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Abstract

Standard meta-learning for representation learning aims to find a common represen-
tation to be shared across multiple tasks. The effectiveness of these methods is often
limited when the nuances of the tasks’ distribution cannot be captured by a single
representation. In this work we overcome this issue by inferring a conditioning
function, mapping the tasks’ side information (such as the tasks’ training dataset
itself) into a representation tailored to the task at hand. We study environments in
which our conditional strategy outperforms standard meta-learning, such as those
in which tasks can be organized in separate clusters according to the representation
they share. We then propose a meta-algorithm capable of leveraging this advantage
in practice. In the unconditional setting, our method yields a new estimator enjoy-
ing faster learning rates and requiring less hyper-parameters to tune than current
state-of-the-art methods. Our results are supported by preliminary experiments.

1 Introduction

Learning a shared representation among a class of machine learning problems is a well-established
approach used both in multi-task learning [3, 20, 11] and meta-learning [18, 15, 5, 17, 35, 24, 30, 9, 7].
The idea behind this methodology is to consider two nested problem: at the within-task level an
empirical risk minimization is performed on each task, using inputs transformed by the current
representation, on the outer-task (meta-) level, such a representation is updated taking into account
the errors of the within-task algorithm on previous tasks.

Such a technique was shown to be advantageous in contrast to solving each task independently when
the tasks share a low dimensional representation, see e.g. [27, 25, 15, 24, 35, 5, 22, 9]. However,
in real world applications we often deal with heterogeneous classes of learning tasks, which may
overall be only loosely related. Consequently, the tasks’ commonalities may not be captured well by
a single representation shared among all the tasks. This is for instance the case in which the tasks can
be organized in different groups (clusters), where only tasks belonging to the same cluster share the
same low-dimensional representation.

In order to overcome this issue, previous authors developed non-convex methods (or convex relax-
ations) attempting at clustering the tasks, see e.g. [4, 26, 2, 20, 28, 40, 38, 31]. In this work, we follow
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the recent literature on heterogeneous meta-learning [37, 36, 32, 21, 10, 39, 14, 7] and propose a
so-called conditional meta-learning approach for meta-learning a representation. Our algorithm
learns a conditioning function mapping available tasks’ side information into a linear representation
that is tuned to that task at hand. Our approach borrows from [14], where the authors proposed a
conditional meta-learning approach for fine tuning and biased regularization. In those cases however,
the tasks’ target vectors are assumed to be all close to a common bias vector rather than sharing the
same low-dimensional linear representation, as instead explored in this work. As we explain in the
following, working with the representation setting requires a significant contribution with respect to
the bias one in order to give a new formulation of the problem, to consider a different meta-objective
and a different interpretation of the results. In addition, the representation setting is known to be
a more relevant and effective framework in many scenarios in comparison to the bias one (see e.g.
[28]).

In this work, we propose for the first time an online conditional method for linear representation
learning with strong theoretical guarantees. In particular, we show that the method is advantageous
over standard (unconditional) representation learning methods used in meta-learning when the
environment of observed tasks is heterogeneous.

Contributions and organization. The contributions of this work are the following. First, in Sec. 2,
we design a conditional meta-learning approach to infer a linear representation that is tuned to the
task at hand. Second, in Sec. 3, we formally characterize circumstances under which our conditional
framework brings advantage with respect to the standard unconditional approach. In particular, we
argue that this is the case when the tasks are organized in different clusters according to the support
pattern or linear representation their target vectors’ share. Third, in Sec. 4, we design a convex
meta-algorithm providing a comparable gain as the number of the tasks it observes increases. In the
unconditional setting, the proposed method is able to recover faster rates and it requires to tune one
less hyper-parameter with respect to the state-of-the-art unconditional methods. Finally, in Sec. 5, we
present numerical experiments supporting our theoretical claims. We conclude our work in Sec. 6
and we postpone the missing proofs to the supplementary material.

2 Conditional representation learning

In this section we introduce our conditional meta-learning setting for representation learning. Then,
we proceed to identify the differences with respect to (with respect to) the standard unconditional
counterpart. We begin our overview by first introducing the class of inner learning algorithms we use
in this work.

Within-task algorithms. We consider the standard linear supervised learning setting over Z = X⇥Y
with X ✓ Rd and Y ✓ R input and output spaces, respectively. We denote by P(Z) the set
of probability distributions (tasks) over Z . For any task µ 2 P(Z) and a given loss function
` : R⇥ R ! R, we aim at finding a weight vector wµ 2 Rd minimizing the expected risk

min
w2Rd

Rµ(w) Rµ(w) = E(x,y)⇠µ `
�
hx,wi , y

�
, (1)

where, h·, ·i represents the Euclidean product in Rd. In practice, µ is only partially observed through
a dataset Z = (xi, yi)ni=1 ⇠ µ

n, namely, a collection of n identically independently distributed (i.i.d.)
points sampled from µ. Thus, the goal becomes to use a learning algorithm in order to estimate a
candidate weight vector with a small expected risk converging to the ideal Rµ(wµ) as the sample size
n grows. Specifically, in this work we will consider as candidate estimators, the family of regularized
empirical risk minimizers for linear feature learning [3]. Formally, denoting by D =

