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Abstract

In personalized federated learning, each member of a potentially large set of agents
aims to train a model minimizing its loss function averaged over its local data
distribution. We study this problem under the lens of stochastic optimization,
focusing on a scenario with a large number of agents, that each possess very
few data samples from their local data distribution. Specifically, we prove novel
matching lower and upper bounds on the number of samples required from all
agents to approximately minimize the generalization error of a fixed agent. We
provide strategies matching these lower bounds, based on a gradient filtering
approach: given prior knowledge on some notion of distance between local data
distributions, agents filter and aggregate stochastic gradients received from other
agents, in order to achieve an optimal bias-variance trade-off. Finally, we quantify
the impact of using rough estimations of the distances between local distributions
of agents, based on a very small number of local samples.

1 Introduction

A central task in federated learning [31, 40] is the training of a common model from local data sets
held by individual agents. A typical application is when users (e.g. mobile phones, hospitals) want to
make predictions (e.g. next-word prediction, treatment prescriptions), but each has access to very few
data samples, hence the need for collaboration. As highlighted by many recent works (e.g. Hanzely
et al. [28], Mansour et al. [39]), while training a global model yields better statistical efficiency on the
combined datasets of all agents by increasing the number of samples linearly in the number of agents,
this approach can suffer from a dramatically poor generalization error on local datasets. A solution to
this generalization issue is the training of personalized models, a midway between a shared model
between agents and models trained locally without any coordination.

An ideal approach would take the best of both worlds: increased statistical efficiency by using more
samples, while keeping local generalization errors low. This raises the fundamental question: what
is the optimal bias/variance tradeoff between personalization and coordination, and how can it be
achieved?

We formulate the personalized federated learning problem as follows, studying it under the lens of
stochastic optimization [5]. Consider N ∈ N∗ agents denoted by integers 1 ⩽ i ⩽ N , each desiring
to minimize its own local function fi : Rd → R, while sharing their stochastic gradients. Since
only a limited number of samples are locally available, we focus on stochastic gradient descent-like
algorithms, where agents each sequentially compute stochastic gradients gki such that E

[
gki
]
= ∇fi.

In order to reduce the sample complexity, i.e. the number of samples or stochastic gradients required
to reach small generalization error, agents thus need to use stochastic gradients from other agents, that
are biased since in general E

[
gki
]
̸= ∇fj . Our algorithms are based on a gradient filtering approach:
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upon reception of stochastic gradients (gkj )j , agent i filters these gradients and aggregates them using
some weights λj into

∑
j λjg

k
j , in order to achieve some bias/variance trade-off.

1.1 Contributions and outline of the paper

In this paper, we consider an oracle model where at each step k = 1, 2, . . . , all agents may draw a
sample according to their local distribution. We aim at computing the number of stochastic gradients
sampled from all agents, required to reach a small generalization error, in terms of biases (distances
between functions or distributions), regularity, and noise assumptions. The oracle model, main
assumptions and problem formulations are given in Section 2. Our main contributions are then as
follows.

(i) In Section 3 we prove information theoretic lower bounds: to reach a target generalization error
ε > 0 for a fixed agent i, no algorithm can achieve a reduction in the number of oracle calls by a
factor larger than the total number of agents ε-close –in a suitable sense– to agent i.

(ii) We next study a naive strategy based on weighted gradient averaging algorithms, coined all-for-
one, that matches this lower bound, at the cost of high communication and storage requirements.

(iii) We then propose in Section 5 a parallel extension of the simple weighted gradient averaging
algorithm that yields an efficient algorithm for collaborative generalization error minimization
problems. In this algorithm, agents compute stochastic gradients at their local estimate, and broadcast
it to other agents who may use these to update their own estimates. For xk = (xk1 , . . . , x

k
N ) where xki

is the local estimate of agent i at iteration k, updates of the ALL-FOR-ALL algorithm write as:

xk+1 = xk − ηWgk ,

where gk = (gk1 , ..., g
k
N ) for an unbiased stochastic gradient gki of function fi, a step size η, and a

carefully chosen symmetric matrix W . Agent i thus uses stochastic gradients that are doubly biased,
as gradients of a “wrong function” fj instead of fi computed at a “wrong location” xkj instead of xki .
Interestingly, note that the ALL-FOR-ALL algorithm is not a gossip algorithm per se (see e.g. [45]),
since the matrix W is not doubly-stochastic: gradients are not aggregated with weights that sum to 1.
Moreover, W depends on the distance between local agents distributions, and thus requires either
prior information on the local distributions, or estimating these distances as a pre-processing step.

(iv) We finally study in Section 6 the impact of estimating, based on a very limited number of samples,
the matrix W to use in the ALL-FOR-ALL algorithm. Under a mixture model assumption on the
agents, we obtain that for a bounded – up to logarithmic factors – number of samples per agent, any
arbitrary small generalization can be reached, with an optimal collaboration speedup in terms of the
number of agents in each mixture of the mixture model.

1.2 Related works

Federated Learning is a paradigm in machine learning where training is done collaboratively among
several agents, taking into account privacy constraints [31, 36, 40, 51]. A central task is the training
of a common model for all agents, for which both centralized approaches orchestrated by a server
and decentralized approaches with no central coordinator [44] have been considered. The algorithms
we propose in this paper are well suited for a decentralized implementation.

As observed in Hanzely et al. [28], training a common model for all users can lead to poor general-
ization on certain tasks such as e.g. next-word prediction. To improve both accuracy and fairness,
personalized models thus need to be learnt for each agent [38, 43, 54]. Approaches to personalization
include fine-tuning [10, 34], transfer learning techniques [19, 49, 51], using shared-representation
models [11]. Personalization in FL can also be formulated as the training of local models with a
regularization term that enforces collaboration between users [28] or with a meta-learning approach
[9, 25, 30]. We refer the interested reader to Kulkarni et al. [37] for a broader survey of Personalized
Federated Learning.

While the goal of personalization is to minimize local generalization errors, the above cited works
do not provide theoretical guarantees over the sample complexity to obtain small local errors, but
instead control errors on a regularized problem, in terms of communication rounds or full gradients
used, and not in terms of samples used. Deng et al. [14], Mansour et al. [39] among others provide
generalization errors under a statistical learning framework that depend on VC-dimensions and
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on distances between each local data distribution and the mixture of all datasets. Donahue and
Kleinberg [16, 17] study the bias-variance trade-off between collaboration and personalization for
mean estimation in a game-theoretic framework. Beaussart et al. [3], Chayti et al. [8], Grimberg
et al. [27] also concurrently frame personalization as a stochastic optimization problem with biased
gradients and are the works closest to ours. They consider the training of a single agent with biased
gradients from another group of agents dedicated to this agent, and obtain performance guarantees in
terms of distance between individual function fi and the average N−1

∑
j fj . In contrast, we obtain

more general performance bounds based on distance bounds between all pairs of functions fi, fj (or
equivalently, pairs of local distributions), in the case where all agents desire to minimize their local
objective; our “bias assumption” is also milder. In addition, we prove matching lower bounds, and
study under a mixture model the statistical efficiency of our approach.

Concurrently, [15] use similar dissimilarity notions (Integral Probability Metrics, albeit with respect
to different function spaces) to show upper-bounds that closely resemble ours of Theorem 3, when
training over mixtures of distributions (without algorithmic solutions as the all-for-all algorithm),
together with insights on who to collaborate with for agents. These results, obtained in a different
framework than ours (hypothesis and VC-dimension bounds, rather than our stochastic optimization
framework), fall into the frame of our lower bound (and match it up to constant factors), form an
orthogonal line of work.

Finally, data-heterogeneity has long been a challenge in Federated optimization, as for instance noted
in the analyses and performances of the Local SGD algorithm [33, 53]. Many algorithmic solutions
have been proposed to counterweight this effect [32, 42] (non-exhaustive list). Yet this line of work
studies the effect of data-heterogeneity on the convergence guarantees of FL algorithms that train one
global model, irrespectively of the local generalization property of this trained global model. Our
work is orthogonal, and focuses on data-heterogeneity as a challenge for statistical meaning (local
generalization) of the model(s) trained, as opposed to related works that study data-heterogeneity as
a challenge in distributed or federated learning to design fast and scalable algorithms. Putting into
perspective these two views on the challenge data-heterogeneity in FL seems however necessary, and
stresses its importance.

