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A Additional Technical Background

We provide some technical definitions that are needed in our proofs in Appendix B and discussions
of hindsight relabeling in Section 4.1 of the main text as well as Appendix E.2.
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A.1 f -Divergence and Fenchel Duality

These definitions are adapted from [32, 34].
Definition A.1 (f -divergence). For any continuous, convex function f and two probability distribu-
tions p, q 2 �(X ) over a domain X , the f -divergence of p computed at q is defined as

Df (pkq) = Ex⇠q


f

✓
p(x)

q(x)

◆�
(22)

Some common choices of f -divergence includes the KL-divergence and the �2-divergence, which
corresponds to choosing f(x) = x log x and f(x) = 1

2
(x� 1)2, respectively.

Definition A.2 (Fenchel conjugate). Given a vector space X with inner-product h·, ·i, the Fenchel

conjugate f? : X? ! R of a convex and differentiable function f : ⌦ ! R is

f?(y) := max
x2X

hx, yi � f(x) (23)

and any maximizer x⇤ of f?(y) satisfies x⇤ = f 0
?
(y).

For an f -divergence, under mild realizability assumptions [8] on f , the Fenchel conjugate of Df (pkq)
at y : X ! R is

D?,f (y) = max
p2�(X )

Ex⇠p[y(x)]�Df (pkq) (24)

= Ex⇠q[f?(y(x))] (25)

and any maximizer p⇤ of D?,f (y) satisfies p⇤(x) = q(x)f 0
?
(y(x)). These optimality conditions can

be seen as extensions of the KKT-condition.

A.2 Hindsight Goal-Relabeling

We provide a mathematical formalism of hindsight goal relabeling [3].
Definition A.3. Given a state st from a trajectory ⌧ = {s0, a0, r0, ..., sT ; g}, hindsight goal-
relabeling is the goal-relabeling distribution

pHER(g | st, at, ⌧) = q[�(st), ...,�(sT )] (26)

where q is some categorical distribution taking values in {�(st), ...,�(sT )}.

That is, the relabeled goal is selected from some distribution goals that are reached in the future in
the same trajectory. The most canonical choice of q, known as hindsight experience replay (HER),
selects q to be the uniform distribution. Once a goal g̃ is chosen, the reward label is also re-computed
using the reward function assumed by the algorithm: rt := r(st, g̃).

B Proofs

In this section, we restate propositions and theorems in the paper and present their proofs.

B.1 Proof of Proposition 4.2

Proposition B.1. Assume for all g in support of p(g), 8s, dO(s; g) > 0 if p(s; g) > 0. Then, for any

f -divergence that upper bounds the KL-divergence,

�DKL(d
⇡(s; g)kp(s; g)) � E(s,g)⇠d⇡(s,g)


log

p(s; g)

dO(s; g)

�
�Df (d

⇡(s, a; g)kdO(s, a; g)) (27)

� E(s,g)⇠d⇡(s,g) [log p(s; g)]�Df (d
⇡(s, a; g)kdO(s, a; g)) (28)

Proof. We first present and prove some technical lemma needed to prove this result. The following
lemmas and proofs are adapted from [32]; in particular, we extend these known results to the
goal-conditioned setting.

16



Lemma B.1. For any pair of valid occupancy distributions d1 and d2, we have

DKL(d1(s; g)kd2(s; g)  DKL(d1(s, a; g)kd2(s, a; g)) (29)

Proof. This lemma hinges on proving the following lemma first.

Lemma B.2.
DKL (d1(s, a, s

0; g)kd2(s, a, s
0; g)) = DKL (d1(s, a; g)kd2(s, a; g)) (30)

Proof.

DKL (d1(s, a, s
0; g)kd2(s, a, s

0; g))

=

Z

S⇥A⇥S⇥G

p(g)d1(s, a, s
0; g) log

d1(s, a; g) · T (s0 | s, a)

d2(s, a; g) · T (s0 | s, a)
ds0dadsdg

=

Z

S⇥A⇥S⇥G

p(g)d1(s, a, s
0; g) log

d1(s, a; g)

d2(s, a; g)
ds0dadsdg

=

Z

S⇥A⇥G

p(g)d1(s, a; g) log
d1(s, a; g)

d2(s, a; g)
dadsdg

=DKL (d1(s, a; g)kd2(s, a; g))

Using this result, we can prove Lemma B.1:

DKL (d1(s, a; g)kd2(s, a; g))

=DKL (d1(s, a, s
0; g)kd2(s, a, s

0; g))

=

Z

S⇥A⇥S⇥G

p(g)d1(s, a, s
0; g) log

d1(s, a; g) · T (s0 | s, a)

d2(s, a; g) · T (s0 | s, a)
ds0dadsdg

=

Z

S⇥A⇥S⇥G

p(g)d1(s; g)⇡1(a | s, g)T (s0 | s, a) log
d1(s, a; g) · T (s0 | s, a)

d2(s, a; g) · T (s0 | s, a)
ds0dadsdg

=

Z
p(g)d1(s; g)⇡1(a | s, g)T (s0 | s, a) log

d1(s; g)

d2(s; g)
ds0dadsdg

+

Z
p(g)d1(s; g)⇡1(a | s, g)T (s0 | s, a) log

⇡1(a | s, g)T (s0 | s, a)

⇡2(a | s, g)T (s0 | s, a)
ds0dadsdg

=

Z
p(g)d1(s; g) log

d1(s; g)

d2(s; g)
dsdg +

Z
p(g)d1(s; g)⇡1(a | s, g) log

⇡1(a | s, g)

⇡2(a | s, g)
dadsdg

=DKL (d1(s; g)kd2(s; g)) + DKL (⇡1(a | s, g)k⇡2(a | s, g))

�DKL (d1(s; g)kd2(s; g))

Now given these technical lemmas, we have

DKL (d
⇡(s; g)kp(s; g))

=

Z
p(g)d⇡(s; g) log

d⇡(s; g)

p(s; g)
·
dO(s; g)

dO(s; g)
dsdg, we assume that dO(s; g) > 0 whenever p(s; g) > 0.