S
n2N Zn the

space of all datasets on Z , for a given ✓ 2 ⇥ in ⇥ = Sd+ the set of positive definite d⇥ d matrices,
we will consider the following learning algorithms A(✓, ·) : D ! Rd:

A(✓, Z) = argmin
w2Ran(✓)⇢Rd

RZ,✓(w), RZ,✓(w) =
1

n

nX

i=1

`(hxi, wi, yi) +
1

2

⌦
w, ✓

†
w
↵

(2)

where Ran(✓) denotes the range of ✓. Here ✓
† denotes the pseudoinverse of ✓. Throughout this work

we will denote by RZ(·) = 1/n
P

n

i=1 `(hxi, ·i, yi) the empirical risk associated to Z. Here, ✓ plays
the role of a linear feature representation that is learned during the meta-learning process (see [3]).
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Remark 1 (Within-task regularization parameter). Differently to previous work, see e.g. [15], we
do not impose any constraints on the trace of ✓ (e.g. Tr(✓)  1). This allows us to absorb the
regularization parameter � typically used to control �

⌦
w, ✓

†
w
↵

in ✓. As we will discuss later, this
choice reduces the number of hyper-parameter to tune and it allows to enjoy faster learning rates.
Remark 2 (Online variant of Eq. (2)). Paying additional negligible logarithmic factors, our analysis
and results extend also to the setting in which the minimizer in Eq. (2) is replaced by a pre-conditioned
variant of online gradient descent on RZ,✓ with starting point w0 = 0 and appropriate step size:

A(✓, Z) =
1

n

nX

i=1

wi, wi+1 = wi �
✓pi

i
, pi = sixi + ✓

†
wi, si 2 @`(·, yi)(hxi, wii). (3)

Unconditional Meta-Learning. The standard unconditional meta-learning setting assumes there
exist a meta-distribution ⇢ 2 P(M) – also called environment in [6] – over a family M ✓ P(Z) of
distributions (tasks) µ and it aims at selecting an inner algorithm in the family above that is well suited
to solve tasks µ sampled from ⇢. This target can be reformulated as finding a linear representation
✓⇢ 2 ⇥ such that the corresponding algorithm A(✓⇢, ·) minimizes the transfer risk

min
✓2⇥

E⇢(✓), E⇢(✓) = Eµ⇠⇢ EZ⇠µn Rµ

�
A(✓, Z)

�
. (4)

In practice, this stochastic problem is usually tackled by iteratively sampling a task µ ⇠ ⇢ and
a corresponding dataset Z ⇠ µ

n, and, then, performing a step of stochastic gradient descent on
an empirical approximation of Eq. (4) computed from Z. This approach has proven effective for
instance when the tasks of the environment share a simple common linear representation, see e.g.
[18, 5, 22, 15, 16, 12, 17, 9]. However, when a single linear representation is not sufficient for the
entire environment of tasks (e.g. multi-clusters), this homogeneous approach is expected to fail. In
order to overcome this limitation, some recent works have adopted the following conditional approach
to the problem, see e.g. [37, 36, 32, 21, 10, 39, 14].

Conditional Meta-learning. Analogously to [14], we assume that any task µ ⇠ ⇢ is provided of
additional side information s 2 S. In such a case, we consider the environment ⇢ as a distribution
⇢ 2 P(M,S) over the set M of tasks and the set S of possible side information. Moreover, as
usual, we assume ⇢ to decompose in ⇢(·|s)⇢S(·) and ⇢(·|µ)⇢M(·) the conditional and marginal
distributions with respect to S and M. For instance, we observe that the side information s could
contain descriptive features of the associated task, for example attributes in collaborative filtering
[1], or additional information about the users in recommendation systems [19]). Moreover s could
be formed by a portion of the dataset sampled from µ (see [37, 14]). Conditional meta-learning
leverages this additional side information in order to adapt (or condition) the linear representation
✓ 2 ⇥ on the associated task at hand, by learning a linear-representation-valued function ⌧ solving
the problem

min
⌧2T

E⇢(⌧), E⇢(⌧)=E(µ,s)⇠⇢EZ⇠µnRµ(A(⌧(s),Z)) (5)

over the space T of measurable functions ⌧ : S ! ⇥. Notice that we retrieve the unconditional
meta-learning problem in Eq. (4) if we restrict Eq. (5) to the set of functions T const = {⌧ | ⌧(·) ⌘
✓, ✓ 2 ⇥}, mapping all the side information into the same constant linear representation.

In the next section, we will investigate the theoretical advantages of adopting such a conditional
perspective and, then, we will introduce a convex meta-algorithm to tackle Eq. (5).

