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Abstract

Branched optimal transport (BOT) is a generalization of optimal transport in which
transportation costs along an edge are subadditive. This subadditivity models an
increase in transport efficiency when shipping mass along the same route, favoring
branched transportation networks. We here study the NP-hard optimization of
BOT networks connecting a finite number of sources and sinks in R2. First, we
show how to efficiently find the best geometry of a BOT network for many sources
and sinks, given a topology. Second, we argue that a topology with more than
three edges meeting at a branching point is never optimal. Third, we show that the
results obtained for the Euclidean plane generalize directly to optimal transportation
networks on two-dimensional Riemannian manifolds. Finally, we present a simple
but effective approximate BOT solver combining geometric optimization with a
combinatorial optimization of the network topology.

1 Introduction

Optimal transport (OT) [27, 6, 23] stipulates transportation costs that increase linearly with the
transported mass. However, in many systems of practical and theoretical interest, a diminishing cost
property is more realistic: it is more economic to jointly transport two loads with nearby destinations
along the same route. The optimal transportation networks under diminishing costs exhibit branching;
and indeed, nature and societies are using branched networks, e.g. in blood circulation, gas supply
or mail delivery. In this paper, we study the theory and practice of finding good or even optimal
solutions in branched optimal transport (BOT).

More formally, we consider a finite set of sources S with supplies µS > 0 and sinks T with demands
µT > 0, located at fixed positions xS and xT in R2. A possible transportation network is represented
as a directed, edge-weighted graph G(V,E) with nodes V = S ∪ T ∪ B. The edges E ⊂ V × V
interconnect the terminals S and T with the help of a set of additional nodes B, so-called branching
points (BPs), with coordinates xB . The edge direction indicates the direction of mass flow. The edge
weights, denoted by me, specify the absolute flows. Gilbert first proposed the BOT problem [9] in
which the objective is to solve for

argmin
B,E,xB ,mE

∑
(i,j)∈E

mα
ij ∥xi − xj∥2 , subject to (1)

supply µs =
∑

k
msk −

∑
k
mks at each source s,

demand µt =
∑

k
mkt −

∑
k
mtk at each sink t,

conservation
∑

k
mkb =

∑
k
mbk at each BP b,
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Figure 1: Branched optimal transport (Eq. 1) interpolates between optimal transport and the Euclidean
Steiner tree problem. On a toy example, shown are good BOT solutions (found by our approximate
solver for α ̸= 1, see Sect. 6) for the same set of sources (red) and sinks (blue). The disk sizes
indicate the demands and supplies, the edge widths the mass transported along each edge.

given a single parameter α ∈ [0, 1]. The problem of BOT is interesting in that it combines
combinatorial optimization (over B, E) with continuous optimization (over xB , mE).

For α = 1, the BOT problem is the discrete version of the famous optimal transport problem for
which optimal solutions can be found efficiently [6, 23]. However, due to the linearity of the cost
function, OT solutions do not exhibit any branching but consist of straight lines between sources and
sinks, see Fig. 1a. In contrast, for α ∈ [0, 1), the subadditivity of m 7→ mα reflects the increased
efficiency of transporting loads together, i.e. (m1 +m2)

α < mα
1 +mα

2 . Thus, for α ∈ [0, 1), BOT
solutions show a branched structure, see Fig. 1b-d. Unlike OT, the optimization problem of BOT
is NP-hard [11]. In the special case of α = 0, BOT turns into the well-studied Euclidean Steiner
tree problem (ESTP) [28, 13]. In the ESTP, the objective is to find the overall shortest network that
interconnects all terminals (with the help of BPs), independently of the edge flows, since m0 = 1.
For different values of α, BOT interpolates between these two optimization problems, see Fig. 1.

Connection of BOT to machine learning. Optimal transport has emerged as an important tool in
machine learning [1, 5, 23]. BOT is a strict generalization, describing a more versatile concept and
more challenging optimization problem.

BOT offers a mathematical formalism that is deceivingly simple (cf. Eq. (1)) and yet engenders
non-trivial structure. Many machine learning problems such as tracking of divisible targets (computer
vision), skeletonization (image analysis), trajectory inference (bioinformatics) come with input that is
essentially continuous (images, distributions) and require structured output that is discrete, e.g. graphs.
Arguably, this transition from continuous to discrete is one of the most interesting aspects (and an
unsolved problem) in current machine learning research. It is also a problem that cannot be solved by
a mere upscaling of standard deep learning architectures.