=

Z
p(g)d⇡(s; g) log

dO(s; g)

p(s; g)
dsdg +

Z
p(g)d⇡(s; g) log

d⇡(s; g)

dO(s; g)
dsdg

E(s,g)⇠d⇡(s,g)


log

dO(s; g)

p(s; g)

�
+DKL

�
d⇡(s, a; g)kdO(s, a; g)

�

where the last step follows from Lemma B.1. Then, for any Df � DKL, we have that

�DKL (d
⇡(s; g)kp(s; g)) � E(s,g)⇠d⇡(s,g)


log

p(s; g)

dO(s; g)

�
�Df

�
d⇡(s, a; g)kdO(s, a; g)

�
(31)
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Then, since E(s,g)⇠d⇡(s,g)

h
log 1

dO(s;g)

i
� 0, we also obtain the following looser bound:

�DKL (d
⇡(s; g)kp(s; g)) � E(s,g)⇠d⇡(s,g) [log p(s; g)]�Df

�
d⇡(s, a; g)kdO(s, a; g)

�
(32)

B.2 Proof of Proposition 4.3

Proposition B.2. The dual problem to (9) is

(D) min
V (s,g)�0

(1��)E(s,g)⇠µ0,p(g)
[V (s; g)]+E(s,a,g)⇠dO [f? (r(s, g) + �T V (s, a; g)� V (s; g))] ,

(33)
where f? denotes the convex conjugate function of f , V (s; g) is the Lagrangian vector, and

T V (s, a; g) = Es0⇠T (·|s,a)[V (s0; g)]. Given the optimal V ⇤
, the primal optimal d⇤ satisfies:

d⇤(s, a; g) = dO(s, a; g)f 0
?
(r(s, g) + �T V ⇤(s, a, g)� V ⇤(s, g)) , 8s 2 S, a 2 A, g 2 G (34)

Proof. We begin by writing the Lagrangian dual of the primal problem:
min

V (s;g)�0

max
d(s,a;g)�0

E(s,g)⇠d(s,g) [log (r(s; g))]�Df (d(s, a; g)kd
O(s, a; g))

+
X

s,g

p(g)V (s; g)

0

@(1� �)µ0(s) + �
X

s̃,ã

T (s | s̃, ã)d(s̃, ã; g)�
X

a

d(s, a; g)

1

A
(35)

where p(g)V (s; g) is the Lagrangian vector. Then, we note that
X

s,g

V (s; g)
X

s̃,ã

T (s | s̃, ã)d(s̃, ã; g) =
X

s̃,ã,g

d(s̃, ã; g)
X

s

T (s | s̃, ã)V (s; g) =
X

s,a,g

d(s, a; g)T V (s, a; g)

(36)
Using this, we can rewrite (35) as
min

V (s;g)�0

max
d(s,a;g)�0

(1� �)E(s,g)⇠(µ0,p(g))
[V (s; g)] + E(s,a,g)⇠d [(r(s; g) + �T V (s, a; g)� V (s; g))]

�Df (d(s, a; g)kd
O(s, a; g))

(37)
And finally,
min

V (s,g)�0

(1� �)E(s,g)⇠(µ0,p(g))
[V (s; g)] + max

d(s,a;g)�0

E(s,a,g)⇠d [(r(s, g) + �T V (s, a; g)� V (s; g))]

�Df (d(s, a; g)kd
O(s, a; g))

(38)
Now, we make the key observation that the inner maximization problem in (38) is in fact the Fenchel
conjugate of Df (d(s, a, g)kdO(s, a, g)) at r(s, g) + �T V (s, a, g) � V (s, g). Therefore, we can
reduce (38) to an unconstrained minimization problem over the dual variables

min
V (s,g)�0

(1� �)E(s,g)⇠µ0,p(g)
[V (s; g)] + E(s,a,g)⇠dO [f? (r(s, g) + �T V (s, a; g)� V (s; g))] ,

(39)
and consequently, we can relate the dual-optimal V ⇤ to the primal-optimal d⇤ using Fenchel duality
(see Appendix A:

d⇤(s, a; g) = dO(s, a; g)f 0
?
(r(s, g) + �T V ⇤(s, a, g)� V ⇤(s, g)) , 8s 2 S, a 2 A, g 2 G, (40)

as desired.