3 The advantage of conditional representation learning

In order to characterize the behavior of the optimal solution of Eq. (5) and to investigate the potential
advantage of conditional meta-learning, we analyze the generalization properties of a given con-
ditioning function ⌧ . Formally, we compare the error E⇢(⌧) with respect to the optimal minimum
risk

E⇤
⇢
= Eµ⇠⇢ Rµ(wµ) wµ = argmin

w2Rd

Rµ(w). (6)

In order to do this, we first need to introduce the following standard assumptions used also in previous
literature. Throughout this work we will denote by ·> the standard transposition operation.
Assumption 1. Let ` be a convex and L-Lipschitz loss function in the first argument. Additionally,
there exist R > 0 such that kxk  R for any x 2 X .
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Theorem 1 (Excess risk with generic conditioning function ⌧ ). Let Asm. 1 hold. For any s ⇠ ⇢S , intro-
duce the conditional covariance matrices W (s) = Eµ⇠⇢(·|s)wµw

>
µ

and C(s) = Eµ⇠⇢(·|s)Ex⇠⌘µ
xx

>,
where, ⌘µ denotes the inputs’ marginal distribution of the task µ. Let ⌧ 2 T such that
Ran(W (s)) ✓ Ran(⌧(s)) for any s ⇠ ⇢S and let A(⌧(s), ·) be the associated inner algorithm
from Eq. (2). Then,

E⇢(⌧)� E⇤
⇢


Es⇠⇢S Tr
�
⌧(s)†W (s)

�

2
+

2L2Es⇠⇢S Tr
�
⌧(s)C(s)

�

n
. (7)

Proof. For any (µ, s) ⇠ ⇢, consider the decomposition E⇢(⌧)� E⇤
⇢
= E(µ,s)⇠⇢

⇥
Bµ,s + Cµ,s

⇤
, with

Bµ,s = EZ⇠µn

h
Rµ(A(⌧(s), Z))�RZ(A(⌧(s), Z))

i

Cµ,s = EZ⇠µn

h
RZ(A(⌧(s), Z))�Rµ(wµ)

i
.

Bµ,s is the generalization error of the inner algorithm A(⌧(s), ·) on the task µ. Hence, applying
stability arguments (see Prop. 6 in App. A), we can write Bµ,s  2L2Tr

�
⌧(s)Ex⇠⌘µ

xx
>
�
n
�1.

Regarding the term Cµ,s, for any conditioning function ⌧ such that wµ 2 Ran(⌧(s)), we can write
Cµ,s  EZ⇠µn

h
RZ,⌧(s)(wµ) �Rµ(wµ)

i
= 2�1Tr

�
⌧(s)†wµw

>
µ

�
, where, the inequality exploits

the definition of the algorithm in Eq. (2) as minimum of the regularized empirical risk. The desired
statement follows by combining the two bounds above and rewriting E(µ,s)⇠⇢ = Es⇠⇢SEµ⇠⇢(·|s).

Thm. 1 suggests that the conditioning function ⌧⇢ minimizing the right hand side of Eq. (7) is a
good candidate to solve the meta-learning problem. The following result explores this question by
showing that such a minimizer admits a closed form solution. The proof is reported in App. B. In the
following, we will denote by k · kF and k · k⇤ the Frobenius and trace norm of a matrix, respectively.
Proposition 2 (Best conditioning function in hindsight). The conditioning func-
tion minimizer and the minimum of the bound presented in Thm. 1 over the set
{⌧ 2 T | Ran(W (s)) ✓ Ran(⌧(s)), ⇢S -almost surely}, are respectively

⌧⇢(s) = (2L)�1
n
1/2

C(s)†/2(C(s)1/2W (s)C(s)1/2)1/2C(s)†/2

E⇢(⌧⇢)� E⇤
⇢
 2LEs⇠⇢S

��W (s)1/2C(s)1/2
��
⇤n

�1/2
. (8)

We observe that, in comparison to [14], the numerator term in the bound above describes a different
kind of tasks’ similarity assumption: the conditional variance term E(µ,s)⇠⇢kwµ � Eµ⇠⇢(·|s)wµk2
present in [14] is now substituted by the trace norm term Es⇠⇢S

��W (s)1/2C(s)1/2
��
⇤ above. Ad-

ditionally, the bound above allows us to quantify the benefits of adopting the conditional feature
learning strategy.