2 Problem Statement and Assumptions

We now detail our objectives and the necessary technical assumptions. We consider general stochastic
gradient methods and formulate our problem, assumptions and algorithms accordingly.

2.1 Problem setting

Let Di for 1 ⩽ i ⩽ N be a probability distribution on a set Ξ (agent i’s local distribution, not its
empirical distribution), ℓ : Rd × Ξ → R a loss function. We assume that the function fi that agent i
aims at minimizing is the generalization error on agent i’s local distribution:

fi(x) = Eξi∼Di [ℓ(x, ξi)] , x ∈ Rd . (1)

We coin this problem as collaborative generalization error minimization (GEM). At every iteration
k = 1, 2, . . ., agent i may access unbiased i.i.d. estimates gki (x) of ∇fi(x):

gki (x) = ∇xℓ(x, ξ
k
i ) , ξki ∼ Di , x ∈ Rd , 1 ⩽ i ⩽ N .

Counting the number of stochastic gradients used in the whole set of agents to reach a precision
ε for fi thus reduces to computing the number of samples required from all agents to obtain local
generalization error ε for agent i. To specify the information shared between agents via access to
stochastic gradients, we define the following oracle, that lets at every iteration all agents sample a
stochastic gradient. After K oracle queries, each agent will have sampled K stochastic gradients
for a total of NK in the whole set of agents. Let

{
(ξk1 , . . . , ξ

k
N ), k ⩾ 0

}
a sequence of i.i.d. random

variables of law D1 × · · · × DN . Given the initial shared knowledge S0, at iterations k = 1, 2, . . .,

1. For all 1 ⩽ j ⩽ N , agent j samples ξkj chooses some ykj ∈ Rd as a Sk−1-measurable function.

2. The shared memory is extended: Sk = Sk−1 ∪
{
gkj (y

k
j ), ξ

k
j , 1 ⩽ j ⩽ N

}
.

3. Agent j outputs xkj as a Sk-measurable function.
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For fixed target precision ε > 0, the objective is to find, using Tε samples from all agents in total -
corresponding to Kε = Tε/N oracle calls -, models with local generalization error ε. Throughout the
paper, we assume that each function fi is minimized over Rd, and we denote by x⋆i such a minimizer.
We further consider the following two standard assumptions.
Assumption 1 (Noise). There exists σ2 > 0 such that for all 1 ⩽ i ⩽ N and x ∈ Rd,

Eξi∼Di∥∇xℓ(x, ξi)−∇fi(x)∥2 ⩽ σ2 .

Assumption 2 (Regularity). Functions fi are µ-strongly convex and L-smooth [7].

2.2 Distribution-based distances

We first introduce extensions of classical Integral Probability Metrics (IPMs, [47]) to multivariate
functions, i.e. pseudo-distances on the set of probability measures parameterized by a set H of
functions, fixed in the sequel.
Definition 1. For H a set of functions from Ξ to Rd and D,D′ two probability distributions on Ξ, we
define:

dH(D,D′) = sup
h∈H

∥E [h(ξ)− h(ξ′)]∥ ,

where ξ ∼ D and ξ′ ∼ D′. dH is a pseudo-distance on the set of probability measures on Ξ.

This family of pseudo-distances contains a large number of standard distances between distributions,
including total variation (with the set of 1-locally bounded functions, functions that send any ball
of radius 1 in a ball of radius 1), the Wassertein distance (with the set of 1-Lipschitz functions),
maximum mean discrepancies (with the unit ball of a RKHS), or even a simple distance between
means of the distributions (with the set of 1-Lipschitz affine functions), developed further in Section 6.
Assumption 3 (Distribution-based dissimilarities). For some non-negative weights (bij)1⩽i,j⩽N , we
have dH(Di,Dj) ⩽ bij for all 1 ⩽ i, j ⩽ N . We further assume that either of the following holds.

1. (Weak dissimilarities). For all 1 ⩽ i ⩽ N ,
(
ξ ∈ Ξ 7→ ∇xℓ(x

⋆
i , ξ)

)
∈ H.

2. (Strong dissimilarities). For all x ∈ Rd,
(
ξ ∈ Ξ 7→ ∇xℓ(x, ξ)

)
∈ H.

The “weak dissimilarities” assumption is of course easier to satisfy than the “strong” version, and our
results will ultimately depend only on the weak assumption. Under Assumption 3 (weak version) and
Assumption 2, we have fi(x⋆j )− fi(x

⋆
i ) ⩽ b2ij/(2µ), which motivates our use of distribution-based

dissimilarity assumptions.

Notation: in the rest of the paper, variables t or T denote the number of stochastic gradients gki
sampled (or data item sampled from personal distribution) from all agents, while variables k or K
denote the iterates of the algorithms (or equivalently the number of oracle calls made).

3 Information-theoretic lower bound on the sample complexity

In this section, we prove lower bounds on the total number of stochastic gradients required from all
agents, to reach ε-generalization for a given agent. Our lower bounds apply to collaborative GEM, i.e.
functions (fi)1⩽i⩽N of the form (1), for shared loss function ℓ and user distributions D1, . . . ,DN .

An oracle ϕ : RN×d → I is a random function that answers some ϕ(x) ∈ I where I is an information
set, for every query x ∈ RN×d. We adapt the definitions of Agarwal et al. [1] of sample complexity
for SGD to our personalization problem. Formally, the first-order oracle we defined in Section 2
and that we write as ϕ

(
(Di)i=1,...,N , ℓ

)
for shared loss function ℓ and user distributions D1, . . . ,DN ,

returns for x ∈ RN×d:

ϕ
(
(Di)i, ℓ

)
(x) =

(
i, xi, ξi, ℓ(xi, ξi), g

k
i (xi)

)
1⩽i⩽N

,

where ξi ∼ Di. Given distributions and a loss function
(
(Di)i, ℓ

)
, we denote by M the set of all

methods M = (MK)K⩾0: for any K ⩾ 0, MK makes K oracle calls from oracle ϕ
(
(Di)i, ℓ

)
(while using T = NK stochastic gradient samples from all agents), and returns xKi ∈ Rd for agent
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i as a measurable function of the K oracle calls. For a set D of couples of distributions and loss
function

(
(Dj)j , ℓ

)
defining functions (fi)1⩽i⩽N , we are interested in lower-bounding:

inf
M∈M

sup
((Dj)j ,ℓ)∈D

Kε
i

(
M,

(
(Dj)j , ℓ

))
,

where Kε
i

(
M,

(
(Dj)j , ℓ

))
is the number of oracle calls required to reach generalization error ε > 0

for agent i, and writes as:

Kε
i

(
M,

(
(Dj)j , ℓ

))
= inf

{
K ∈ N∗ such thatE

[
fi(x

K
i )− min

x∈Rd
fi(x)

]
⩽ ε

}
.

We now define the set D we consider for our lower bounds. Let b = (bij)1⩽i,j⩽N be non-negative
weights that verify the triangle inequality – namely, bij ⩽ bik+bkj for all i, j, k –, and let r, µ, L, σ >
0. DL

µ(r, b, σ) is the set of all
(
(Di)1⩽i⩽N , ℓ

)
, such that the functions fi parameterized by these

tuples of distributions and shared loss function verify Assumptions 1, 2 and 3 for σ2, µ,L > 0 and
b, such that ∥x⋆i ∥ ⩽ r for all 1 ⩽ i ⩽ N , and such that fi(x⋆j ) − fi(x

⋆
i ) ⩽ b2ij/(2µ). We use the

notation a(·) = Ω(b(·)) for ∃C > 0 such that a(·) ⩾ Cb(·).
Theorem 1 (IT lower bound). Let ε ∈ (0, 1/16), (bij) verifying the triangle inequality, r, σ > 0.
Assume that the function set H contains the all 1-Lipschitz affine functions and that dH ⩽ dTV. For
any i ∈ {1, . . . , N}:

inf
M∈M

sup
((Dj)j ,ℓ)∈DL=1/r2

µ=1/r2
(r,b,σ)

Kε
i

(
M,

(
(Dj)j , ℓ

))
= Ω

(
r2σ2

ε
× 1

N ε
i (

b2

4µ )

)
,

where N ε
i (

b2

4µ ) =
∑

j 1{b2ij⩽4µε} is the number of agents j verifying b2ij ⩽ ε.