B.3 Proof of Theorem 4.1

Theorem B.3. Assume sups,a,g
d
⇤
(s,a;g)

dO(s,a;g)
 M and sup|r(s, g)|  Rmax. Consider a policy class

⇧ : {S ! �(A)} such that ⇡⇤
2 ⇧. Then, for any � 2 (0, 1], with probability at least 1 � �,

GoFAR (18) will return a policy ⇡̂ such that:

V ⇤
� V ⇡̂


2RmaxM

(1� �)2

r
ln(|⇧|/�)

N
(41)

where V ⇡ := E(s,g)⇠(µ0,g)
[V (s; g)].
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Proof. We begin by deriving an upper bound using the performance difference lemma [1]:

V ⇤
� V ⇡̂


1

1� �
Es⇠d⇤,g⇠p(g)Ea⇠⇡⇤(·|s,g)A

⇡̂(s, a; g) (42)

Then, using standard algebraic manipulations, we have:
1

1� �
Es⇠d⇤,g⇠p(g)Ea⇠⇡⇤(·|s,g)A

⇡̂(s, a; g)

=
1

1� �
Es⇠d⇤,g⇠p(g)

⇥
Ea⇠⇡⇤(·|s,g)A

⇡̂(s, a; g)� Ea⇠⇡̂(·|s,g)A
⇡̂(s, a; g)

⇤


Rmax

(1� �)2
Es⇠d⇤,g⇠p(g) [k⇡

⇤(· | s, g)� ⇡̂(· | s, g)k
1
]


2Rmax

(1� �)2
Es⇠d⇤,g⇠p(g) [k⇡

⇤(· | s, g)� ⇡̂(· | s, g)k
TV

]

(43)

Then, since sups,a,g
d
⇤
(s,a;g)

dO(s,a;g)
 M , we can use Hoeffding’s inequality with weighted empirical

loss [7] to obtain that:

V ⇤
� V ⇡̂


2RmaxM

(1� �)2

r
ln(|⇧|/�)

N
(44)

C GoFAR Technical Details

In this section, we provide additional technical details of GoFAR that are omitted in the main text.
These include (1) detail of the GoFAR discriminator training, (2) mathematical expressions of GoFAR
specialized to common f -Divergences, and (3) a full pseudocode.

C.1 Discriminator Training

Training the discriminator 7 in practice requires choosing p(s; g). For simplicity, we set p(s; g) to be
the Dirac distribution centered at g: I(�(s) = g); this precludes having to choose hyperparameters
for p(s; g).

Once the discriminator has converged, we can retrieve the reward function R(s; g) = log p(s;g)

dO(s;g)
=

� log
⇣

1

c⇤(s;g) � 1
⌘

, since c⇤(s; g) = d
O
(s;g)

p(s;g)+dO(s;g)
.

C.2 GoFAR with common f -Divergences

GoFAR requires choosing a f -divergence. Here, we specialize GoFAR to �2-divergence as well as
KL-divergence as examples. Our practical implementation uses �2-divergence, which we found to be
significantly more stable than KL-divergence (see Section 5.1).
Example 1 (GoFAR with �2-divergence). f(x) = 1

2
(x � 1)2, and we can show that f?(x) =

1

2
(x+ 1)2 and f 0

?
(x) = x+ 1. Hence, the GoFAR objective amounts to

min
V (s;g)�0

(1� �)E(s,g)⇠(µ0,p(g))
[V (s; g)] +

1

2
E(s,a,g)⇠dO

h
(R(s; g) + �T V (s, a; g)� V (s; g) + 1)2

i

(45)
and

d⇤(s, a; g) = dO(s, a; g)max (0, R(s, a; g) + �T V ⇤(s, a; g)� V ⇤(s; g) + 1) (46)
Example 2 (GoFAR with KL-divergence). We have f(x) = x log x and that D?,f (y) =
logEx⇠q[expy(x)] [4]. Hence, the KL-divergence GoFAR objective is
min

V (s;g)�0

(1� �)E(s,g)⇠(µ0,p(g))
[V (s; g)] + logE(s,a,g)⇠dO [exp (R(s; g) + �T V (s, a; g)� V (s; g))]

(47)
and

d⇤(s, a; g) = dO(s, a; g)softmax (R(s; g) + �T V ⇤(s, a; g)� V ⇤(s; g)) (48)
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Now, we provide the full pseudocode for GoFAR implemented using �2-divergence in Algorithm 2.

C.3 Full Pseudocode

Algorithm 2 GoFAR for Continuous MDPs

1: Require: Offline dataset dO , choice of f -divergence f , choice of p(s; g)
2: Randomly initialize discriminator c , value function V✓ , and policy ⇡�.
3: // Train Discriminator (Optional)

4: for number of discriminator iterations do
5: Sample minibatch {sid, gi}Ni=1 ⇠ dO

6: Sample {sjg}Mj=1 ⇠ p(s; gi) 8i 2 1 . . . N

7: Discriminator objective: Lc( ) = 1
N

P
N

i=1[log(1� c (s
j

d
, gi)) + 1

M

P
M

j=1[log c (s
j

g, g
i)]]

8: Update c using SGD: c  c � ↵crLc( )
9: end for

10: // Train Dual Value Function

11: for number of value iterations do
12: Sample minibatch of offline data {sit, ai

t, s
i

t+1, g
i

t}Ni=1 ⇠ dO, {si0}Mi=1 ⇠ µ0, {gi0}Mi=1 ⇠ dO

13: If discriminator, obtain reward: R(sit; g
i

t) = � log
⇣

1
c (si

t
;gi

t
)
� 1

⌘
8i = 1 . . . N

14: If no discriminator, obtain reward: {R(sit; g
i

t)}Ni=1 ⇠ dO

15: Value objective: LV (✓) = 1��
M

P
M

i=1[V✓(s
i

0; g
i

0)] +
1
N

P
N

i=1

⇥
f?(R

i

t + �V (sit+1; g
i

t)� V (sit; g
i

t))
⇤

16: Update V✓ using SGD: V✓  V✓ � ↵VrLV (✓)
17: end for
18: // Train Policy With f-Advantage Regression