Conditional vs. unconditional Meta-Learning. Applying Prop. 2 to T const, we obtain the optimal
(constant) meta-parameter and the corresponding excess risk bound for unconditional meta-learning

⌧ ⌘ ✓⇢ = (2L)�1
n
1/2

C
†/2
⇢

(C1/2
⇢

W⇢C
1/2
⇢

)1/2C†/2
⇢

E⇢(✓⇢)� E⇤
⇢
 2L

��W 1/2
⇢

C
1/2
⇢

��
⇤ n

�1/2
(9)

with unconditional covariance matrices W⇢ = Eµ⇠⇢wµw
>
µ

and C⇢ = Eµ⇠⇢Ex⇠⌘µ
xx

>. We observe
that in the previous literature [13, 15] the authors restricted the unconditional problem over the
smaller class of linear representation ⇥̂ = {✓ 2 Sd+ : Ran(W⇢) ✓ Ran(✓),Tr(✓)  1} and they
considered as the best unconditional representation, the matrix minimizing only a part of the previous
bound, namely,

✓̂⇢ = argmin
✓2⇥̂

Tr
�
✓
†
W⇢

�
= W

1/2
⇢

�
Tr
�
W

1/2
⇢

���1
. (10)

On the other hand, the unconditional oracle we introduce above in Eq. (9) allows us to recover a
tighter bound which is able to recover the best performance between independent task learning (ITL)
and the oracle considered in previous literature [15]. Indeed, by exploiting the duality between the
trace norm k · k⇤ and the operator norm k · k1 of a matrix, we can upper bound the right-side-term in
Eq. (9) by the quantity

2Lmin
n��W 1/2

⇢

��
⇤

��C1/2
⇢

��
1,

��W 1/2
⇢

��
F

��C1/2
⇢

��
F

o
n
�1/2

,
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namely, the minimum between the bound for independent task learning and the bound for uncon-
ditional oracle obtained by previous authors. Notice that the unconditional quantity in Eq. (9) is
always bigger than the conditional quantity in Eq. (8), since Eq. (9) coincides with the minimum
over a smaller class of function. In order to quantify the gap between these two quantities – namely,
the advantage in using the conditional approach with respect to the unconditional one – we have to
compare the term

��W 1/2
⇢ C

1/2
⇢

��
⇤ with the term Es⇠⇢S

��C(s)1/2W (s)1/2
��
⇤.

We report below a setting that can be considered illustrative for many real-world scenarios in which
such a gap in performance is significant.
Example 1 (Clusters). Let S = Rq be the side information space, for some integer q > 0. Let
⇢ be such that the side information marginal distribution ⇢S is given by a uniform mixture of m
uniform distributions. More precisely, let ⇢S = 1

m

P
m

i=1 ⇢
(i)
S , with ⇢

(i)
S = U

�
B(ai, 1/2)

�
the uniform

distribution on the ball of radius 1/2 centered at ai 2 S, characterizing the cluster i. For a given
side information s, a task µ ⇠ ⇢(·|s) is sampled such that: 1) its inputs’ marginal ⌘µ is a distribution
with constant covariance matrix C(s) = Eµ⇠⇢(·|s)Ex⇠⌘µ

xx
> = C, for some C 2 Sd+, 2) wµ is

sampled from a distribution with conditional covariance matrix W (s) = Eµ⇠⇢(·|s)wµw
>
µ

, with W (s)

such that (C1/2
W (s)C1/2)(C1/2

W (p)C1/2) = 0 if s 6= p. Then, Es⇠⇢S

��C(s)1/2W (s)1/2
��
⇤ =

1p
m

��W 1/2
⇢ C

1/2
⇢

��
⇤.

The inequality above tells us that, in the setting of Ex. 1, the conditional approach gains a
p
m factor

in comparison to the unconditional approach. Therefore, the larger the number of clusters is, the
more pronounced the advantage of conditional approach with respect to the unconditional one will
be. The

p
m gain factor follows from the fact that the weight vectors wµ sampled from the different

clusters share disjoint supports (they share orthogonal representations). This allows us to rewrite
the overall clusters weight vectors’ covariance as the average of the intra clusters weight vectors’
covariances. The

p
m term comes from this rewriting and the quadratic behavior of the covariance

matrix. We refer to App. C for more details and the deduction. We also observe that a particular case
of the setting above could be that one in which q = 1 and the side information are noisy observations
of the index of the cluster the tasks belong to. In our experiments, in Sec. 5, we consider a more
interesting and realistic variant of the setting above, in which we will use as task’s side information a
training dataset sampled from that task. In the next section, we introduce a convex meta-algorithm
mimicking this advantage also in practice.

4 Conditional representation Meta-Learning algorithm

To tackle conditional meta-learning in practice we consider a parametrization where the conditioning
functions that are modeled with respect to a given feature map � : S ! Rk (with k 2 N) on the side
information space. In other words, we consider ⌧ : S ! Sd+,

⌧(·) =
�
M�(·)

�>
M�(·) + C, (11)

for some tensor M 2 Rp⇥d⇥k (p 2 N) and matrix C 2 Sd+. By construction, the above parametriza-
tion guarantees us to learn functions taking values in the set of positive semi-definite matrices.
However, directly addressing the meta-learning problem poses two issues: first, dealing with tensorial
structures might become computationally challenging in practice and second, such parametrization is
quadratic in M and would lead to a non-convex optimization functional in practice. To tackle this
issue, the following results shows that we can rewrite the conditioning function in the form of Eq. (11)
by using a matrix in Sdk+ . This will allows us to implement our method working with matrices in Sdk+ ,
instead of tensors in Rp⇥d⇥k. Throughout this work, we will denote by ⌦ the Kronecker product.
Proposition 3 (Matricial re-formulation of ⌧M (s)). Let ⌧ be as in Eq. (11). Then,

⌧(s) =
�
Id ⌦ �(s)>

�
HM

�
Id ⌦ �(s)

�
+ C, (12)

where Id is the identity in Rd⇥d and HM is the matrix in Rdk⇥dk defined by the entries�
HM

�
(i�1)k+h,(j�1)k+z

=
⌦
M(:, i, h),M(:, j, z)

↵
, i, j = 1, . . . , d, h, z = 1, . . . , k.