The proof of this lower bound (Appendix B) builds on lower bounds based on Fano’s inequality [21]
for stochastic gradient descent [1] or for information limited statistical estimation [20, 55], adapted
to personalization. Theorem 1 states that, given the knowledge of (bij), σ2, µ = 1 and L = 1, there
exist difficult instances of the problem that satisfy all three Assumptions 1, 2 and 3, such that the
number of oracle calls needed to obtain a generalization error of ε for an agent i is lower-bounded by
the right hand side of the equation in Theorem 1.

The factor Cσ2r2ε−1 is reminiscent of stochastic gradient descent, and is present in Agarwal et al.
[1]: without cooperation, this is the sample complexity of SGD for a fixed agent. Cooperation appears
in the factor 1/N ε

i (b/4): the sample complexity is inversely proportional to the number of agents
j that have distributions similar to that of i. One cannot hope for better than a linear collaboration
speedup proportional to agents 4µε-close to i in terms of the distance dH. Theorem 1 is a worst-case
lower bound, so that a collaboration speedup could be leveraged even for small ε, but this would
require making stronger additional assumptions.

4 The ALL-FOR-ONE algorithm: parallel weighted gradient averagings

After providing lower complexity bounds in Theorem 1, we present in this section a naive algorithmic
approach based on weighted gradient averagings (WGA), that proves to be sample-optimal. Each
agent i keepsN shared local models xk1 , . . . , x

k
N , where xkj estimates x⋆j at iteration k (the knowledge

of xkj needs to be shared by all agents). At each iteration k, when a sample ξkj is obtained at agent j,
it is used by that agent to compute unbiased estimates of ∇fj(xki ) for all i ∈ [N ]. The iterates of the
WGA algorithm write as, where λij ⩾ 0 are such that

∑
j λij = 1 for all 1 ⩽ i ⩽ N :

xk+1
i = xki − η

N∑
j=1

λijg
k
j (x

k
i ) , (2)

for some step size η > 0. We call this algorithm that consists in performing N parallel WGA
algorithms ALL-FOR-ONE (AFO), since every iteration of each gradient averaging for a given node
i requires all the other nodes to compute one stochastic gradient for i. WGA is thus equivalent to
training models on the mixture of distributions (Dj)j with weights (λij)j for all i.
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Theorem 2. Let (xki )1⩽i⩽N, k⩾0 be generated with (2), and assume that Assumptions 1, 2 and 3
(strong version) hold. For any K ⩾ 0 and 1 ⩽ i ⩽ N , and for η as in Equation (6),1

E
[
fi(x

K
i )− fi(x

⋆
i )
]
⩽
(
fi(x

(0)
i )− fi(x

⋆
i )
)
e−

K
2κ + Õ

κσ2

µK

∑
1⩽j⩽N

λ2ij

+
∑

1⩽j⩽N

λij
b2ij
µ
.

Let ε > 0. For a specific choice of λij =
1{b2ij<ε/2}

N ε
i (2b)

, WGA (2) satisfies E
[
fi(x

Kε(i)
i )− fi(x

⋆
i )
]
⩽ ε

for a number of oracle calls of:

Ki(ε) = Õ
(
κσ2

µε

1

N ε
i (2b

2/µ)

)
,

where N ε
i is previously defined in Theorem 1.

Since the oracle complexity of the WGA algorithm matches that of our lower bound, this proves
that our lower bound is optimal. However, this algorithm may be difficult to use in practice: (i) the
choice of λij is an explicit function of distribution distances (bij) (defined in Assumption 3) that
can be (statistically speaking) as hard to compute as solving our optimization problem; and (ii) the
memory requirements and computation/communication costs of WGA can be prohibitive for large N
and large ε (they scale with N ε

i for agent i). Note that the strong version of Assumption 3 used in
Theorem 2 can be replaced by a more classical uniform bound of the form ∥∇fi −∇fj∥ ⩽ bij .

We first begin by solving this latter issue – an algorithmic one – in the next section, by introducing
and studying the ALL-FOR-ALL algorithm. We discuss (i) in Section 6, where we provide scenarii
over which statistical theoretical guarantees can be derived on the error made by estimating these
distribution distances using only a few samples.

5 The ALL-FOR-ALL algorithm

Algorithm 1 All-for-all algorithm

1: Step size η > 0, matrix W ∈ RN×N , initialization x01 = . . . = x0N ∈ Rd (x0i at agent i).
2: for k = 0, 1, 2, . . .K − 1 do
3: Agents 1 ⩽ j ⩽ N compute gkj (x

k
j ) and broadcast it to all agents i such that Wij > 0.

4: For i = 1, . . . , N , update:

xk+1
i = xki − η

∑
j :Wij>0

Wijg
k
j (x

k
j ) .

5: end for Return xKi for agent i

In this section, we present the ALL-FOR-ALL algorithm (AFA), an adaptation of the weighted gradient
averaging algorithm. For 1 ⩽ i ⩽ N , initialize x0i = x0 ∈ Rd. At iteration k, let xki ∈ Rd be
agent i’s current estimate of x⋆i , and denote xk = (xki )1⩽i⩽N ∈ RN×d. For a step size η > 0 and
a matrix W ∈ RN×N with non-negative entries (remarkably and as discussed later, W will not
necessarily verify

∑
j Wij = 1), iterates of the all-for-all algorithm are generated with Algorithm 1.

In Theorem 3, we control the averaged local generalization error amongst all agents:

F k =
1

N

N∑
i=1

fi(x
k
i )− fi(x

⋆
i ) , k ⩾ 0 .

Theorem 3 (ALL-FOR-ALL algorithm). Let K > 0, η > 0, and W a matrix of the form W = ΛΛ⊤

for some stochastic matrix Λ = (λij)1⩽i,j⩽N . Assume that Assumptions 1, 2 and 3 (weak version)
hold. The iterates (xki )k⩾0,1⩽i⩽N generated with Algorithm 1 verify, for η as in Equation (7):

E
[
FK
]
⩽ F 0e−

K
2κ + Õ

 κσ2

KµN

∑
1⩽i,j⩽N

λ2ij

+
1

N

∑
1⩽i,j⩽N

λij
b2ij
2µ

.

1Õ hides logarithmic and constant factors
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As for the AFO algorithm, we can deduce from this result the number of oracle calls required by the
ALL-FOR-ALL algorithm to reach an averaged ε-generalization, under the idealistic setting where the
distribution-based distances bij are accessible.
Corollary 1. Let ε > 0. Under the same assumptions as in Theorem 3, for a choice of matrix

W = ΛΛ⊤ where λij =
1{b2ij/µ<ε}
N ε
i (b

2/µ) , the ALL-FOR-ALL algorithm (Algorithm 1) returns (xKi )1⩽i⩽N

satisfying 1
N

∑N
i=1 fi(x

Kε
i )− fi(x

⋆
i ) ⩽ ε, for a number of oracle calls satisfying:

Kε ⩽ 2max

(
κσ2

εµ

1

N

N∑
i=1

1

N ε
i (b

2/µ)
, κ

)
ln
(
ε−1F 0

)
.

Denoting Kε(i) the oracle complexity of the WGA algorithm - that matches the lower bound -, we
observe that the ALL-FOR-ALL algorithm reaches an averaged ε-generalization with an number of
oracle calls Kε, of Kε ⩽ 1

N

∑
iKε(i). The speedup in comparison with a no-collaboration strategy

(all agents locally performing SGD) is 1
N

∑
i

1
N ε
i (b

2/µ) : the mean of all local speedups.

Remark 1. In Theorem 3, as its proof shows, the quantities b2ij/(2µ) in the last term can in fact be
replaced by the quantities fi(x⋆j )− fi(x

⋆
i ), that control how well the optimal model for j generalizes

for i, and the bias induced by ALL-FOR-ALL iterations is a weighted average of these quantities.
Note that in our lower bound (Theorem 1), we enforce that the functions considered are required to
satisfy fi(x⋆j )− fi(x

⋆
i ) ⩽ b2ij/(2µ). We believe this notion of function proximity that we leverage to

be the weakest achievable in our setting; no prior work uses such a mild proximity assumption.