19: for number of policy iterations do
20: Sample minibatch of offline data {sit, ai

t, s
i

t+1, g
i

t}Ni=1 ⇠ dO

21: If discriminator, obtain reward: R(sit; g
i

t) = � log
⇣

1
c (si

t
;gi

t
)
� 1

⌘
8i = 1 . . . N

22: If no discriminator, obtain reward: {R(sit; g
i

t)}Ni=1 ⇠ dO

23: Policy objective: L⇡(�) =
P

N

i=1

⇥�
f 0
?

�
Ri

t + �V✓(s
i

t+1; g
i

t)� V✓(s
i

t; g
i

t

��
log ⇡(a | s, g)

⇤

24: Update ⇡� using SGD: ⇡�  ⇡� � ↵⇡rL(�)
25: end for

D GoFAR for Tabular MDPs

In Section 4.1 of the main text, we have stated that in tabular MDPs, GoFAR’s optimal dual value
function (10) admits closed-form solution when we choose �2-divergence. Here, we provide a
derivation of this result.

Recall the dual problem (1)

min
V (s;g)�0

(1��)E(s,g)⇠(µ0,p(g))
[V (s; g)]+

1

2
E(s,a,g)⇠dO

h
(R(s; g) + �T V (s, a; g)� V (s; g) + 1)2

i

(49)

To derive a closed-form solution, we rewrite the problem in vectorized notation; we borrow our
notations from [32]. We first augment the state-space by concatenating the state dimensions and
the goal dimensions so that the new state space S̃ has dimension S +G. Then, the new transition
function, with slight abuse of notation, T ((s0, g0) | (s, g), a) = T (s | s, a)I(g0 = g); the new initial
state distribution is thus µ0(s, g) = µ0(s)p(g). Therefore, T̃ 2 R|S||G||A|⇥|S||G|

+
and µ0 2 R|S||G|

+
.

We assume that the offline dataset D
O is collected by a behavior policy ⇡b. We construct

a surrogate MDP M̂ using maximum likelihood estimation; that is, T̂ ((s0, g0) | (s, g), a) =
n(s,a,s

0
)

n(s,a)
I(g0 = g), and we impute T̂ ((s0, g) | (s, g), a) = 1

S
when n(s, a) = 0. Then, using

M̂ , we can compute dO 2 R|S||G||A|
+

using linear programming and define reward r 2 R|S||G|
+

as r(s; g) = log p(s;g)

dO(s;g)
, where p(s; g) 2 R|S||G|

+
. Now, define T 2 R|S||G||A|⇥|S||G| such that

(T V )(s, a; g) =
P

s0T ((s0, g) | (s, g), a)V (s0; g), where V 2 R|S||G|
+

is the dual optimization
variables. We also define B 2 R|S||G||A|⇥|S||G| such that (BV )(s, a; g) = V (s; g). Finally, we define
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D = diag(dO) 2 R|S||G||A|⇥|S||G||A|. Now, we can rewrite the dual problem as follow:

min
V (s;g)�0

(1� �)E(s,g)⇠(µ0,p(g))
[V (s; g)] +

1

2
E(s,a,g)⇠dO

h
(R(s; g) + �T V (s, a; g)� V (s; g) + 1)2

i

) min
V (s;g)

(1� �)µ>
0
V +

1

2
E(s,a,G)⇠dO

2

64

0

B@BR(s, a; g) + �T V (s, a; g)� BV (s, a; g)| {z }
RV (s,a;g)

+1

1

CA

23

75

) min
V (s;g)

(1� �)µ>
0
V +

1

2
(RV + I)>D(RV + I)

(50)

Now, we recognize that (50) is equivalent to Equation 49 in [32], as we have reduced goal-conditioned
RL to regular RL with an augmented state-space. Now, using the same derivation as in [32], we have
that

V ⇤ =
�
(�T � B)>D(�T � B)

��1 �
(� � 1)µ0 + (B � �T )>D(I +BR)

�
(51)

and we can recover d⇤(s, a; g):

d⇤(s, a; g) = dO(s, a; g) (BR(s, a; g) + �T V ⇤(s, a; g)� BV ⇤(s, a; g) + 1) (52)

Given d⇤, we may extract the optimal policy ⇡⇤ by marginalizing over actions:

⇡⇤(a | s, g) =
d⇤(s, a; g)P
a
d⇤(s, a0; g)

=
dO(s, a; g) (R(s; g) + �T V (s, a; g)� V (s; g))P
a
dO(s, a; g) (R(s; g) + �T V (s, a; g)� V (s; g))

(53)

E Additional Technical Discussion

E.1 Connecting Goal-Conditioned State-Matching and Probabilistic GCRL

Suppose the GCRL problem comes with a reward function r(s; g). We also show that there is an
equivalent goal-conditioned state-occupancy matching problem with a target distribution p(s; g)
defined based on r(s; g).
Proposition E.1. (Proposition 4.1 in the paper) Given any r(s; g), for each g in the support of p(g),

define p(s; g) = e
r(s;g)

Z(g)
, where Z(g) :=

R
er(s;g)ds is the normalizing constant. Then, the following

equality holds:

�DKL(d
⇡(s; g)kp(s; g)) + C = (1� �)J(⇡) +H(d⇡(s; g)) (54)

where J(⇡) is the GCRL objective (Eq. (2)) with reward r(s; g) and C := Eg⇠p(g)[logZ(g)] is a

constant.