The arguments above motivate us to consider the following set of conditioning functions:

T� =
n
⌧(·) =

�
Id ⌦ �(·)>

�
H
�
Id ⌦ �(·)

�
+ C

��� such that H 2 Sdk+ , C 2 Sd+
o
. (13)
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To highlight the dependency of a function ⌧ 2 T� with respect to its parameter H and C, we will
denote ⌧ = ⌧H,C . Evidently, T� contains the space of all unconditional estimators T const. We
consider T� equipped with the canonical norm k⌧H,Ck2 = k(H,C)k2

F
= kHk2

F
+ kCk2

F
, where,

recall, k · kF denotes the Frobenius norm. The following two standard assumptions will allow us to
design and analyse our method.
Assumption 2. The optimal function ⌧⇢ belongs to T�, namely there exist H⇢ 2 Sdk+ and C⇢ 2 Sd+,
such that ⌧⇢(·) = ⌧H⇢,C⇢

(·) =
�
Id ⌦ �(·)>

�
H⇢

�
Id ⌦ �(·)

�
+ C⇢.

Assumption 3. There exists K > 0 such that k�(s)k  K for any s 2 S .

Asm. 2, known as well-specified setting assumption (see e.g. [33]), is a standard assumption in
learning theory and it allows us to restrict the conditional meta-learning problem in Eq. (5) to T�,
rather than to the entire space T of measurable functions. Asm. 3 ensures that the meta-objective is
Lipschitz (see below).

The convex surrogate problem. We start from observing that, exploiting the generalization properties
of the within-task algorithm (see Prop. 6 in App. A), we can write the following

E⇢(⌧)  E(µ,s)⇠⇢ EZ⇠µn FZ(⌧(s)), FZ(✓) = RZ,✓(A(✓, Z)) +
2L2

n
Tr
⇣
✓
X

>
X

n

⌘

where X 2 Rn⇥d is the matrix with the inputs vectors (xi)ni=1 as rows. The inequality above suggests
us to introduce the surrogate problem

min
⌧2T

Ê⇢(⌧), Ê⇢(⌧) = E(µ,s)⇠⇢ EZ⇠µn FZ(⌧(s)). (14)

We stress that the surrogate problem we take here is different from the one considered in previous
work [12, 15, 14, 9], where the authors considered as meta-objective only a part of the function
above, namely, E(µ,s)⇠⇢ EZ⇠µn

⇥
RZ,⌧(s)(A(⌧(s), Z))

⇤
. As we will see in the following, such a

choice is more appropriate for the problem at hand, since, differently from the meta-objective used in
previous literature, it will allow us to develop a conditional meta-learning method that is theoretically
grounded also for linear representation learning.

Exploiting Asm. 2, the surrogate problem in Eq. (14) can be restricted to the class of linear functions
T� in Eq. (13) and it can be rewritten more explicitly as

min
H2Sdk,C2Sd+

E(µ,s)⇠⇢ EZ⇠µn L
�
H,C, s, Z

�
, L

�
H,C, s, Z

�
= FZ

�
⌧H,C(s)

�
. (15)

In the following proposition we outline some useful properties of the meta-loss L
�
·, ·, s, Z

�
introduced

above (such as convexity) supporting its choice as surrogate meta-loss.
Proposition 4 (Properties of the surrogate meta-loss L). For any Z 2 D and s 2 S, the function
L
�
·, ·, s, Z

�
is convex and one of its subgradients is given, for any H 2 Sdk+ and C 2 Sd+, by

rL
�
H, ·, s, Z

�
(C) = r̂, rL

�
·, C, s, Z

�
(H) =

�
Id ⌦ �(s)

�
r̂
�
Id ⌦ �(s)>

�
,

where

r̂ = ��

2
⌧H,C(s)

†
w⌧H,C(s)w

>
⌧H,C(s)⌧H,C(s)

† +
2L2

X
>
X

n2
.

Moreover, by Asm. 1 and Asm. 3,
��rL

�
·, ·, s, Z

�
(H,C)

��
F
 (1 +K

2)(LR)2
�
2�1 + 2n�1

�
.

The proof of Prop. 4 is reported in App. D.2. It follows from combining results from [15] with the
composition of the linear parametrization of the functions ⌧H,C 2 T�.