In addition, routing problems have become a popular problem to challenge machine learning and
amortized optimization algorithms with difficult optimization problems [17, 3, 15]. Combining
combinatorial and continuous optimization, BOT is a highly instructive target for new machine
learning approaches. In Sect. 7 we address the generalization of BOT to higher-dimensional
Euclidean space, particularly relevant for applications in data science.

In this paper, we make the following contributions: We generalize an existing method for constructing
BOT solutions with optimal geometry to the case of multiple sources. Based on this generalization,
we present an analytical and numerical scheme to rule out n-degree branchings with n > 3. Further,
we demonstrate how to extend geometric and topological properties of optimal BOT solutions to
two-dimensional Riemannian manifolds. Lastly, we propose a more practical numerical algorithm
for the geometry optimization together with a simple but compelling heuristic, addressing the
optimization of the BOT topology. To the best of our knowledge, no readily accessible code for
finding BOT solutions is publicly available. By making our code available at https://github.
com/hci-unihd/BranchedOT we hope to aid the evolution of the field.
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2 Topology and geometry of BOT solutions

A BOT problem can be divided into the combinatorial optimization of the network topology, specified
by the set of BPs B and edges E (see Sect. 1), and the geometric optimization of the BP positions xB .
Bernot et al. [2] showed that optimal BOT solutions can be assumed to be acyclic, which restricts the
search for the optimal topology to trees. Given n terminals, WLOG, the topology can be represented
as a so-called full tree topology, which has n−2 BPs, each of degree three. Higher-degree branchings
may effectively form during the geometry optimization if multiple BPs settle at the same position. A
set of such BPs is referred to as coupled BP, cf. Fig. 2b. The union set of all neighbors of the individual
BPs (not including the BPs themselves) is referred to as set of effective neighbors. Conversely, a
BP configuration in which all BPs are uncoupled and located away from the terminals is called
non-degenerate, see Fig. 2a.

The number of distinct full tree topologies interconnecting n terminals is given by (2n − 5)!! =
(2n−5) ·(2n−7) · ... ·3 ·1 and hence increases super-exponentially with the number of terminals [25].
Given 100 terminals, one would have to consider more than 1018 possible full tree topologies, making
an exhaustive search computationally intractable already for problems of modest size. Fortunately,
given a tree topology, the geometric optimization of the BP positions reduces to a convex optimization
problem, as all edge flows mij are already uniquely determined by the flow constraints in Eq. (1).
The corresponding linear system can be solved in linear time by dynamic programming, called
“elimination on leaves of a tree” in [26]. Since the Euclidean norm, like any norm, is convex, given
a fixed tree topology, the cost function in Eq. (1) becomes a convex function of the BP positions.
Together with the independence of the individual BPs, this implies the following lemma on the
optimal substructure of BOT solutions (see App. C).

Definition 2.1. For a chosen topology T , a BOT
solution is called a relatively optimal solution (ROS
of T ) if its BP configuration has minimal cost. The
overall best BOT solution, given by the optimal
topology together with its ROS, is called the glob-
ally optimal solution (GOS).
Lemma 2.1. (a) For a given tree topology, a BOT
solution is relatively optimal if and only if every
(coupled) BP connects its (effective) neighbors at
minimal cost. (b) In a globally optimal solution,
every subsolution restricted to a connected subset of
nodes solves its respective subproblem (cf. App. C)
globally optimally.

b
1

b
2

(a) Non-degenerate
BP configuration

{b
1
,b
2
}

(b) Coupled BP with
effective degree 4

Figure 2: Two BP configurations for the same
full tree topology: A higher-degree branching
may effectively form by coupling the two BPs
at the same position.

3 Geometric optimization of BOT solutions

Although the BP optimization for a given tree topology is a convex problem, as argued above, it is
non-trivial, since the objective function is not everywhere differentiable. Here, we present a principled
geometric approach, which was first suggested by Gilbert in [9] and previously developed in the
context of the ESTP [20]. More recently, this approach was discussed in the comprehensive work
by Bernot et al. [2], where it was applied exclusively to BOT problems with a single source. A
generalization to the case of multiple sources was posed as an open problem by the authors (see
Problem 15.11), for which we give the solution in this section.