Perhaps surprisingly, matrix W is in general not a gossip matrix (i.e. such that W1 = 1): agent i
does not aggregate a convex combination of stochastic gradients, but a combination with scalars
that do not necessarily sum to 1. We thus cannot say that the ALL-FOR-ALL algorithm acts as if, in
parallel, each agent i trains a model on the mixture of distributions Dj with weights Wij . In fact, as
the analysis shows below, agent i trains a model on the mixture of distributions, with weights λij , if
Λ is a stochastic square root of matrix W (ΛΛ⊤ =W ), as in the AFO algorithm. In order to account
for inter-dependencies between agents that do not directly share information, the all-for-all gradient
filtering uses weights Wij to aggregate information, instead of λij . Propagating information using a
matrix W , that induces a similarity graph GW on {1, . . . , N}, such that (ij) ∈ EW if Wij > 0, is
quite natural [4, 50]; yet, ours is the first analysis to give such precise generalization error bounds,
through the use of a stochastic optimization framework.

In comparison to Theorem 3, the classical personalized FL approaches that consider personalized
local models of the form xi = x̄− δi, where x̄ is some global quantity shared by all agents, perturbed
(and personalized) by some local quantity δi (e.g. averaging between local and a global models),
can be seen as the special instances where, for all i, we have λii = 1− αi and λij = αi

N−1 if i ̸= j

for some αi, and leads to bias terms of the form 1
N

∑
i

αi
N−1

∑
j ̸=i bij [14, 25, 39]. Full and naive

collaboration (a single model trained for all users) corresponds to λij = 1/N for all i, j, and leads to
a bias term of 1

N2

∑
i,j bij . The degrees of freedom offered by our matrix W (and by coefficients λij)

enable pairwise agent adaptation, and tighter generalization guarantees and bias/variance tradeoffs.

Proof sketch of Theorem 3. Since brutally analyzing convergence of the iterates (xk) generated with
xk+1 = xk −WGk seems impossible due to both gradient biases and model biases between agents,
we study these iterates through the introduction of a different but related problem. This approach is
in fact similar to some decentralized optimization ones, where a dual problem or a related energy
function is often introduced [23, 45], upon which well-studied algorithms are applied. The related
problem we formulate is different from and more flexible than all the different personalized FL
problems in the literature [28, 48], that consider regularization terms that enforce consensus. For
λ = (λij)1⩽i,j⩽N a stochastic matrix (such that for all 1 ⩽ i ⩽ N , we have

∑N
j=1 λij = 1), let fΛ

be defined as:
fΛ(y) = f̄(Λy) , y ∈ RN×d , (3)

where f̄ = 1
N

∑
i fi. Gradient descent on fΛ writes as yk+1 = yk − ηΛ⊤∇f̄(Λyk), where

∇f̄(x) = 1
N

(
∇fi(xi)

)
1⩽i⩽N

for any x ∈ RN×d. Importantly, notice that denoting xk = Λyk and
since W = ΛΛ⊤, we have the recursion xk+1 = xk−ηW∇f̄(xk), making an analysis of the iterates
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(xk) possible. In our case, we however use stochastic gradients given by our oracle. The full gradient
∇f̄(x) is thus replaced by (gki (xi))i. Defining (yk)k with the recursion: yk+1 = yk−η((ΛGk(yk)i)i,
initialized at y01 = x01 = . . . = y0N = x0N we have xk = Λyk, for all k ⩾ 0, where (xk) is generated
using Algorithm 1. As a consequence, controlling in Theorem 3 the function values 1

N

∑
i fi(x

k
i ) is

equivalent to controlling fΛ(yk) (these two quantities are equal). The bias-variance trade-off thus
writes as, where yΛ minimizes fΛ and x⋆ = (x⋆i )1⩽i⩽N :

F k ⩽ fΛ(yΛ)− f̄(x⋆)︸ ︷︷ ︸
Bias term

+ fΛ(yk)− fΛ(yΛ)︸ ︷︷ ︸
Optimization and variance terms

.

The rest of the proof, deferred to Appendix D, consists in relating these two terms to Λ and b.

After providing the optimization tools and results to answer for the shortcomings of weighted gradient
averagings, we now turn to quantifying the impact of the use of estimated values b̂ij of bij , in order
to close the loop.

6 Estimation of dH(Di,Dj) as a pre-processing step

The sample complexity of estimating the distances dH(Di,Dj) depends on the complexity of the
function space H. While the estimation of Wassertein or total variation distances are usually hard
(in O(1/S1/d) where d is the ambient dimension and S the number of samples available for the
estimation, see e.g. [52]), maximum mean discrepancy (MMD) distances often exhibit lower sample
complexities in O(1/

√
S) [47]. Moreover, explicit assumptions on the loss function can also provide

low sample complexities, as shown below for quadratic loss functions. Yet, the results presented in
this section can be generalized beyond linear models with squared losses, as long as concentration
inequalities for controlling how far empirical distributions are from the true distribution in terms of
distance dH.

In order to formulate statistical results for the estimation of the pairwise distribution-based distances
dH(Di,Dj), we need to make additional structural assumptions, on both H and the distributions.
Inspired by Collins et al. [11], we focus on analyzing an instance of our general GEM setting for
quadratic losses and linear models, under which the generalization error of a given agent i writes as:

fi(x) =
1

2
E
[(
a⊤i x− bi

)2]
, x ∈ Rd ,

where zi = (ai, bi) is a random variable on Rd × R. The stochastic gradients thus write as
∇xℓ(x, ξi) = (a⊤i x − bi)ai for zi = (ai, bi), and are thus linear functions of ξi = ziz

⊤
i . Hence,

Assumption 3 (weak version) is satisfied for H the set of D⋆-Lipschitz and affine functions, where
D⋆ bounds all ∥x⋆i ∥ for 1 ⩽ i ⩽ N , leading to:

dH(Di,Dj) ⩽ D⋆∥E [ξi]− E [ξj ]∥ .
We make the following assumption on the law Di of the random variables ξi: they are non-isotropic
subgaussian random variables, that thus benefit from concentration inequalities that are dimension-
independent [22, 35].
Assumption 4. For some non-negative symetric matrix Σ and all 1 ⩽ i ⩽ N , ξi are centered and
Σ-subgaussian:

P
(
ξ⊤i y ⩾ u

)
⩽ exp

(
− u2

2y⊤Σy

)
, ∀y ∈ R(d+1)2 , ∀u > 0 ,

and we denote as ν2 the largest eigenvalue of Σ, and deff =
∥Σ∥2

ν2 its effective dimension.

Importantly, note that deff can be arbitrarily smaller than the ambient dimension - for the MNIST
dataset, deff is less than 3, while the ambient dimension is 712 [22]. Depending on a smaller dimension
is also an assumption that Collins et al. [11] use in their work by exploiting shared representations.

We now formulate a structural assumption on the set of agents: there are M clusters C1, . . . , CM of C
agents each (to ease notations, with a total number of agents N =MC). Within each cluster, agents
distributions share the same objective, and clusters are “well-separated”. These models are popular
for modelling population heterogeneity and provide a formal framework for clustering problems; we
refer the interested reader to Melnykov and Maitra [41] for a detailed survey on the subject.
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Assumption 5 (Well-separated clusters of agents). For M,C ⩾ 1, N writes as N =MC and there
exists {C1, . . . , CM} a partition of {1, . . . , N}, µ1, . . . , µm such that for all 1 ⩽ m ⩽M , |Cm| = C

and for all i, j ∈ Cm, we have E [ξi] = E [ξj ] = µm. We denote ∆2 = minm ̸=m′ ∥µm − µm′∥2 and
assume that ∆2 > 0.

When distribution-based distances were given (as in Corollary 1), Algorithm 1 achieved the optimal
collaboration speedup, linear in 1/C under Assumption 5 and for small enough target precision ε.
The cluster model is thus the natural baseline for our problem. In the case where agents estimate with
whom to collaborate as we do in the sequel, reaching this collaboration speedup of 1/C will hence
prove the effectiveness of the approach.