Proof. We have that
(1� �)J(⇡)

=Eg⇠p(g)Es⇠d⇡(s;g) [r(s; g)]

=Eg⇠p(g)Es⇠d⇡(s;g)

h
log er(s;g)

i

=Eg⇠p(g)Es⇠d⇡(s;g)


log

er(s;g)Z(g)

Z(g)

�

=Eg⇠p(g)Es⇠d⇡(s;g)


log

er(s;g)

Z(g)

�
+ Eg⇠p(g)[logZ(g)]

=Eg⇠p(g)Es⇠d⇡(s;g)


log

er(s;g)

Z(g)
·
d⇡(s; g)

d⇡(s; g)

�
+ C

=Eg⇠p(g)Es⇠d⇡(s;g)


log

p(s; g)

d⇡(s; g)

�
+ Eg⇠p(g)Ed⇡(s;g)[log d

⇡(s; g)] + C

=Eg⇠p(g) [�DKL(d
⇡(s; g)kp(s; g))�H(d⇡(s; g))] + C

(55)

Rearranging the inequality gives the desired result.
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A constant term C appear in the equality to account for the need for normalizing er(s;g) to make it a
proper distribution. This, however, does not change the optimal solution for the goal-conditioned
state-occupancy matching objective. Therefore, we have shown that for any choice of reward r(s; g),
solving the GCRL problem with a maximum state-entropy regularization is equivalent to optimizing
for the goal-conditioned state-occupancy matching objective with target distribution p(s; g) := e

r(s;g)

Z(g)
.

E.2 Optimality Conditions for Hindsight Relabeling

In section 4.2, we have stated that HER is not optimal for most choices of reward functions. In this
section, we investigate conditions under which hindsight relabeling methods such as HER would be
optimal.

Let the goal-relabeling distribution for HER be pHER(g | s, a); we do not specify the functional form
of pHER(g | s, a) for generality (see 26). Then, in order for this distribution to be optimal, then it
must satisfy

pHER(g | s, a) = p(g | s, a)(f 0
?
(R(s; g) + �T V ⇤(s, a; g)� V ⇤(s; g)) (56)

Then, the choice of r(s; g) such that this equality holds is the reward function for which HER would
be optimal. However, solving for r(s; g) is generally challenging and we leave it to future work for
investigating whether doing so is possible for general f -divergence coupled with neural networks.

This optimality condition is related to a prior work [10], which has found that hindsight relabeling is
optimal in the sense of maximum-entropy inverse RL [50] for a peculiar choice of reward function
(see Equation 9 in [10]), which cannot be implemented in practice. Our result is more general as it
applies to any choice of f -divergence, and is not restricted to the form of maximum-entropy inverse
RL.

E.3 Theoretical Comparison to Prior Regression-based GCRL methods

In section 4.3, we have stated that GoFAR’s theoretical guarantee (Theorem 4.1) is stronger in nature
compared to prior regression-based GCRL methods. Here, we provide an in-depth discussion.

Both GCSL [14] and WGCSL [47] prove that their objectives are lower bounds of the true RL
objective (Theorem 3.1 in [14] and Theorem 1 in [47], respectively); however, in both works, the
lower bounds are loose due to constant terms that do not depend on the policy and hence do not
vanish to zero. In contrast, GoFAR’s objective (6) is, by construction, a lower bound on the RL
objective, as it simply incorporates a f -divergence regularization. If the offline data dO is on-policy,
then our lower bound is an equality. In contrast, even with on-policy data, the lower bounds in both
GCSL and WGCSL are still loose due to the unavoidable constant terms.

GCSL also proves a sub-optimality guarantee (Theorem 3.2 in [14]) under the assumption of full
state-space coverage. Though full state-space coverage has been considered in some prior offline
RL works [24, 31], it is much stronger than the concentrability assumption in our Theorem 4.1,
which only applies to d⇤. Furthermore, this guarantee is not statistical in nature, and instead directly
makes a strong assumption on the maximum total-variance distance between ⇡ and optimal ⇡⇤ for the
GCSL objective, which is difficult to verify in practice. In contrast, our bound suggests asymptotic
optimality: given enough offline data, the solution to GoFAR’s policy objective will converge to
⇡⇤. Finally, WGCSL proves a policy improvement guarantee (Proposition 1 in [47]) under their
exponentially weighted advantage; the improvement is not a strict equality, and consequently there is
no convergence guarantee to the optimal policy. Furthermore, this result is not directly dependent on
their use of an advantage function, so it is not clear the precise role of their advantage function in
their algorithm.

F Task Descriptions

In this section, we describe the tasks in our experiments in Section 5.
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Figure 7: Tasks from left to right: FetchReach, FetchPush, FetchSlide, FetchPick, HandReach,
D’Claw (Simulation)

F.1 Fetch Tasks

The Fetch environments involve the Fetch robot with the following specifications, developed by
Plappert et al. [39].