3.1 Geometric solution for one source and two sinks

Motivated by Lem. 2.1, we start by considering a single BP b in isolation (cf. Fig. 3a), following [2].
Given a source at position1 a0 and two sinks at positions a1 and a2, we aim to find the optimal
position b∗ for the BP connecting the three terminals, i.e., the minimizer of

C(b) = mα
1 |a1 − b|+mα

2 |a2 − b|+ (m1 +m2)
α|a0 − b|, (2)

where m1 and m2 are the respective demands of the two sinks. Due to the convexity of C(b), the
minimum must lie either at a stationary point at which ∇b C = 0 or at a non-differentiable point,

1We will often use the node label, e.g., a0, to denote also the position of the node, instead of writing xa0 .

3



θ
2

θ
1

a
0

a
1

a
2

b

m
1
+ m

2

m
1

m
2

(a)

a
1

p

a
2

θ
1 θ

2

a
0

b*

o

2θ
22θ

1

* *

**

(b)

a
1

a
2

o

2θ

θ

(c)

a
0

a
1

m
2

m
2
– m

1

m
1

θ
1

θ
2

ϑ
1

ϑ
2

a
2

*

*

*

*

b

(d)

Figure 3: (a) Branching point b connecting one source and two sinks with branching angles θ1 and θ2.
(b) Construction of the optimal BP b∗ applying twice the central angle property illustrated in (c).
(d) shows the relation of the optimal branching angles θ∗i and ϑ∗i , relevant for the case of asymmetric
branchings (see Sect. 3.2).

where b coincides with one of the ai. Bernot et al. showed that the gradient is equal to zero if and
only if the branching angles θi, see Fig. 3a, are given by

θ∗1 = arccos

(
k2α + 1− (1− k)2α

2kα

)
=: f(α, k),

θ∗2 = arccos

(
(1−k)2α + 1− k2α

2(1−k)α

)
= f(α, 1− k), (3)

θ∗1 + θ∗2 = arccos

(
1− k2α − (1− k)2α

2kα(1− k)α

)
=: h(α, k),

where we have defined the flow fraction k := m1/(m1 +m2) and the two functions f and h, related
via h(α, k) = f(α, k) + f(α, 1− k). If a BP exists that realizes the branching angles θ∗i , it can be
constructed geometrically based on the central angle property (see App. A). It states that, given a
circle through a1 and a2, the angle ∠a1oa2 at the center o is twice the angle enclosed with a point
anywhere on the opposite circle arc, cf. Fig. 3c. In particular, let us construct the so-called pivot
circle with central angle ∠a1oa2 = 2θ∗1 + 2θ∗2 and pivot point p as in Fig. 3b. Applying the central
angle property twice (once for θ∗1 and once for θ∗2), a BP located at the intersection of the lower circle
arc and the connection line a0p realizes both angles θ∗i and is therefore optimal.

However, given the pivot point and pivot circle, a0p may not intersect the lower circle arc, depending
on the position of a0. Accordingly, the lower half plane can be partitioned into a region for which
the described construction yields an optimal Y-shaped branching and three other regions, see Fig. 5.
For a0 located in one of these regions, the optimal BP position coincides with one of the terminals,
resulting in a V-shaped branching (b∗ = a0) or an L-shaped branching (b∗ ∈ {a1, a2}), cf. Fig. 11 [2].

3.2 Geometric construction of BOT solutions for a given topology

Applying the geometric construction from above in a recursive manner, one can construct the ROS (see
Def. 2.1) for larger BOT problems, as illustrated in Fig. 4. Given a full tree topology T , first, we
determine all edge flows (see Sect. 2) and consequently the optimal branching angles. Then, a root
node is chosen, arbitrarily (here a0), and all other nodes are sorted based on the number of edges
to a0 (ignoring edge directions and resolving ties arbitrarily). Starting from the furthest nodes and
working towards the root, two nodes are recursively summarized by a pivot point, constructed from
the optimal branching angles, see Fig. 4a-b. Afterwards, in reversed order, the optimal BPs are placed
iteratively, each as in the 1-to-2 case, see Fig. 4c-d. In this manner, the optimal branching angles are
realized at every BP and the resulting solution is a ROS of T by Lem. 2.1.