We assume that agents possess a limited number of samples. More precisely, for 1 ⩽ i ⩽ N and
S,K ⩾ 1, agent i possesses K + S i.i.d. samples of drawn from Di, S of which are dedicated to
estimating who to collaborate with, the K remaining dedicated to the optimization process i.e. to
running ALL-FOR-ALL iterations for a number K of oracle calls.

For 1 ⩽ i ⩽ N , let µ̂i be an estimation of E [ξi] made with S i.i.d. samples ξi,1, . . . , ξi,S , and for
1 ⩽ i, j ⩽ N let b̂ij be the following estimation of dH(Di,Dj):

µ̂i =
1

S

S∑
s=1

ξi,s , b̂ij = ∥µ̂i − µ̂j∥ .

Computing these distances can be done using only Õ(N) communications (rather than the N2

communications of a naive approach) by performing randomized gossip communications [6] on the
complete graph.
Theorem 4. Under Assumptions 1,2,3 and 5, and for ε > 0, the ALL-FOR-ALL algorithm with
estimated biases as just described reaches an averaged generalization error of ε as long as the
number of pre-used samples S and of oracle calls K satisfy:

S = Ω̃
(ν2deff

∆2

)
, C = Ω̃

(ν2deff
ε

)
, KC = Ω̃

(κσ2

εµ

)
, K = Ω̃

(
κ
)
.

Theorem 5 (ALL-FOR-ALL with estimated biases). Assume that Assumptions 1, 2, 3 (for some
unknown biases bij), 4 and 5 hold. Under the setting described, let Λ̂ be the stochastic matrix with
entries

λ̂ij =
1{b̂2ij⩽u}∑N
ℓ=1 1{b̂2iℓ⩽u}

,

for some u > 0 that verifies u ⩾ 4ν2deff

S . The ALL-FOR-ALL algorithm with W = Λ̂Λ̂⊤ outputs
(xKi )1⩽i⩽N verifying, where bmax = maxi,j bij:

E
[
FK
]
⩽ F 0e−

K
2κ + Õ

(
κσ2

Kµ

( 1
C

+ Ce−
Su
8ν2
))

+
2D⋆2bmaxe

−Smax(∆2−2u,2u2)

8ν2 + 4u21{2u⩾∆}

µ
,

where the mean is taken over both biases estimates (b̂ij) and gradient estimates (gki ).
Corollary 2. Under the same assumptions as Theorem 5 and for ε > 0, the ALL-FOR-ALL algorithm
with estimated biases as described above reaches an averaged generalization error of ε as long as:

S = Ω̃
(ν2deff

∆2

)
, C = Ω̃

(ν2deff
ε

)
, KC = Ω̃

(κσ2

εµ

)
, K = Ω̃

(
κ
)
.

Forgetting about the logarithmic factors, only a bounded number of local samples for each user (S
and K) are required to reach an averaged arbitrarily small generalization error ε > 0, in the limit
with an arbitrary large number of agents (N and C). Indeed, due to our regularity assumptions, K
– the number of samples kept for the optimization problem – is required only to be of order κ, the
condition number of the problem. The number of samples S used for estimating the biases is required
to be of order ν21deff/∆

2, the “signal-to-noise” ratio of our mixture model [41, 46], a natural quantity
to depend on. Corollary 2 hence shows that the optimal collaboration speedup is achieved, up to
logarithmic factors: in order to reach an arbitrary small generalization error ε > 0, are only required
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constant orders for S and K (the number of samples locally available) if the number of agents is
large enough i.e. if N = Ω̃(M/ε), where M is the number of clusters i.e. we have a linear speedup
in the clusters population. We numerically illustrate our theory in Appendix A on synthetic datasets,
with clustered agents (as in this section), as well as in a setting where agents are distributed according
to a more general “distribution of agent”.

A closely related work [26] also studies a model where agents verify a cluster structure as described
in Assumption 5 for quadratic losses and linear models. Yet, we highlight several differences between
their approach and ours. First, Ghosh et al. [26] perform an online clustering of the agents, as opposed
to our pre-training hierarchical approach. While the results we obtain in Theorem 5 and Corollary 2
and those of Ghosh et al. [26] have the same linear speedup in the number of agents, ours require no
initialization condition. Finally, our algorithm is decentralized, thus leading to improved scalability
(especially in terms of the number of clusters) and privacy [13], if of interest. Finally, not being
restricted to clusters in the analysis of the ALL-FOR-ALL algorithm leads to a better collaboration
speedup and fairness (in the sense that performance does not impact a few agents) in a non-clustered
scenario, where an approach based on clusters would be highly non-optimal for agents that are at the
border of the inferred clusters.

Conclusion

In this paper, we quantified in terms of function and distribution biases, stochastic gradient noise,
target precision ε > 0 and functions regularity parameters, the benefit of collaboration between
agents for shared minimization using stochastic gradient algorithms. Our lower bound (Theorem 1)
states that, under prior knowledge on the distances between local distributions, the collaborative
speedup can be linear only in the first phase of the optimization when the generalization error is
large compared to the distances between distributions. More specifically, for a given agent i, the
collaboration speedup is linear in the number of agents that are ε-close to i. Moreover, we show
that the ALL-FOR-ONE algorithm allows such a speedup and is thus sample optimal. However, this
algorithm requires high computation and communication capacities, a drawback that can be mitigated
by the use of a novel algorithm called ALL-FOR-ALL, that benefits from the same collaboration
speedup while being cheaper to deploy. Finally, we studied the impact of estimating distances
between distributions as a pre-processing step to the optimization phase; under a mixture model
assumptions on the agents, we obtain an optimal collaboration speedup. Extending our results –
lower and upper complexity bounds – to other regularity assumptions and Section 6 to more general
settings, as well as incorporating local steps in the ALL-FOR-ALL algorithm (even though to lighten
communications, unbiased compressors could here be used, as our analysis encompasses these) are
interesting questions left for future work. See [24] for extensions to convex-smooth functions (not
necessarily strongly convex), convex-Lipschitz functions, and to asynchronous gradient oracles.
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A Numerical illustration of our theory

(a) Agents in unknown clusters (b) Agents i.i.d. distributed

Figure 1: All-for-all algorithm in practice

To test the robustness of our theory, we build toy problems from synthetic datasets, placing ourselves
in the scenario we considered throughout the paper: a large number of agents with heterogeneous
data, that each have too few samples available from their local data distribution in order to reach a
small generalization error on their own.

In Figure 1, we consider N = 500 agents, and a quadratic loss function ℓ(x, ξ = (a, b)) =
1
2 (a

⊤x − b)2, for x, a ∈ Rd (d = 100) and µ ∈ Rd. For i = 1, . . . , 500, the distribution Di of
ξi = (aia

⊤
i , aibi) as a centered Gaussian random variable of covariance matrix Σi for ai, and bi is

the sign of a⊤i u for some fixed u ∈ Rd, flipped with probability 0.2. In both figures, each agents
have 10 samples available for the optimization phase (K = 10 oracle calls), corresponding to a total
number of samples used of N ×K = 5000. We computed and showed the 500 steps of all ten oracle
calls, each step corresponding to the use of the stochastic gradient of a single agent.

The dotted lines represent our baselines. The blue one is the ALL-FOR-ALL algorithm with ma-
trix W exactly as in Corollary 1 with bij = ∥Σi − Σj∥. The orange dotted line consists in the
no-collaboration baseline: each agents performs SGD on its own without sharing information (cor-
responds to W = IN ). The green dotted line corresponds to the “single-model” approach without
personalization: one model is trained for all agents, using SGD and all samples from all agents
(corresponding to W = 1

n11
⊤). The choice of the algorithm for the single model approach without

collaboration is in fact unimportant, since all algorithms would reach the same asymptotic bias here.
The full lines (red, violet and brown) correspond to estimating the pairwise distances from empirical
distributions (as in Section 6), using respectively S = 1, S = 3 and S = 5 samples.