• Seven degrees of freedom

• Two pronged parallel gripper

• Three dimensional goal representing Cartesian coordinates of target

• Sparse, binary reward signal: 0 when at goal with tolerance 5cm and -1 otherwisejk

• 25 Hertz simulation frequency

• Four dimensional action space

– Three Cartesian dimensions
– One dimension to control gripper

F.1.1 Fetch Reach

The task is to place the end effector at the target goal position. Observations consist of the end
effector’s positional state, whether the gripper is closed, and the end effector’s velocity. The reward is
given by:

r(s, a, g) = 1� (ksxyz,ee � gxyzk2  0.05)

F.1.2 Fetch Push

The task is to push an object to the target goal position. Observations consist of the end effector’s
position, velocity, and gripper state as well as the object’s position, rotational orientation, linear
velocity, and angular velocity. The reward is given by:

r(s, a, g) = 1� (ksxyz,obj � gxyzk2  0.05)

F.1.3 Fetch Slide

In this task, the goal position lies outside of the robot’s reach and the robot must slide the puck-like
object across the table to the goal. Observations consist of the end effector’s position, velocity,
and gripper state as well as the object’s position, rotational orientation, linear velocity, and angular
velocity. The reward is given by:

r(s, a, g) = 1� (ksxyz,obj � gxyzk2  0.05)

F.1.4 Fetch Pick

The task is to grasp the object and hold it at the goal, which could be on or above the table.
Observations consist of the end effector’s position, velocity, and gripper state as well as the object’s
position, rotational orientation, linear velocity, and angular velocity. The reward is given by:

r(s, a, g) = 1� (ksxyz,obj � gxyzk2  0.05)
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F.2 Hand Reach

Uses a 24 DoF robot hand with a 20 dimensional action space. Observations consist of each of the 24
joints’ positions and velocities. The goal space is 15 dimensional corresponding to the positions of
each of its five fingers. The goal is achieved when the mean distance of the fingers to their goals is
less than 1cm. The reward is binary and sparse: 0 if the goal is reached and -1 otherwise, i.e.

r(s, a, g) = 1�

 
1

5

5X

i=1

ksi � gik2  0.01

!

F.3 D’ClawTurn (Simulation)

First introduced by Ahn et al. [2], the D’Claw environment has a 9 DoF three-fingered robotic hand.
The turn task consists of turning the valve to a desired angle. The initial angle is randomly chosen
from [�⇡

3
, ⇡

3
]; the target angle is randomly chosen from [� 2⇤⇡

3
, 2⇤⇡

3
]. The observation space is 21D,

consisting of the current joint angles ✓t, their velocities ✓̇, angle between current and goal angle, and
the previous action. The environment terminates after 80 steps. The reward function is defined as:

r =

✓����arctan2
✓
sy,obj
sx,obj

◆
� arctan2

✓
gy,obj
gx,obj

◆����  0.1

◆

F.4 D’ClawTurn (Real)

To make real-world data collection easier, we slightly modify the initial and target angle distributions.
The initial angle is randomly chosen from [�⇡

3
, ⇡

3
]; the target angle is randomly chosen from [�⇡

2
, ⇡

2
].

Using this task distribution, collecting 400K transitions with random actions takes about 15 hours. In
Figure 8, we also include a larger picture of the robot platform.

Figure 8: The D’Claw tri-finger platform.

G Experimental Details

In this section, we provide experimental details omitted in Section 5 of the main text. These include
(1) technical details of the baseline methods, (2) hyperparameter and architecture details for all
methods, (3) offline GCRL dataset details, and finally, (4) experimental details of the zero-shot
transfer experiment.

G.1 Baseline Implementation Details

DDPG. We use an open-source implementation of DDPG, which has already tuned DDPG on the
set of Fetch tasks. We implement all other methods on top of this implementation, keeping identical
architectures and hyperparameters when appropriate. The critic objective is

min
Q

E
(st,at,st+1,g)⇠dÕ [(r(st, g) + �Q̄(st+1,⇡(st+1, g), g)�Q(st, at, g))

2] (57)

where Q̄ denotes the stop-gradient operation. The policy objective is

min
⇡

�E
(st,at,st+1,g)⇠dÕ [Q(st,⇡(st, g), g)] (58)
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DDPG updates the critic and the policy in an alternating fashion.

ActionableModel. We implement AM on top of DDPG. Specifically, we add a CQL loss in the critic
update:

E
(s,g)⇠dÕ,a⇠exp(Q)

[Q(s, a, g)] (59)

where dÕ is the distribution of the relabelled dataset. In practice, we sample 10 random actions
from the action-space to approximate this expectation. Furthermore, we implement goal-chaining,
where for half of the relabeled transitions in each minibatch update, the relabelled goals are randomly
sampled from the offline dataset. We found goal-chaining to not be stable in some environments, in
particular, FetchPush, FetchPickAndPlace, and FetchSlide. Therefore, to obtain better results, we
remove goal-chaining for these environments in our experiments.

GCSL. We implement GCSL by removing the DDPG critic component and changing the policy loss
to maximum likelihood:

min
⇡

�E
(s,a,g)⇠dÕ [log ⇡(a | s, g)] (60)

WGCSL. We implement WGCSL on top of GCSL by including a Q-function. The Q-function is
trained using TD error as in DDPG and provided an advantage weighting in the regression loss.
The advantage term we compute is A(st, at, g) = r(st; g) + �Q(st+1,⇡(st+1, g); g)�Q(st, at; g).
Using this, the WGCSL policy objective is

min
⇡

�E
(st,at,�(si))⇠dÕ

⇥
�i�texpclip(A(st, at,�(si))) log ⇡(at | st,�(si))

⇤
(61)

where we clip exp(·) for numerical stability. The original WGCSL uses different HER rates for
the critic and the actor training. To make the implementation simple and consistent with all other
approaches, we use the same HER rate for both components. We note that the original WGCSL com-
putes the advantage term slightly differently as A(st, at, g) = r(st; g) + �Q(st+1,⇡(st+1, g); g)�
Q(st,⇡(st, g); g); this version of WGCSL3 is incorporated in our open-sourced code.