The conditional Meta-Learning estimator. The meta-learning strategy we propose consists in
applying Stochastic Gradient Descent (SGD) on the surrogate problem in Eq. (15). Such a meta-
algorithm is implemented in Alg. 1: we assume to observe a sequence of i.i.d. pairs (Zt, st)Tt=1 of
training datasets and side information, and at each iteration we update the conditional parameters
(Ht, Ct) by performing a step of constant size � > 0 in the direction of �rL(·, ·, st, Zt)(Ht, Ct)
and a projection step on Sdk+ ⇥Sd+. Finally, we output the conditioning function ⌧

H,C
parametrized by

(H,C), the average across all the iterates (Ht, Ct)Tt=1. The theorem below analyzes the generalization
properties of such a conditioning function.
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Algorithm 1 Meta-algorithm, SGD on Eq. (15)
Input � > 0 meta-step size, H0 2 Sdk+ , C0 2 Sd+
Initialization H1 = H0 2 Sdk+ , C = C0 2 Sd+
For t = 1 to T

Receive (µt, st) ⇠ ⇢ and Zt ⇠ µ
n

t

Let ✓t =
�
Id ⌦ �(st)

�
Ht

�
Id ⌦ �(st)>

�
+ Ct and compute w✓t

= A(✓t, Zt) by Eq. (2)
Compute rL(·, ·, st, Zt)(Ht, Ct) as in Prop. 4 with w✓t

Update (Ht+1, Ct+1) = proj⇥
�
(Ht, Ct)� �rL(·, ·, st, Zt)(Ht, Ct)

�

Return H =
1

T

TX

t=1

Ht, C =
1

T

TX

t=1

Ct

Theorem 5 (Excess risk bound for the conditioning function returned by Alg. 1). Let Asm. 1 and
Asm. 3 hold. For any s ⇠ ⇢S , recall the conditional covariance matrices W (s) and C(s) introduced
in Thm. 1. Let ⌧H,C be a fixed function in T� such that Ran(W (s)) ✓ Ran(⌧H,C(s)) for any s ⇠ ⇢S .
Let H and C be the outputs of Alg. 1 applied to a sequence (Zt, st)Tt=1 of i.i.d. pairs sampled from ⇢

with an appropriate meta-step size �. Then, in expectation with respect to the sampling of (Zt, st)Tt=1,

E E⇢(⌧H,C
)� E⇤

⇢


Es⇠⇢S Tr
�
⌧H,C(s)†W (s)

�

2
+

2L2Es⇠⇢S Tr
�
⌧H,C(s)C(s)

�

n

+
⇣1
2
+

2

n

⌘ (1 +K
2)(LR)2 k(H �H0, C � C0)kFp

T
.

Proof (Sketch). The detailed proof is reported in App. D.4. Exploiting the fact that, for any ⌧ 2 T ,
E⇢(⌧)  Ê⇢(⌧) and adding ±Ê⇢(⌧H,C), we can write the following

EZ E⇢(⌧H,C
)� E⇤

⇢
 A(⌧H,C) + B(⌧H,C)

A(⌧H,C) = EZ Ê⇢(⌧H,C
)� Ê⇢(⌧H,C) B(⌧H,C) = Ê⇢(⌧H,C)� E⇤

⇢
.

(16)

The term A(⌧H,C) can be controlled according to the convergence properties of the meta-algorithm in
Alg. 1 as described in Prop. 12. Regarding the term B(⌧H,C), exploiting the definition of the within-
task algorithm in Eq. (2) as minimum, for any ⌧ 2 T such that Ran(Eµ⇠⇢(·|s)wµw

>
µ
) ✓ Ran(⌧(s))

for any s ⇠ ⇢S , we can rewrite

B(⌧) 
E(µ,s)⇠⇢ Tr

�
⌧(s)†wµw

>
µ

�

2
+

2L2E(µ,s)⇠⇢ Tr
�
⌧(s)Ex⇠⌘µ

xx
>
�

n
.

The desired statement then derives from combining the two parts above and optimizing with respect
to �.

Remark 3 (Online variant of Eq. (2)). Similarly to the bias regularization framework in [14], for
the online inner family in Rem. 2, we approximate the meta-subgradient in Prop. 4 by replacing the
batch minimizer A(⌧H,C(s), Z) in Eq. (2) with the last iterate of the online algorithm in Eq. (3).

Proposed vs. optimal conditioning function. Specializing the bound in Thm. 5 to the best
conditioning function ⌧⇢ in Prop. 2, thanks to Asm. 2, we get, up to contants, the following bound for
our estimator,

Es⇠⇢S

��W (s)1/2C(s)1/2
��
⇤ n

�1/2 + k(H⇢ �H0, C⇢ � C0)kF T
�1/2

.