The choice of the root node induces a node ordering as described above. Given this ordering, consider
any BP b and denote its children by a1 and a2 and its parent node by a0. The construction of the
pivot point now requires the positions of a1 and a2 and the optimal branching angles enclosed by the
children edges (b, a1) and (b, a2). However, the branching angles do not only depend on the absolute
flows m1 and m2 of the respective edges but also on the flow directions. Given that both flows point
towards b or given that both flows point away from b, as in Fig. 3a, the branching is referred to as
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Figure 4: Recursive geometric construction of a relatively optimal solution, using one pivot point and
pivot circle per branching point to collectively realize the optimal branching angles.

symmetric and the optimal branching angles of interest are given by θ∗i , cf. Eq. (3). Note that BOT
problems and their solutions are fully symmetric under complete exchange of sinks and sources (up
to reversal of all flow directions). On the contrary, in case of one flow pointing towards b and one
pointing away from b, referred to as asymmetric branching, the optimal branching angles ϑ∗i enclosed
by the children edges are calculated differently, see Fig. 3d. However, the branching angles ϑ∗i can be
related geometrically to the known θ∗i . Using the functions f and h from Eq. (3), we find that

ϑ∗1 = π − θ∗1 − θ∗2 = π − h
(
α, k =

m2 −m1

m2

)
ϑ∗2 = θ∗1 = f

(
α, k =

m2 −m1

m2

)
.

(4)

After determining the two angles ϑ∗1 and ϑ∗2 from the flows m1 and m2, the BP construction based on
the central angle property works analogously to the symmetric case. Crucially, this distinction of
symmetric and asymmetric branching makes the recursive construction applicable also to problems
with multiple sources, where asymmetric branchings may be unavoidable, consider e.g. Fig. 4d with
a0 and a3 as sources and a1 and a2 as sinks (see App. G.1). Further, note that the known conditions
for optimal V- and L-branching can be transferred to the asymmetric case simply by relabelling
a0 → a2, a1 → a0 and a2 → a1, cf. Fig. 3a and Fig. 3d. In terms of angular inequalities (derived in
App. B), these conditions, for both branching types, are summarized in Table 1.

p

a
2

L1 L2V

a
1

V

Y

Figure 5: Regions of optimal Y-, V-
and L-branching.

symmetric branching asymmetric branching

V: ∠a1a0a2 ≥ θ∗1 + θ∗2 L2: ∠a0a2a1 ≥ θ∗1 + θ∗2

L1: ∠a2a1a0 ≥ π − θ∗2 V: ∠a1a0a2 ≥ π − θ∗2
L2: ∠a0a2a1 ≥ π − θ∗1 L1: ∠a2a1a0 ≥ π − θ∗1

Table 1: Relations between the L- and V-branching condi-
tions.

In principle, given a full tree topology, the described method efficiently constructs the ROS in linear
time. However, as already pointed out by Gilbert [9], the approach has some practical limitations,
even after our generalization. Figure 3b shows how the pivot point is constructed only from the
positions of two children a1 and a2 and the corresponding optimal branching angles. However, a
priori there are two possible pivot point locations, one in the upper and one in the lower half plane
with respect to a1a2. Hence, the construction relies on knowing in which half plane the third node
a0 lies. For larger trees, the topological parent a0 may itself be a BP whose position is not yet
determined. In the worst case, one would thus have to try all 2n−2 possible pivot point combinations
to find the ROS. This pivot point degeneracy gets substantially worse in higher dimensions, making
the recursive construction applicable only in R2. Secondly, the geometric construction only produces
solutions which are non-degenerate, i.e., solutions without edge contractions. For now, the geometric
construction is therefore primarily of theoretical interest; and indeed, it forms the basis of our
following arguments. Note that both of the aforementioned problems could be solved elegantly in the
special case of α = 0 [12, 14].
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4 Properties of optimal BOT topologies

Let us now consider topological modifications in order to improve the transportation cost of a BOT
solution. In particular, we intend to show that a topology T can be improved if its ROS contains
coupled BPs. Let us start by considering a general BOT solution which contains a coupled 4-BP,
i.e., a coupled BP with four effective neighbors, as in Fig. 2b. Lemma 2.1 states that a solution is
not globally optimal if any subsolution is not globally optimal. It will therefore suffice to study the
coupled BP as an isolated subproblem.