In Figure 1(a), we consider M = 10 (unkonwn) clusters C1, . . . , CM . All i ∈ Cm have the same
covariance matrix Σm, equal to Id/

√
d+ eme

⊤
m, where em is the m-th element of the canonical basis

of Rd. In Figure 1(b), Σi = Diag(u
(i)
1 , . . . , u

(d)
1 )/

√
d where the (u(i)ℓ ) are i.i.d. uniformly distributed

in [0, 1]. Performing rough estimations of the pairwise distance between agents’ local distributions
thus appears to be quite robust in both our settings. In the “cluster” setting, this was predicted by our
theory, and the numerical results are compelling. In the “i.i.d.” setting, using very few samples for
the estimation also appears to be very efficient.

B Proof of our lower-bound (Theorem 1)

B.1 General framework to prove lower bounds [1]

The idea is that, when optimizing a function f(x) = E [ℓ(x, ξ)] and finding a good approximation of
a minimizer x⋆, we learn some information on the distribution D over which samples are drawn. In
order to prove lower bounds, we construct a loss function ℓ, and distributions Dα

1 , . . . ,Dα
N , where

α is a random parameter. We argue that minimizing the objective function up to a certain precision
gives a good estimator (quantified) of the random seeds α. Then, using Fano inequality, we bound
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the efficiency of such an estimator in terms of number of oracle calls, obtaining a lower bound on
the sample complexity. This approach is inspired by Agarwal et al. [1], who prove IT-lower bounds
for stochastic gradient descent. We adapt their proof technique to the personalized and multi-agent
setting.

Constructing difficult loss functions For any two functions f, g : Rd → R, we define the
discrepancy measure ρ(f, g) as:

ρ(f, g) = inf
x∈Rd

{
f(x) + g(x)− inf

y∈Rd
f(y)− inf

y∈Rd
g(y)

}
,

which is a pseudo metrics. Now, for a finite set V of parameters, let G(δ) =
{
gδα , α ∈ V

}
be a set of

functions indexed by V , that depend on δ (fixed in the set). The dependency in δ of each gα ∈ G(δ)
is left implicit in the following subsections. We define:

ψ(δ) = inf
f,g∈G(δ),f ̸=g

ρ(f, g) .

Minimizing is Bernoulli parameters identification The two following lemmas justify that op-
timizing a function gα ∈ G(δ) to a precision of order ψ(δ) is more difficult than estimating the
parameter α.

Lemma 1 (Agarwal et al. [1]). For any x ∈ Rd, there can be at most one function gα in G(δ) such
that:

gα(x)− inf
Rd
gα <

ψ(δ)

3
.

Lemma 2 (Agarwal et al. [1]). Assume that for some fixed but unknown α ∈ V there exists a method
MK based on the data ϕ = {X1, ..., XK} that returns xK (function of ϕ) satisfying an error of:

E
[
gα(x

K)− min
x∈Rd

gα(x)

]
<
ψ(δ)

9
,

where the mean is taken over the randomness of both the oracle Φ, the method MK and α ∈ V if
random. Then, there exists a hypothesis test α̂ : ϕ→ V such that:

max
α∈V

Pϕ

(
α̂ ̸= α

)
⩽

1

3
.

Suppose now that the parameter α in the previous Lemma is chosen uniformly at random in V . Let
α̂ : ϕ→ V be a hypothesis test estimating α. By Fano inequality [12], we have:

P
(
α̂ ̸= α) ⩾ 1−

I
(
ϕ, α

)
+ ln(2)

ln(|V|)
, (4)

where I
(
ϕ, α

)
is the mutual information between ϕ and α, that we need to upper-bound. Combining

Fano inequality with Lemmas 1 and 2, fixing a target error ε = ψ(δ), we obtain a lower bound on the
Kε the number of oracle calls required to reach an ε generalization error:

1

3
⩾ Pϕ

(
α̂ ̸= α

)
⩾ 1−

I
(
ϕKε

, α
)
+ ln(2)

ln(|V|)
,

where ϕKε
is the information contained in Kε oracle calls. If we have an equality of the form

I
(
ϕKε

, α
)
= KεI

(
ϕ1, α

)
, this gives:

Kε ⩾
2
3 ln(|V|)− ln(2)

I(ϕ1, α)
. (5)

Playing with the different parameters δ, α,V gives lower bounds. We refer the interested reader to
Chapter 2 in Cover and Thomas [12] for Fano inequality and mutual information.

16



B.2 Applying this to prove Theorem 1

For simplicity, assume that r2 = d and σ2 = 1. Let δ > 0 a free parameter. Let V = {α1, . . . , αL} ⊂
{−1, 1}d be a subset of the hypercube such that for all k ̸= l,

1

2

d∑
i=1

|αk
i − αl

i| ⩾
d

4
,

i.e. V is a d/4-packing of the hypercube. We know that we can set |V| ⩾ (2/
√
e)d/2. Without loss

of generality, we prove a lower bound in the case where the agent that desires to minimize its local
function is indexed by 1.

Let:
ℓ(x, ξ) =

1

2
∥x− ξ∥2 ,

for x, ξ ∈ Rd and, for fixed δ > 0 and any α ∈ V:

gα(x) =
1

2d

d∑
k=1

(
x2k + 1− 2

(1
2
+ αkδ)xk

)
, x ∈ X .

We keep the same notations as last subsection (ψ(δ), ρ). We have:

ρ(gα, gβ) =
δ2

d

d∑
k=1

|αk − βk| ,

leading to ψ(δ) ⩾ δ2/4 since V is a d/4-packing of the hypercube.

For any i = 1, . . . , N , let Di be the probability distribution on {0, 1}d of the following random
variable:

Ber
(1
2
+ δiαk

)
ϵk where δi = (δ − bi1)

+ ,

where s+ = max(0, s) for s ∈ R, k is taken uniformly at random in {1, . . . , d}, (ϵk) is the canonical
basis of Rd, and Ber(p) is a Bernoulli random variable, independent of k.

The mutual information is thus, in our case:
I(ϕK , α) ⩽ C1KN δ

1 (
√
b)δ2 ,

where we use the fact that I
(
Ber
(
1
2 + 1b1i⩽δαkδi

)
, αk

)
⩽ C1δ

2 for some constant C1 > 0, for
δi ⩽ 1/4. Setting the target precision as ε = δ2/4, we obtain:

Kε ⩾ C ′ d

εN ε
1 (4b)

.

The loss function and distributions built verify our regularity assumptions for µ = 1/d, L = 1/d,
noise σ2 ⩽ 1.

We first verify that for all 1 ⩽ j, k ⩽ N , we have fj(x⋆k) − fj(x
⋆
j ) ⩽ b2kj . We first notice that

x⋆j = 1
d

(
1
2 + δjαl

)
1⩽l⩽d

, so that:

fj(x
⋆
k)− fj(x

⋆
j ) =

1

d

∥∥x⋆j − x⋆k
∥∥2

= (δi − δk)
2

⩽ (b1j − b1k)
2

⩽ |b1j − b1k|2

⩽ b2jk ,

since the weights b verify the triangle inequality. Under the assumptions of Theorem 1 on H, we
have, in terms of distribution-based distances:

dH(Di,Dj) ⩽ |δi − δj | ⩽ bij .

The minimum of each gα is attained at xα = 1
2 + δα, we thus need to assume that r is of order

√
d,

and a rescaling leads to the dependency in r. The dependency in σ2 for σ2 > 1 is obtained by taking
D′

i = Ber(1/σ2)σ2Di. In this case, we have a noise amplitude of order σ2 instead of order 1, and a
factor 1/σ2 appears in the mutual information.
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C Proof of Theorem 2

Proof of Theorem 2. We begin by proving the following descent lemma.