With the exception of AM, all baselines set the goal-relabeling distribution dÕ to be the uniform
distribution over future states in the same trajectory (See Equation (26)).

G.2 Architectures and Hyperparameters

Each algorithm uses their own set of fixed hyperparameters for all tasks. WGCSL, GCSL, and DDPG
are already tuned on our set of tasks [39, 47], so we use the reported values from prior works; AM, in
our implementation, shares same networks as DDPG, so we use DDPG’s values. For GoFAR, we
use identical hyperparameters as WGCSL because they share similar network components; GoFAR
additionally trains a discriminator, for which we use the same architecture and learning rate as the
value network. We impose a small discriminator gradient penalty [16] to prevent overfitting. For all
experiments, We train each method for 3 seeds, and each training run uses 400k minibatch updates of
size 512. The architectures and hyperparameters for all methods are reported in Table 3.

G.3 Offline GCRL Experiments

Datasets. For each environment, the offline dataset composition is determined by whether data
collected by random actions provides sufficient coverage of the desired goal distribution. For
FetchReach and D’ClawTurn, we find this to be the case and choose the offline dataset to be 1 million
random transitions. For the other four tasks, random data does not capture meaningful goals, so we
create a mixture dataset with 100K transitions from a trained DDPG-HER agent and 900K random
transitions; the transitions are not labeled with their sources. This mixture setup has been considered
in prior works [21, 32] and is reminiscent of real-world datasets, where only a small portion of the
dataset is task-relevant but all transitions provide useful information about the environment.

G.4 Zero-Shot Transfer Experiments

We use GoFAR (Binary) variant for trainning the GoFAR planner. The low-level controller is trained
using an online DDPG algorithm on a narrow goal distribution, set to be closed to the object’s initial
positions.

3We thank Joey Hejna for pointing out this difference in an email correspondence.
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Table 3: Offline GCRL Hyperparameters.
Hyperparameter Value

Hyperparameters Optimizer Adam [22]
Critic learning rate 5e-4 (1e-3 for AM/DDPG)
Actor learning rate 5e-4 (1e-3 for AM/DDPG)
Discriminator learning rate 5e-4
Discriminator gradient penalty 0.01
Mini-batch size 256
Discount factor 0.98

Architecture Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function ReLU
Critic (resp. Value) hidden dim 256
Critic (resp. Value) hidden layers 2
Critic (resp.Value) activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

GoFAR Hierarchical Controller operates by first generating a sequence of subgoals (g1, ..., gT ) using
⇡high by recursively feeding the newest generated goal and conditioning on the final goal g. Then, at
each time step t, the low-level controller executes action ⇡low(at | st, gt). The high-level subgoals
are not re-planned during low-level controller execution. We note that this is a simple planning
algorithm, and improvement in performance can be expected by considering more sophisticated
planning approaches.

H Additional Results

H.1 Offline GCRL Full Results

In this section, we provide the full results table for discounted return, final distance, and success rate
metrics, including error bars over 10 random seeds. The number inside the parenthesis indicates
the best HER rate for the baseline methods on the task. Star (?) indicate statistically significant
improvement over the second best-performing method under a 2-sample t-test.

Table 4: Discounted Return on offline GCRL tasks, averaged over 10 random seeds.
Task Supervised Learning Actor-Critic

GoFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 28.2 ± 0.61 21.9± 2.13 (1.0) 20.91 ± 2.78 (1.0) 30.1 ± 0.32 (0.5) 29.8 ± 0.59 (0.2)
FetchPick 19.7 ± 2.57 9.84 ± 2.58 (1.0) 8.94 ± 3.09 (1.0) 18.4 ± 3.51 (0.5) 16.8 ± 3.10 (0.5)
FetchPush (?) 18.2 ± 3.00 14.7 ± 2.65 (1.0) 13.4 ± 3.02 (1.0) 14.0 ± 2.81 (0.5) 12.5 ± 4.93 (0.5)
FetchSlide 2.47 ± 1.44 2.73 ± 1.64 (1.0) 1.75 ± 1.3(1.0) 1.46 ± 1.38 (0.5) 1.08 ± 1.35 (0.5)

HandReach (?) 11.5 ± 5.26 5.97 ± 4.81 (1.0) 1.37 ± 2.21 (1.0) 0. ± 0.0 (0.5) 0.81 ± 1.73 (0.5)
D’ClawTurn (?) 9.34 ± 3.15 0.0 ± 0.0 (1.0) 0.0 ± 0.0 (1.0) 2.82± 1.71 (1.0) 0.0± 0.0 (0.2)

Average Rank 1.5 3 4.17 2.83 4

Table 5: Final Distance on offline GCRL tasks, averaged over 10 random seeds.
Task Supervised Learning Actor-Critic

GoFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 0.018 ± 0.003 0.007 ± 0.0043(1.0) 0.008 ± 0.008(1.0) 0.007± 0.001 (0.5) 0.041 ± 0.005 (0.2)
FetchPickAndPlace 0.036 ± 0.013 0.094 ± 0.043(1.0) 0.108 ± 0.060(1.0) 0.040 ± 0.020(0.5) 0.043 ± 0.021(0.5)
FetchPush 0.033 ± 0.008 0.041 ± 0.020(1.0) 0.042 ± 0.018 (1.0) 0.070 ± 0.039(0.5) 0.060 ± 0.026 (0.5)
FetchSlide (?) 0.120 ± 0.02 0.173 ± 0.04(1.0) 0.204 ± 0.051 (1.0) 0.198 ± 0.059 (0.5) 0.353 ± 0.248 (0.5)

HandReach (?) 0.024 ± 0.009 0.035 ± 0.012 (1.0) 0.038 ± 0.013(1.0) 0.037 ± 0.004(0.5) 0.038 ± 0.013 (0.5)
D’ClawTurn (?) 0.92 ± 0.28 1.49 ± 0.26 (1.0) 1.54 ± 0.15 (1.0) 1.28 ± 0.26 (1.0) 1.54 ± 0.13 (0.2)

Average Rank 1.5 2.33 4.25 2.67 4.5
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Table 6: Success Rate on offline GCRL tasks, averaged over 10 random seeds.
Task Supervised Learning Actor-Critic

GoFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 1.0 ± 0.0 0.99 ± 0.01 (1.0) 0.98 ± 0.05 (1.0) 1.0 ± 0.0 (0.5) 0.99 ± 0.02 (0.2)
FetchPickAndPlace 0.84 ± 0.12 0.54 ± 0.16 (1.0) 0.54 ± 0.20(1.0) 0.78 ± 0.15(0.5) 0.81 ± 0.13(0.5)
FetchPush (?) 0.88 ± 0.09 0.76 ± 0.12(1.0) 0.72 ± 0.15(1.0) 0.67 ± 0.14 (0.5) 0.65 ± 0.18 (0.5)
FetchSlide 0.18 ± 0.12 0.18 ± 0.14(1.0) 0.17 ± 0.13 (1.0) 0.11 ± 0.09 (0.5) 0.08 ± 0.11 (0.5)

HandReach 0.40 ± 0.20 0.25 ± 0.23 (1.0) 0.047 ± 0.10 (1.0) 0.0 ± 0.0 (0.5) 0.023 ± 0.054 (0.5)
D’ClawTurn (?) 0.26 ± 0.13 0.0 ± 0.0 (1.0) 0.0 ± 0.0 (1.0) 0.13 ± 0.14 (1.0) 0.01 ± 0.02 (0.2)

Average Rank 1 3 4 3.33 3.67

H.2 Ablations

We also include the full task-breakdown table of GoFAR ablations presented in Figure 4 for complete-
ness. As shown in 7, GoFAR and GoFAR (HER) perform comparatively on all tasks. GoFAR (binary)
is slightly worse across tasks, and GoFAR (KL) collapses due to the use of an unstable f -divergence.

Table 7: GoFAR Ablation Studies
Variants FetchReach FetchPickAndPlace FetchPush FetchSlide HandReach DClawTurn

GoFAR 27.8 ± 0.55 19.5 ± 4.13 18.9 ± 3.87 3.67 ± 0.78 11.9 ± 3.00 9.34 ± 3.15
GoFAR (HER) 28.3± 0.65 19.8± 2.82 20.5± 2.29 3.85± 0.80 8.02± 5.70 10.51 ± 3.51
GoFAR (Binary) 26.1± 1.14 17.4±1.78 17.4 ± 2.67 3.69± 1.75 6.01± 1.62 5.13 ± 4.05
GoFAR (KL) 0±0.0 0±0.0 0±0.0 0±0.0 0± 0.0 0± 0.0

H.3 Real-World Dexterous Manipulations

In our qualitative analysis, we visualize all methods on a specific task instance of turning the valve
prong (marked by the red strip) clockwise for 90 degree; the goal location is marked by the green
strip. The robot initial pose is randomized. As shown in Figure 9, GoFAR reaches the goal with three
random initial poses, whereas all baselines fail. See the figure captions for detail. Policy videos are
included in the supplementary material.

27



(a) GoFAR robustly achieved the goal with three random initial poses; in the first two runs, it demonstrates
“recovery” behavior, as the robot would initially overshoot and then turn the valve counterclockwise. In the last
run, the robot initially undershoots and then turns again to reach the goal.

(b) Baselines fail to turn the volve prong (marked by the red strip) to the goal angle (marked by the green strip).
AM is the only method that is able to rotate the prong to some degree, though it overshoots in this case and
exhibits unnatural behavior.

Figure 9: D’ClawTurn policy visualization.

H.4 Zero-Shot Plan Transfer

We visualize GoFAR hierarchical controller and the plain low-level controller on three distinct goals
in Figure 10. See the figure caption for detail. Policy videos are included in the supplementary
material.
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(a) Goal 1

(b) Goal 2

(c) Goal 3

Figure 10: Qualitative comparison of GoFAR hierarchical controller (top) vs. plain low-level con-
troller (bottom) on representative goals in the Franka pushing task. Red circles represent intermediate
subgoals generated by the GoFAR planner. As shown, the low-level controller only succeeds in Goal
3, whereas the hierarchical controller achieves the distant goals in all three cases.
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