4.1 Non-optimality of coupled branching points

Given two sources and two sinks, there are two possible configurations in which the terminals can be
arranged, cf. Fig. 6a,b. First we address the case in which the two sources are at opposite corners of
the terminal quadrilateral, as in Fig. 6a. Based on Lem. 2.1, a necessary condition for the existence of
a globally optimal 4-BP is that all four V-branchings between neighboring terminals are optimal. This
puts a lower bound on each of the angles γi, see Tab. 1. The general idea, also regarding the other
4-branching scenarios, is to show that the angular sum of these lower bounds already exceeds 2π.
This will immediately imply that not all V-branchings can be optimal simultaneously and thus a
coupled 4-BP cannot be globally optimal. Given a 4-BP as in Fig. 6a, all V-branchings are asymmetric
(i.e. neighboring flows point in opposite directions). Hence, all four lower bounds (in Tab. 1) are of
the form γi ≥ π − θ∗2 = π − f(α, 1− k) and indeed π − f(α, 1− k) > π/2, see Lem. D.1, so that
their sum exceeds 2π.
Next, let us consider the scenario in Fig. 6b with
two sources at neighboring corners. WLOG, we
use the normalizationm1+m2 = 1 = m3+m4

and assume that m1 > m3 and m2 < m4.
In this case, the four conditions for optimal
V-branching in Tab. 1 read:

γ1 ≥ π− f
(
α, 1− m1−m3

m1

)
= π− f

(
α, m3

m1

)
,

γ2 ≥ h
(
α, m1

m1+m2

)
= h(α,m1),

γ3 ≥π−f
(
α, 1−m4−m2

m4

)
= π−f

(
α, 1−m1

1−m3

)
,

γ4 ≥ h
(
α, m3

m3+m4

)
= h(α,m3),
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Figure 6: Different scenarios of coupled 4-BPs
with symmetric branching angles in blue, asym-
metric ones in orange.

where the expressions (3) were plugged into the V-branching conditions in Tab. 1 for symmetric and
asymmetric branching respectively, as indicated by the colors in Fig. 6. Let us show that in fact for all
combinations of α, m1 and m3 the sum of the lower bounds already exceeds 2π. Indeed, summing
the lower bounds and subtracting 2π yields

h(m1)︸ ︷︷ ︸
= h(1−m1)

+ h(m3)− f
( m3

m1︸︷︷︸
>m3

)
− f

( 1−m1

1−m3︸ ︷︷ ︸
> 1−m1

)
> h(1−m1) + h(m3)− f(m3)− f(1−m1)

= f(m1) + f(1−m3) > 0,

using h(α, k) = f(α, k) + f(α, 1− k) and the fact that f(α, k) is strictly decreasing with respect
to k, see Lem. D.1. To summarize, we have arrived at the following lemma:
Lemma 4.1. A coupled 4-BP not coincident with a terminal connecting two sources and two sinks is
never globally optimal.

Exactly the same logic applies for a coupled 4-BP connecting one source and three sinks (or
equivalently 3 sources and 1 sink), as in Fig. 6c. WLOG, in the following, we normalize the flows so
that m1 +m2 +m3 = 1. We then determine the necessary conditions under which all V-branchings
are optimal. We again intend to show that such a 4-BP can never be globally optimal by showing
that for any combination of α and mi the sum of the lower bounds exceeds 2π. This is equivalent to
proving the following inequality (see App. E.1.1):

h
( m1

m1 +m2

)
− f(m1) + h

( m3

m3 +m2

)
− f(m3) > 0.
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Assuming a globally optimal 4-BP existed, one could continuously displace a terminal in a way such
that for the resulting BOT problem a coupled 4-BP is still globally optimal. Choosing different such
displacements four additional inequalities can be derived (see App. E.1.2):

Proposition 4.2. Given a BOT problem with one source and three sinks, with demands m1,m2,m3

as in Fig. 6c, a coupled 4-BP away from the terminals cannot be globally optimal if at least one of
the following inequalities holds true:

Γ = h
( m1

m1 +m2

)
− f(m1) + h

( m3

m3 +m2

)
− f(m3) > 0,

Γ1,∗ = f(1−m∗) + f
(
1− m2

1−m∗

)
− f(1−m∗ −m2) > 0,

Γ2,∗ = h
( m∗

m∗ +m2

)
+ f

( m2

1−m∗

)
− h(m∗) > 0

where ∗ = 1, 3. Note that Γ = Γ1,1 + Γ2,1 = Γ1,3 + Γ2,3.