Lemma 3. Let F : Rd → R be L-smooth and µ-strongly convex and G : Rd → R be differentiable.
Consider the iterates generated by:

yk+1 = yk − ηgk ,

where E
[
gk|yk

]
= ∇G(yk) and E

[∥∥gk −∇G(yk)
∥∥2|yk] ⩽ σ2

g . Then, we have, where y⋆ mini-

mizes F , as long as η ⩽ 1/L:

E
[
F (yk+1)− F (y⋆)

]
⩽ (1− ηµ)E

[
F (yk)− F (y⋆)

]
+
η

2
E
[∥∥∇F (yk)−∇G(yk)

∥∥2]+ η2σ2
gL

2

Proof Lemma 3. We use smoothness of F :

E
[
F (yk+1)− F (yk)

]
⩽ −ηE

[
⟨gk,∇F (yk)⟩

]
+
η2L

2
E
[∥∥gk∥∥2] .

Then, using E
[∥∥gk∥∥2] ⩽ E

[∥∥∇G(yk)∥∥2] + σ2
g , and −ηE

[
⟨gk,∇F (yk)⟩

]
=

−ηE
[
⟨∇G(yk),∇F (yk)⟩

]
= −η

2E
[∥∥∇G(yk)∥∥2 + ∥∥∇F (yk)2∥∥− ∥∥∇G(yk)−∇F (yk)

∥∥2],
we obtain that:

E
[
F (yk+1)− F (yk)

]
⩽ −η

2
E
[∥∥∇F (yk)∥∥2]− η

2
E
[∥∥∇G(yk)∥∥2] (1− ηL

)
+
η

2
E
[∥∥∇F (yk)−∇G(yk)

∥∥2]+ σ2
gη

2L

2
.

Finally, we conclude using −η
2E
[∥∥∇F (yk)∥∥2] ⩽ ηE

[
F (yk)− F (y⋆)

]
and η < 1/L.

Let i ∈ [N ]. To prove Theorem 2, we now use Lemma 3 to study the sequence yk = xki with F = fi,
G =

∑
j λijfj := fλ and gk =

∑
j λijg

k
j (x

k
i ). For all x ∈ Rd, using Assumption 3:

∥∥∇fi(x)−∇fλ(x)
∥∥2 ⩽

N∑
j=1

λij∥fi(x)− fj(x)∥2

=

N∑
j=1

λij∥E [∇xℓ(x, ξi)]− E [∇xℓ(x, ξj)]∥2

⩽
N∑
j=1

λijb
2
ij ,

since ∇xℓ(x, ·) ∈ H and dH(Di,Dj) ⩽ bij . Then, using the independence (conditionally on xki ) of
the (gkj )j and E

[
gkj (x

k
i )|xki

]
= ∇fj(xki ):

E


∥∥∥∥∥∥
∑
j

λijg
k
j (x

k
i )−

∑
j

λij∇fj(xkj )

∥∥∥∥∥∥
2
 =

∑
j

E
[∥∥λij(gkj −∇fj(xkj )

)∥∥2] ⩽∑
j

λ2ijσ
2 .

Consequently,

E
[
fi(x

k+1
i )− fi(x

⋆
i )
]
⩽ (1− ηµ)E

[
fi(x

k
i )− fi(x

⋆
i )
]
+
η

2

N∑
j=1

λijb
2
ij +

η2σ2L

2

N∑
j=1

λ2ij .

Writing Hk = (1− ηµ)−kE
[
fi(x

k
i )− fi(x

⋆
i )
]
, unrolling the recursion leads to:

HK ⩽ H0 +
η

2

∑
k<K

(1− ηµ)−k
N∑
j=1

λijb
2
ij +

∑
k<K

(1− ηµ)−k η
2σ2L

2

N∑
j=1

λ2ij .
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Finally, using
∑

k<K(1− ηµ)−k ⩽ (1−ηµ)−K

ηµ , we have:

E
[
f(xKi )− f(x⋆i )

]
⩽ (1− ηµ)K(f(x0i )− f(x⋆i )) +

ησ2L

2µ

N∑
j=1

λ2ij +
1

2µ

N∑
j=1

λijb
2
ij .

Using (1− ηµ)K ⩽ e−Kηµ, we optimize of η. For

ηi = min

{
1

2L
,

1

µK
ln

(
2µ2K(f(x0i )− f(x⋆i ))

σ2L
∑

j λ
2
ij

)}
, (6)

we obtain:
E
[
f(xKi )− f(x⋆i )

]
⩽ (f(x0i )− f(x⋆i ))e

−K/κ

+
σ2L

µ2K
ln

(
2µ2K(f(x0i )− f(x⋆i ))

σ2L
∑

j λ
2
ij

)∑
j

λ2ij +
1

2µ

N∑
j=1

λijb
2
ij ,

leading to the first part of Theorem 2. For the second part, we simply plug the expression of λij in
the proven formula.

D Proof of Theorem 3

We recall that for a stochastic matrix Λ, we defined

fΛ(y) =
1

N

N∑
i=1

fi
( N∑
j=1

λijyj
)
, y = (y1, . . . , yN ) ∈ RN×d .

Then, yΛ is defined as a minimizer of fΛ, and we write x⋆ = (x⋆1, . . . , x
⋆
N ) where x⋆i is the minimizer

of fi.

We first begin with the following simple lemmas.
Lemma 4. If Assumption 3 (weak version) holds, then for all i, j = 1, . . . , N , we have:

fi(x
⋆
j )− fi(x

⋆
i ) ⩽

b2ij
2µ

.

Proof. Using strong-convexity of fi and ∇fi(x⋆i ):

fi(x
⋆
j )− fi(x

⋆
i ) ⩽

1

2µ

∥∥∇fi(x⋆j )∥∥2
=

1

2µ

∥∥∇fi(x⋆j )−∇fi(x⋆i )
∥∥2

=
1

2µ

∥∥E [∇xℓ(x
⋆
j , ξi)

]
− E

[
∇xℓ(x

⋆
j , ξi)

]∥∥2
⩽
b2ij
2µ

,

where the last inequality is deduced using the weak version of Assumption 3.

Lemma 5. If Λ is a stochastic matrix,

fΛ(yΛ)− f̄(x⋆) ⩽
1

N

∑
1⩽i,j⩽N

λij
(
fi(x

⋆
j )− fi(x

⋆
i )
)
.

Proof. Writing the optimality of yΛ gives:
fΛ(yΛ) ⩽ fΛ(x⋆)

=
1

N

∑
i

fi(
∑
j

λijx
⋆
j )

⩽
1

N

∑
1⩽i,j⩽N

λijfi(x
⋆
j ) ,
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where we used convexity of each fi. Then, subtracting f̄(x⋆) and using stochasticity of Λ:

fΛ(yΛ)− f̄(x⋆) ⩽
1

N

∑
1⩽i,j⩽N

λij(fi(x
⋆
j )− fi(x

⋆
i )) .

We are now armed to prove Theorem 3.

Proof. We have the following bias-variance decomposition, where the inequality is a consequence of
Lemma 5:

F k = f̄(yk)− f̄(x⋆)

= fΛ(yk)− fΛ(yΛ) + fΛ(yΛ)− f̄(x⋆)

⩽ fΛ(yk)− fΛ(yΛ) +
1

N

∑
1⩽i,j⩽N

λij
b2ij
2µ

.

We thus need to upper-bound the optimization term fΛ(yk)− fΛ(yΛ). We recall that yk verifies the
recursion:

yk+1 = yk − η∇Gk
Λ(y

k) ,

for

Gk
Λ(y) =

1

N

( N∑
i=1

λijg
k
i ((Λy

k)i))
)
1⩽j⩽N

,

that verifies:

E
[
Gk

Λ(y)
]
= ∇fΛ(y) ,

E
[∥∥Gk

Λ(y)−∇fλ(y)
∥∥2] ⩽ σ2

N2

∑
1⩽i,j⩽N

λ2ij .

The function fΛ is however not necessarily strongly convex. However, since ∇2fΛ(y) =
Λ⊤∇2f̄(Λy)Λ and f̄ is L/N -smooth and µ/N -strongly convex, fΛ is L/N -relatively smooth and
µ/N -relatively strongly convex [2] with respect to 1

2∥y∥
2
W = 1

2y
⊤Wy. Note also that the spec-

tral radius of W is 1, since Λ is stochastic. Instead of using stochastic Bregman gradient descent
(e.g. Dragomir et al. [18]), we use Lemma 6 that we prove at the end of the paper: classical SGD that
naturally generalizes to relative smoothness and strong convexity assumptions, when the mirror map
is quadratic. This leads to:

E
[
fΛ(yk)− fΛ(yΛ)

]
⩽ (fΛ(y0)−fΛ(yΛ))e− K

2κ+
κσ2

KµN
ln

(
2µ2K(fΛ(y0)− fΛ(yΛ))

σ2L
∑

i,j
1
N λ

2
ij

) ∑
1⩽i,j⩽N

λ2ij ,

for a choice of stepsizes of:

η = min

{
1

2L
,

1

µK
ln

(
2µ2K(fΛ(y0)− fΛ(yΛ))

σ2L
∑

i,j
1
N λ

2
ij

)}
, (7)

concluding the proof.