From such a bound, we can state that our proposed meta-algorithm achieves comparable performance
to the best conditioning function ⌧⇢ in hindsight, when the number of observed tasks is sufficiently
large. Moreover, recalling the unconditional oracle ✓̂⇢ in Eq. (10) used in previous literature, regarding
the second term vanishing with T , we observe that our conditional meta-learning approach incurs
a cost of k(H⇢ �H0, C⇢ � C0)kFT�1/2 as opposed to the cost of k✓̂⇢ � ✓0kT�1/4 associated to
state-of-the-art unconditional meta-learning approaches (see [15, 5, 22, 9]). Thus, our conditional
approach presents a faster convergence rate with respect to T than such unconditional methods, but a
complexity term that is expected to be larger due to the larger complexity of the class of functions we
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Figure 1: Mean test error (5 generations) on synthetic data. 2 (Left) and 6 (Right) clusters.

are working with. Such a faster rate with respect to T is essentially due to our formulation of the
problem on the entire set of positive-semidefinite matrices (with no trace constraints). This in fact
allows us to incorporate the within-task regularization parameter � directly in the linear representation
and to gain a

p
T order that was lost in previous literature when tuning with respect to the parameter �.

At the same time, this allows us to develop also a method requiring to tune just one hyper-parameter,
while previous unconditional approaches requires to tune two hyper-parameters.

Comparison to unconditional Meta-Learning. Specializing Thm. 5 to the best unconditional
estimator ⌧H,C ⌘ ✓⇢ we introduced in Eq. (9), the bound for our estimator becomes, up to constants,

��W 1/2
⇢

C
1/2
⇢

��
⇤ n

�1/2 + k✓⇢ � C0k T
�1/2

.

From the bound above, we can conclude that the conditional approach provides, at least, the same
guarantees as its unconditional counterpart. Moreover, we stress again that the bound above presents
a faster rate with respect to T in comparison to the state-of-the-art unconditional methods.

5 Experiments

We now present preliminary experiments in which we compare the proposed conditional meta-
learning approach in Alg. 1 (cond.) with the unconditional counterpart (uncond.) and solving the
tasks independently (ITL, namely, running the inner algorithm separately across the tasks with the
constant linear representation ✓ = Id 2 Sd+). We considered regression problems and we evaluated
the errors by ` the absolute loss. We implemented the online variant of the within-task algorithm
introduced in Eq. (3). The hyper-parameter � was chosen by (meta-)cross validation on separate Ttr,
Tva and Tte respectively meta-train, -validation and -test sets. Each task is provided with a training
dataset Ztr of ntr points and a test dataset Zte of nte points used to evaluate the performance of the
within-tasks algorithm. In App. E we report the details of this process in our experiments.

Synthetic clusters. We considered two variants of the setting described in Ex. 1 with side information
corresponding to the training datasets Ztr associated to each task. In both settings, we sampled
Ttot = 900 tasks from a uniform mixture of m clusters. For each task µ, we generated the target
vector wµ 2 Rd with d = 20 as wµ = P (jµ)w̃µ, where, jµ 2 {1, . . . ,m} denotes the cluster from
which the task µ was sampled and with the components of w̃µ 2 Rd/(10) sampled from the Gaussian
distribution G(0, 1) and then w̃µ normalized to have unit norm, with P (jµ) 2 Rd⇥d/(10) a matrix
with orthonormal columns. We then generated the corresponding dataset (xi, yi)

ntot
i=1 with ntot = 80

according to the linear equation y = hx,wµi+ ✏, with x sampled uniformly on the unit sphere in Rd

and ✏ sampled from a Gaussian distribution, ✏ ⇠ G(0, 0.1). In this setting, the operator norm of the
inputs’ covariance matrix is small (equal to 1/d) and the weight vectors’ covariance matrix of each
single cluster is low-rank (its rank is d/(10) = 2). We implemented our conditional method using
the feature map � : D ! R2d defined by �(Z) = 1

ntr

P
ntr

i=1 �(zi), with �(zi) = vec
�
xi(yi, 1)>

�
,

where, for any matrix A = [a1, a2] 2 Rd⇥2 with columns a1, a2 2 Rd, vec(A) = (a1, a2)> 2 R2d.
In Fig. 1, we report the results we got on an environment of tasks generated as above with m = 2
(Left) and m = 6 (Right) clusters, respectively. As we can see, when the clusters are two, the
unconditional approach outperforms ITL (as predicted from previous literature), but the unconditional
method is in turn outperformed by our conditional counterpart. When the number of clusters raises
to six, the performance of unconditional meta-learning degrades to the same performance of ITL,
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Figure 2: Mean test error (5 splits) on Lenk (Top-Left), Movielens-100k (Top-Right), Jester-1
(Bottom) dataset.

while conditional meta-learning outperforms both methods. Summarizing, the more the heterogeneity
of the environment (number of clusters) is significant, the more the conditional approach brings
advantage with respect to the unconditional one. This is in line with Ex. 1.