In App. E.1.3, we prove the inequalities analytically for a large subset of the parameter space. For the
remainder we present a numerical argument (see App. E.1.4). In addition, we show by induction how,
given that coupled 4-BPs are never globally optimal, one can further rule out coupled n-BPs (with n
effective neighbors) for all n > 4.

Theorem 4.3. Given a BOT problem in the Euclidean plane and assuming that coupled 4-BPs are
never globally optimal, in a globally optimal BOT solution each branching point not coincident with
a terminal must have degree three.

5 Generalization of BOT to Riemannian manifolds

In this section, we extend the BOT problem together with many of the previous results to two-
dimensional Riemannian manifoldsM embedded into R3 [18]. This includes the sphere as important
special case, particularly relevant for global transportation networks. In the generalized BOT cost
function (5) we replace the Euclidean metric by the geodesic distance d :M×M→ R+, i.e.

CM =
∑

(i,j)∈E

mα
ij d(xi, xj). (5)

As we assume the manifold to be embedded, the length of a geodesics can be measured in R3.
First, we generalize the non-optimality of cyclic solutions. The corresponding proof in [2] readily
applies also to two- and higher-dimensional manifolds. As before, solving a BOT problem on a
curved surface can thus be separated into the combinatorial topology optimization and the continuous
optimization of the BP configuration.

5.1 Linear approximation of BOT solutions on manifolds

Intuitively speaking, a two-dimensional Riemannian manifold locally looks like the Euclidean plane.
If we zoom in on a sufficiently small region, geodesics again resemble straight lines and the geodesic
distance approaches the Euclidean one. This can be used to show that the branching angles which
were optimal for Y-branchings in the Euclidean plane are also optimal on Riemannian manifolds.
Below, we summarize the main steps of the proof. All details can be found in App. F.

Given a Y-branching on a manifold, we measure the angles between the three geodesics in the tangent
space TbM at the BP b. We now zoom in on a small neighborhood U around b and consider only the
subsolution inM∩ U . The terminals of the corresponding subproblem are projected orthogonally
onto the tangent space, more specifically onto a small disk of radius r, denoted by D(r), see Fig. 7.
Let us denote the cost of the subsolution on the manifold by CM (b) and the cost of the corresponding
subproblem in the flat disk by C(b). Now, assuming that the angles between the geodesics deviate
from the optimal branching angles, the same holds true for the projected subsolution. Consequently,
there exists an alternative BP b∗ in the disk with cheaper cost C(b∗). Note that the radius of this disk
becomes smaller the smaller we choose the regionM∩ U of the subproblem.
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Crucially, the cost difference between a subsolution on the
manifold and its projection onto the plane tends to zero
quadratically in the limit of r → 0. The intuitive reason
for this is that the tangent space TbM locally approximates
the manifold to linear order. On the contrary, the costs C(b)
and C(b∗) in the disk scale linearly in r and so does the cost
improvement C(b)− C(b∗) =M r, for some fixed M > 0.
To conclude the proof, one projects b∗ onto the manifold and
evaluates the cost difference of the two subsolutions there.
The difference is of the formM r+O(r2), with second order
differences due to the projection from D(r) to the manifold.
Consequently, a finite radius r > 0 must exist for which
the cost difference is truly positive. A BOT solution on the
manifold for which the Y-branching angles deviate from the
optimal branching angles can thus be improved and is not
relatively optimal. The logic of the proof outlined here can
easily be extended to the V- and L-branching conditions as
well as our results regarding the non-optimality of coupled
BPs. Again, improving the BOT solution locally in the tangent plane (w.r.t. its geometry or topology)
and projecting back to the manifold results in an improved solution on the manifold (see App. F.2).
Theorem 5.1. Consider the solution to a generalized BOT problem on a two-dimensional Riemannian
manifold embedded into R3. For the solution to be relatively optimal, it is a necessary condition that
each BP satisfies the optimal angle conditions for Y-, V- and L-branching, which apply for BOT in the
Euclidean plane. For it to be globally optimal, assuming that coupled 4-BPs are not optimal in the
plane, it is a necessary condition that BPs not coincident with a terminal have degree three.

Though there is no readily available algorithm to solve BOT on embedded surfaces, we discuss some
possible approaches in App. F.3.

