle(input, gt, net, optim, adv_lr):
```
Args:

input: source images
gt: ground-truth labels
net: segmentation network
optim: optimizer of net
adv_lr: learning rate of AdvStyle

’’’
### Adversarial Style Learning

# Get style feature and normalized image
B = input.size(0)
mu = input.mean(dim=[2, 3], keepdim=True)
var = input.var(dim=[2, 3], keepdim=True)
sig = (var + 1e-5).sqrt()
mu, sig = mu.detach(), sig.detach()
input_normed = (input - mu) / sig
input_normed = input_normed.detach().clone()

# Set learnable style feature and adv optimizer
adv_mu, adv_sig = mu, sig
adv_mu.requires_grad_(True)
adv_sig.requires_grad_(True)
adv_optim = torch.optim.SGD(params=[adv_mu, adv_sig], lr=adv_lr, momentum=0, weight_decay=0)

# Optimize adversarial style feature
adv_optim.zero_grad()
adv_input = input_normed * adv_sig+ adv_mu
adv_output = net(adv_input)
adv_loss = torch.nn.functional.cross_entropy(adv_output, gt)
(- adv_loss).backward()
adv_optim.step()

### Robust Model Training
net.train()
optim.zero_grad()
adv_input = input_normed * adv_sig + adv_mu
inputs = torch.cat((input, adv_input), dim=0)
gt = torch.cat((gt, gt), dim=0)
outputs = net(inputs)
loss = F.cross_entropy(outputs, gt)
loss.backward()
optim.step()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Figure 1: The Pytorch-like pseudo-code of AdvStyle.

References
[1] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim, and Jaegul Choo. Robustnet:

Improving domain generalization in urban-scene segmentation via instance selective whitening. In CVPR,
2021.

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

4



Image Ground truth Baseline Baseline+AdvStyle

Vegetation

Unseen
Structures

Adverse
Weather

road swalk build wall fence pole tlight tsign veg terrain

sky person rider car truck bus train mcycle bicycle unlabel

Image Ours Baseline Ground-truth

Figure 15. Segmentation results under various circumstances in BDD-100K with the models trained on Cityscapes. Circumstances include
adverse weather conditions (i.e., snow and fog), unseen structures (i.e., parking lot and overpass), and vegetation.Figure 2: Segmentation results on CityScapes. Source: GTAV; Backbone: ResNet-50.

[4] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML,
2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[6] Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang. Self-challenging improves cross-domain
generalization. In ECCV, 2020.

[7] Jonathan J. Hull. A database for handwritten text recognition research. TPAMI, 1994.

[8] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation,
1989.

[9] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In ICCV, 2017.

5



Image Ground truth Baseline Baseline+AdvStyle

Vegetation

Unseen
Structures

Adverse
Weather

road swalk build wall fence pole tlight tsign veg terrain

sky person rider car truck bus train mcycle bicycle unlabel

Image Ours Baseline Ground-truth

Figure 15. Segmentation results under various circumstances in BDD-100K with the models trained on Cityscapes. Circumstances include
adverse weather conditions (i.e., snow and fog), unseen structures (i.e., parking lot and overpass), and vegetation.Figure 3: Segmentation results on BDD-100K. Source: GTAV; Backbone: ResNet-50.

[10] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning. In NeurIPS Workshop, 2011.

[11] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The mapillary vistas
dataset for semantic understanding of street scenes. In ICCV, 2017.

[12] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth from
computer games. In ECCV, 2016.

[13] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In CVPR, 2016.

[14] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

6



Image Ground truth Baseline Baseline+AdvStyle

Vegetation

Unseen
Structures

Adverse
Weather

road swalk build wall fence pole tlight tsign veg terrain

sky person rider car truck bus train mcycle bicycle unlabel

Image Ours Baseline Ground-truth

Figure 15. Segmentation results under various circumstances in BDD-100K with the models trained on Cityscapes. Circumstances include
adverse weather conditions (i.e., snow and fog), unseen structures (i.e., parking lot and overpass), and vegetation.Figure 4: Segmentation results on Mapillary. Source: GTAV; Backbone: ResNet-50.

[15] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio Savarese.
Generalizing to unseen domains via adversarial data augmentation. In NeurIPS, 2018.

[16] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In CVPR, 2020.

7



Oringal

Blur+
Jittering

+AdvStyle

Oringal

Blur+
Jittering

Oringal

Blur+
Jittering

Oringal

Blur+
Jittering

Oringal

Blur+
Jittering

Oringal

Blur+
Jittering

Oringal

Blur+
Jittering

Figure 5: Examples of adversarial style augmentation. Source: GTAV; Backbone: ResNet-50.

8


	Details of Datasets in Domain Generalized Semantic Segmentation
	Details of Single Domain Generalization in Image Classification
	Position of AdvStyle
	Comparison of Adversarial Augmentations
	Variants of AdvStyle
	Quantitative Understanding of AdvStyle
	Algorithm and Pytorch-Like Pseudo-Code
	More Visualizations
	Limitations