Real datasets. We tested the performance of the methods also on the regression problem on the
computer survey data from [23] (see also [28]). Ttot = 180 people (tasks) rated the likelihood of
purchasing one of ntot = 20 computers. The input represents d = 13 computers’ characteristics and
the label is a rate in {0, . . . , 10}. In this case, we used as side information the training datapoints
Z = (zi)

ntr
i=1 and the feature map � : D ! Rd+1 defined by �(Z) = wZ , with wZ the solution of

Tikhonov regularization with the squared loss, namely, the vector satisfying (X̂>
X̂ + Id+1)wZ =

X̂
>
y, where, X̂ 2 R(d+1)⇥n is the matrix obtained by adding to the matrix X 2 Rn⇥d one column of

ones at the end. Fig. 2 (Top-Left) shows that also in this case, the unconditional approach outperforms
ITL, but the performance of its conditional counterpart is much better.

We also tested the performance of the methods on the Movielens-100k and Jester-1 real-world datasets,
containing ratings of users (tasks) to movies and jokes (points), respectively. Recommendation system
settings with d items can be interpreted within the meta-learning setting by considering each data
point (x, y) to have input x 2 Rd to be the one-hot encoding of the current item to be rated (e.g. a
movie or a joke) and y 2 R the corresponding score, see e.g. [12] for more details. We restricted the
original dataset to the ntot = 20 most voted movies/jokes (as a consequence, by formulation, d = 20).
We guaranteed each user voted at least 5 movies/jokes, which led to a total of Ttot = 400/450 tasks
(i.e. users). In both cases, we used as side information the training datapoints Z = (zi)

ntr
i=1. For the

Movielens-100k dataset we used the same feature map described for the synthetic clusters experiments
in Fig. 1. For the Jester-1 dataset, let M and m denote the maximum and minimum rating value that
can be assigned to a joke. We adopted the feature map � : D ! R2d+1 such that, for any dataset
Z = (xi, yi)ni=1, we have �(Z) =

�
vec(�̃(Z)); 1

�
, where vec denotes the vectorization operator

(i.e. mapping a matrix in the vector concatenating all its columns) and e� : Z ! Rd⇥2 is such that
e�(Z) =

�
cos(↵(Z)), sin(↵(Z))

�
� (

P
n

i=1 xi) with ↵(Z) =
P

n

i=1 xi

⇣
⇡

4
M�yi

M�m

⌘
and � denoting

the Hadamard (entry-wise) product broad-casted across both columns. The rationale behind this
feature map is to represent as similar vectors those users with similar scores for the same movies. In
particular, each item-score pair observed in training is represented as a unitary vector in R2

++, with
the angle depending on the score attributed to that item (the vector corresponds to zero if that movie
was not observed at the training time). As it can be noticed in Fig. 2 (Top Right and Bottom), the
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Figure 3: Mean test error (5 generations) of our method and [14] on 2 (Left) and 6 (Right) clusters.

proposed approach performs significantly better than ITL and its unconditional counterpart also on
these two benchmarks. This suggests that groups of users might rely each on similar features (but
different from those of other groups) to rate an item in the dataset (respectively a movie or a joke).

Comparison with [14]. We conclude the experimental section by comparing the performance of our
method with the conditional meta-learning approach for biased regularization proposed in [14]. In
that case, the tasks’ target vectors are assumed to be all close to a common bias vector rather than
sharing the same low-dimensional linear representation, as instead in our method. The representation
setting is known to be a more relevant and effective framework in many scenarios in comparison to
the bias one (see e.g. [28]). This is confirmed in Fig. 3 where our conditional representation learning
method (’cond.’) significantly outperforms the one in [14] (’cond. B’) in the synthetic settings used
in Fig. 1, since the tasks’ similarity leveraged by [14] is not appropriate in these cases.

6 Conclusion

We proposed a conditional meta-learning approach aiming at learning a function mapping task’s side
information into a linear representation that is well suited for the task at hand. We theoretically and
experimentally showed that the proposed conditional approach is advantageous with respect to the
standard unconditional counterpart when the observed tasks share heterogeneous linear representa-
tions. As a consequence of our analysis we also developed a new unconditional meta-learning variant
requiring tuning less hyper-parameters and relying on faster rates with respect to state-of-the-art
unconditional approaches. We identify two future directions addressing the limitations of our method.
A first question left opened is how to design a suitable feature map � when the tasks’ training
data is used as side information. Following [32, 37], we adopted a mean embedding representation.
However, given the importance played by such feature map in Thm. 5, it will be worth investigating
better alternatives. Secondly, it will be valuable to investigate how to predict non-linear conditioning
functions (similarly to e.g. [7, 16, 32]) and use less expensive algorithms to update the positive
matrices, such as the Frank-Wolfe algorithm used in [9] for unconditional settings. In this last case,
according to our analysis, applying standard convergence rates for Frank-Wolfe algorithm, we expect
the meta-learning algorithm based on Frank-Wolfe iteration to incur a slower rate of order T�1/4

(instead of T�1/2 for the SGD method proposed here) in Thm. 5, paying the computational benefits
in terms of statistical performance.
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