6 Heuristics and numerical optimization

In this section, we present a simple but effective algorithm for the geometry optimization, followed by
a compelling heuristic for the topology optimization. As pointed out earlier, the difficulty of solving
a BOT problem stems from the super-exponentially growing number of possible full tree topologies.
Obtaining an exact solution by brute-force is almost always computationally infeasible and hence
fast heuristic solvers are needed. For BOT problems with a single source, a branch-and-bound
method is applicable [31], enabling exact solutions for up to 16 nodes. However, this method does
not generalize directly to the case of multiple sources. While some literature exists on heuristics
for BOT problems with a single source [29], we are not aware of heuristics for multiple sources,
except [24]. The authors of [24] present a simulated annealing based optimization strategy for BOT,
based on hand-crafted geometrical and topological modifications, which may require user supervision.
Furthermore, continuous approaches to solve BOT exist which do not rely on a subdivision into
geometry and topology optimization. The authors of [22] phrase BOT as a limit of functional
minimization problems. Since their algorithm discretizes the plane and the BOT cost function, their
output is however not sparse but a discretized function.

6.1 Numerical branching point optimization for a given topology

Brute-force and heuristic BOT solvers alike typically rely on the geometry optimization of many
different topologies. A fast and reliable BP optimization routine is therefore essential, as it determines
the computational bottleneck of these algorithms. For a given tree topology T , all edge flows mij are
known (see Sect. 2). The objective is thus to minimize the following convex cost function:

C({xi}) =
∑

(i,j)∈T

mα
ij ∥xi − xj∥2 , (6)

where, for 1 ≤ i ≤ n, the xi hold the fixed coordinates of the terminals and, for n+ 1 ≤ i ≤ n+m,
the variable BP positions. Since the cost function is not everywhere differentiable, we suggest the
following generalization of Smith’s algorithm developed for geometry optimization in the ESTP [26].
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It is an effective algorithm specifically for minimizing the sum of Euclidean norms in two- and
higher-dimensional Euclidean space. Unlike the geometric construction in Section 3.2, it is applicable
to all (not necessarily full) tree topologies.

Starting from a non-optimal, non-degenerate BP configuration, e.g. from a random initialization, the
gradient with respect to each BP position xi is set to zero for n+ 1 ≤ i ≤ n+m, resulting in the
following non-linear system of m equations:

xi =
∑

j : (i,j)∈T

mα
ij

xj
|xi − xj |

/ ∑
j : (i,j)∈T

mα
ij

|xi − xj |
.

This system can be solved approximately, by iteratively solving the following linearized system

x
(k+1)
i =

∑
j : (i,j)∈T

mα
ij

x
(k+1)
j

|x(k)i − x(k)j |

/ ∑
j : (i,j)∈T

mα
ij

|x(k)i − x(k)j |
, for n+ 1 ≤ i ≤ n+m. (7)

Note that x(k)i = xi is fixed for 1 ≤ i ≤ n. For each iteration, the solution can be found in linear
time, again by “elimination on leaves of a tree”, similar to determining all edge flows from the flow
constraints. The algorithm is easily parallelized over d spatial dimensions of a BOT problem so that a
single iteration is of order O(nd). In essence, this is an iteratively reweighted least squares (IRLS)
approach [4]. The connection is made explicit in App. G.2. Details on the proof of convergence,
the empirical runtime of the algorithm and suitable convergence criteria can be found in App. G.2
and in [26]. The arguments in [26] readily apply to our generalization. Besides our method, other
techniques may be used for the geometry optimization, for instance the interior point method presented
in [30].

6.2 A greedy randomized algorithm for the topology optimization
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Figure 8: Cost ratios of our greedy heuris-
tic and brute-force solutions (the closer to
1 the better) for different number of termi-
nals n. For each n, we uniformly sampled
100 different BOT problems. Most runs
ended up close to the global optimum (see
dark blue assembly near 1.0).

Our heuristic for the optimization of the BOT topology is
inspired by the idea of simulated annealing [16], which
has been applied in different variants to combinatorial
problems such as the Traveling Salesman Problem [19]
or the ESTP [10]. In our heuristic, the BOT topology is
iteratively modified by randomly deleting an edge and
replacing it with a new one. At each step, the new solu-
tion is accepted according to a criterion, which typically
depends on the cost difference between the solutions and
a user-chosen hyperparameter, the temperature, used to
mimic a physical cooling process. However, because in
practice it works already sufficiently well (see Fig. 8), we
refrained from designing an elaborate cooling scheme.
Instead, we apply the heuristic most greedily, i.e., in the
zero-temperature limit, where a new state is accepted
only if it decreases the cost.