E Proof of Theorem 5

We first start by recalling that, for a Σ-subgaussian random variable ξ, using Theorem 1 from [29],
we have for any t ⩾ 0:

P
(
∥ξ∥2 ⩾ deffν

2 + 2
√
∥Σ∥2t+ 2ν2t

)
⩽ e−t .
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Consequently, for u ⩾ max(ν2deff , ∥Σ∥22/ν2), we have:

P
(
∥ξ∥2 ⩾ 4u

)
⩽ e−

u
2ν2 .

Remarking that ∥Σ∥2
2

ν2 = ν2
∑

k
ν4
k

ν4 ⩽ ν2
∑

k
ν2
k

ν2 = ν2deff , where ν2k are the eigenvalues of Σ, this
condition on u is in fact u ⩾ ν2deff .

Proof of our Theorem. From Theorem 3, we have, conditionally on the S samples used in estimating
biases:

E
[
FK |Λ̂

]
⩽ F 0e−

K
2κ + Õ

 κσ2

KµN

∑
1⩽i,j⩽N

λ̂2ij

+
1

N

∑
1⩽i,j⩽N

λ̂ij
b2ij
2µ

.

We hence need to bound E
[∑

i,j λ̂
2
ij

]
and E

[∑
i,j λ̂ijb

2
ij

]
, and start by assuming that u ⩾ 4

S ν
2deff .

First, denoting bmax = maxi,j bij , we have:

E

∑
i,j

λ̂ijb
2
ij

 =
∑
i,j

E
[
λ̂ijb

2
ij

]
=

∑
i,j: b2ij>4u

E
[
λ̂ijb

2
ij

]
+

∑
i,j: b2ij⩽4u

E
[
λ̂ijb

2
ij

]
⩽ b2maxP

(
b̂2ij ⩽ u|b2ij > 4u

)
+ 4u21{4u2⩾∆} .

Using a triangle inequality, that gives us 2∥µ̂i − µ̂j − E [µ̂i − µ̂j ]∥2 ⩾ b2ij − 2b̂2ij ,

P
(
b̂2ij ⩽ u|b2ij > 4u

)
⩽ P

(
∥µ̂i − µ̂j − E [µ̂i − µ̂j ]∥2 ⩾

b2ij−2u

2

)
. Then, since each ξi and ξj are

Σ-subgaussian (and independent), µ̂i − µ̂j − E [µ̂i − µ̂j ] is 4Σ/S subgaussian2, so that using our
assumption on u, we can use Theorem 1 of Hsu et al. [29]:

P
(
b̂2ij ⩽ u|b2ij > 4u

)
= P

(
b̂2ij ⩽ u|b2ij > max(4u,∆2)

)
⩽ 2e−

Smax(2u,∆2−2u)

8ν2 .

Then, for 1 ⩽ i ⩽ N , let N̂i =
∑N

j=1 1{b̂ij⩽u}. Fix 1 ⩽ m ⩽M . We have:

P
(
∀i ∈ Cm, ∥µ̂i − µm∥2 ⩽ u

)
= 1− P

(
∃i ∈ Cm, ∥µ̂i − µm∥2 > u

)
⩾ 1− 2Ce−

Su
8ν2 ,

so that E
[∑

i∈CM
∑

1⩽j⩽N λ2ij

]
= E

[
1
C

∑
i∈Cm

1
N̂i

]
⩽ 1

C + 2Ce−
Su
8ν2 , concluding the proof.

We then prove the resulting corollary by taking u = ∆/4, and the condition on u translates into
S ⩾ 16ν2deff

∆2 .

F SGD under strong-convexity and smoothness assumptions

We recall the following well-known result.

2indeed, using the subgaussian norm ∥·∥ψ2
, for real-valued independent random variables X1, . . . , XS and

any β > 0, E
[
eβ

1
S

∑S
s=1Xs

]
=

∏
s E

[
e
β
S
Xs

]
⩽

∏
s E

[
e
Cψ2

β2

S2 ∥Xs∥ψ2

]
= E

[
e
Cψ2

β2

S2

∑S
s=1 ∥Xs∥ψ2

]
, so

that
∥∥∥ 1
S

∑S
s=1 Xs

∥∥∥
ψ2

⩽ 1
S2

∑S
s=1 ∥Xs∥ψ2

, and we apply this to the random variables µ̂i⊤y
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Lemma 6 (SGD, s.c. and smooth). Define ∥x∥2A = x⊤Ax for some non-negative and symmetric
matrix A. Let f : X → R µ-relatively strongly convex and L-relatively smooth with respect to
1
2∥x∥

2
A. Let (ft, gt)t⩾0 be first order oracle calls such that for all t ⩾ 0:

∀x ∈ X ,


E [ft(x)] = f(x) ,

E [gt(x)] = ∇f(x) ,

E
[
∥gt(x)−∇f(x)∥2

]
⩽ σ2 ,

for some σ > 0. Let LA be the largest eigenvalue of A, and assume that LA ⩽ 1 (our result
generalizes to any LA). Let (xt)t⩾0 be generated with:

∀t ⩾ 0 , xt+1 = xt − ηgt(x
t) ,

for a fixed stepsize 1
2L ⩾ η > 0, and assume that all the iterates lie in X . Assume that f is minimized

over X at some interior point x⋆. We have for any T > 0:

E
[
f(xT )− f(x⋆)

]
⩽ e−ηµT

(
f(x0)− f(x⋆)

)
+
ηLσ2

µ
.

For fixed T > 0, setting η = min
(
1/(2L), 1

µT ln( f0µ
2T

Lσ2 )
)

gives:

E
[
f(xT )− f(x⋆)

]
⩽ e−

µ
2LT
(
f(x0)− f(x⋆)

)
+
Lσ2

µ2T
ln
(f0µ2T

Lσ2

)
.

Thus, for fixed target precision ε > 0, using stepsize ηε = min
(

µε
2Lσ2 ,

1
2L

)
and setting Tε =

⌈ln
(
ε−1(f(x0)− f(x⋆))

)
1

ηεµ
⌉, we have:

f

(
1

Tε

∑
t<Tε

xt

)
− f(x⋆) ⩽ ε ,

with a number of oracle calls

Tε ⩽ max

(
2Lσ2

εµ2
,
2L

µ

)
ln
(
ε−1(f(x0)− f(x⋆))

)
.

Proof. For some t ⩾ 0, denoting ft = E
[
f(xt+1)− f(x⋆)

]
, using relative smoothness, unbiased-

ness of the stochastic gradients and then relative strong convexity:

ft+1 − ft ⩽ −ηE
[∥∥∇f(xt)∥∥2]+ η2L

2
E
[
∥gt∥2A

]
⩽ −ηE

[∥∥∇f(xt)∥∥2]+ η2LLA

2
E
[
∥gt∥2

]
⩽ −η

(
1− ηLLA

2

)
E
[∥∥∇f(xt)∥∥2]+ η2LLAσ

2

2
.

Using relative strong convexity of f , we have:∥∥∇f(xt)∥∥2 ⩾
1

LA

∥∥∇f(xt)∥∥2
A

⩽
2µ

LA
ft ,

yielding, for η < 1/(LLA)

ft+1 − ft ⩽ −2η
µ

LA
ft +

η2LLAσ
2

2
.

Then, for some T > 0 and since LA ⩽ 1, sum the above inequality multiplied by (1− ηµ)
−t−1:∑

0⩽t⩽T−1

(1− ηµ)
−t−1

ft+1 − (1− ηµ)
−t
ft ⩽

η2Lσ2

2

∑
0⩽t⩽T−1

(1− ηµ)
−t−1

⩽
η2Lσ2

2

(1− ηµ)
−t−1

ηµ
,

leading to the desired result.
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