Starting from an initial tree topology T , e.g., the mini-
mum spanning tree (mST) or the OT solution2, we uni-
formly sample an edge ê ∈ E and remove it from T .
Let the incident node of ê which ended up in the smaller
connected component be ℓ. Then, one calculates the
distance d(e, ℓ) between ℓ and every edge e = (i, j) in
the larger component and samples one of these edges with probability p(e) ∝ exp(−d(e, ℓ)2/d2min),
where dmin is the distance to the closest considered edge. The node ℓ is then connected to the sampled
edge via a new BP to produce a new tree topology. For this topology, we optimize the geometry (as
described in Sect. 6.1) and compare costs with the previous solution. If the new state is rejected, start
the next iteration by sampling ê without replacement until either a move is accepted and all above
steps are repeated; or until no accepted move is found, upon which the search terminates.

2In particular in the regime α ≈ 1, our BOT solver benefits from existing efficient OT solvers by using their
solution as initial guess.
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Experiments for small BOT problems suggest that even in the greedy zero-temperature limit the
algorithm often finds the globally optimal solution, after comparatively few iterations. For this, the
greedy heuristic (using the mST as initialization) was compared against exact solutions with up to
nine terminals, obtained by brute-force. For each n, 100 BOT problems were sampled uniformly
with respect to α, the terminal positions and demands and supplies, cf. Alg. 2. The ratios of the
heuristic’s cost divided by the cost of the exact solution are plotted in Fig. 8. On average the heuristic
solution is less than 0.5% worse than the brute-force solution. This is impressive, considering the
fact that for n = 9 the brute-force solver requires over 105 BP optimizations, whereas the simulated
annealing heuristic on average required 29± 10 iterations to converge. Additional experiments (also
for larger BOT problems) suggest that the number of BP optimizations until convergence scales better
than O(n2), see App. G.3. Further, the cost ratios in Fig. 8 stay roughly constant as n increases.
Additional experiments for BOT in higher dimensions (see Fig. 28) indicate that the average quality of
the heuristic solution decreases only very slightly with n. Unfortunately, one can only speculate how
this trend extends to larger BOT problems, where brute-force solutions are no longer feasible. Figure 1
shows heuristic solutions of a larger example problem for different values of α. In particular, we find
that the greedy heuristic is very effective at removing higher-degree branchings and undesirable edge
crossings.

7 Generalization to higher-dimensional BOT

Optimal BOT solutions are acyclic also in Rd [2]. Thus, for a given topology, the edge flows
are known, the optimal substructure property of Lemma 2.1 generalizes and the convex geometry
optimization can be separated from the combinatorial topology optimization. Though, the optimal
angle conditions for Y-, V- and L-branching (see Sect. 3) hold also in Rd, the results on the degree
limitation do not generalize, as the arguments rely on the fact that the angles between edges meeting at
a higher-degree branching point sum up to 2π (cf. Sect. 4.1). The numerical geometry optimization as
well as the greedy algorithm for the topology optimization presented in Sect. 6 are readily applicable
to BOT problems in Rd (see also App. G.2 and App. G.3).

8 Conclusions

We have studied branched optimal transport in R2 from a theoretical and practical perspective. First,
we have tackled the geometric optimization of BOT solutions, given a tree topology. We generalized
the existing exact method presented in [2, 9] to the case of multiple sources. Based on theory
developed in the process of this generalization, we formulated a catalog of necessary and sufficient
conditions for optimal BOT solutions and argued that n-degree branching points for n > 3 are
never optimal. Moreover, we showed that these conditions also apply for BOT on two-dimensional
manifolds. Lastly, we presented a greedy randomized algorithm, which optimizes the tree topology,
combined with an efficient numerical branching point optimization method. We compared our
algorithm to the optimal solution for small examples, obtaining compelling results.

BOT provides a unifying framework for optimal transport and the Euclidean Steiner tree problem
and is itself of great theoretical and practical interest. The emergent branching in BOT can be used
to simulate and study the myriad of efficient transportation systems which exhibit subadditive costs.
Moreover, BOT combines both combinatorial and convex optimization and could be an inspiring
problem to be solved by machine learning techniques. The number of optimality criteria derived in
this paper can guide further research in this area and the presented approximate solvers may serve as
competitive baseline for new ML-based approaches.
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