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A Additional Experimental Details1

In this section, we introduce additional experimental details including datasets description, hyper-2

parameters, and hardware and software configurations.3

A.1 Datasets Description4

The nine adopted datasets are described in details as follows:5

• Cora, Citeseer, and Pubmed [13] are citation graphs where vertices represent papers and links6

represent citations between papers. Features are bag-of-words and labels are ground-truth topics.7

• Coauthor CS and Coauthor Physics [14] are also co-authorship graphs from Microsoft Academic8

Graph [15]. Vertices represent authors, links represent co-author relationships, features represent9

paper keywords of the authors, and vertices labels indicate the research fields of the author.10

• Amazon Computers and Amazon Photo [14] are subsets of co-purchase graph of Amazon [11].11

Vertices represent products, links between products represent that they are frequently bought12

together, features are bag-of-words of product reviews, and vertices labels are the product category.13

• ogbn-arXiv, a part of the Open Graph Benchmark [8], is a graph representing the citation14

relationships between papers from arXiv Computer Science (CS) category indexed by MAG [15].15

Each paper has a feature vector based on word embedding in its title and abstract. Labels indicate16

subject areas of papers, and the dataset is split based the chronological order.17

• ogbn-proteins, also a part of the Open Graph Benchmark [8], is a protein association graph,18

where vertices represent proteins and links represent different types of biological associations19

between proteins. The task is to predict the protein functions in a multi-label binary classification20

setup with data split based on different species the proteins come from.21

The datasets are publicly available as follows.22

• Cora, Citeseer, and Pubmed: https://github.com/kimiyoung/planetoid with MIT Li-23

cence.24

• Coauthor CS, Coauthor Physics, Amazon Computers, and Amazon Photo: https://github.25

com/shchur/gnn-benchmark/ with MIT Licence.26
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• ogbn-arXiv and ogbn-proteins: https://ogb.stanford.edu/docs/nodeprop/ with ODC-27

BY Licence for ogbn-arxiv and CC-0 License for ogbn-proteins.28

A.2 Hyper-parameters29

The used hyper-parameters are shown in Table 3.30

Table 3: The hyper-parameters and hardware used for each dataset. #Pre and #Post denotes the
number of pre-process and post-process layers, respectively.

Dataset #Pre #Post Dimension Dropout Optimizer LR WD # Epoch

Cora 0 1 256 0.7 SGD 0.1 0.0005 400
CiteSeer 0 1 256 0.7 SGD 0.2 0.0005 400
PubMed 0 0 128 0.3 SGD 0.2 0.0005 500
Coauthor-CS 1 0 128 0.6 SGD 0.5 0.0005 400
Coauthor-Physics 1 1 256 0.4 SGD 0.01 0 200
Amazon-Photo 1 0 128 0.7 Adam 0.0002 0.0005 500
Amazon-Computers 1 1 64 0.1 Adam 0.005 0.0005 500
ogbn-arxiv 0 1 128 0.2 Adam 0.002 0 500
ogbn-proteins 1 1 256 0 Adam 0.01 0.0005 500

A.3 Hardware and Software Configurations31

• Operating System: Ubuntu 18.04.6 LTS for PubMed, ogbn-arXiv, and CentOS Linux release32

7.6.1810 for the others.33

• CPU: Intel(R) Xeon(R) Gold 6129 CPU @ 2.30GHz for PubMed, ogbn-arXiv, and Intel(R)34

Xeon(R) Gold 6240 CPU @ 2.60GHz for the others.35

• GPU: NVIDIA GeForce RTX 3090 with 24GB of memories for PubMed, ogbn-arXiv, and36

NVIDIA Tesla V100 with 16GB of memories for the others.37

• Software: Python 3.9.12, PyTorch 1.11.0+cu113, PyTorch-Geometric 2.0.4 [6].38

A.4 Training Time39

Table 4: The average training time of architectures on each dataset.
Dataset Time Dataset Time Dataset Time

Cora 5.8s Coauthor-CS 8.6s Amazon-Computers 9.8s
CiteSeer 6.2s Coauthor-Physics 15.4s ogbn-arXiv 71s
PubMed 7.8s Amazon-Photo 8.8s ogbn-proteins 50min

We report the average training time of architectures on each dataset in Table 4. The total time cost of40

creating our benchmark is approximately 8,000 GPU hours.41

A.5 Size of the Search Space42

In our proposed search space, we have nine candidate operations for four edges in the DAG, so43

there are 94 operation choices for each type of the macro space. Since we have nine types of macro44

spaces, we have 94 ∗ 9 = 59, 049 architectures in total. However, some of these architectures are45

isomorphic, e.g., an identity operation followed by GCN layer is equivalent to a GCN layer followed46

by an identity operation. We obtain 26,206 unique architectures after removing these duplicates.47
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Figure 7: Pearson correlation coefficient between pairs among performance, latency, and the number
of parameters.
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(a) The frequency of operation choices at
depth one.
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(b) The frequency of operation choices at
depth larger than one.

Figure 8: The frequency of operation choices at different depths in the top 5% architectures of
different datasets.

B Additional Experimental Results48

B.1 Correlations between Performance, Latency, and the Number of Parameters49

We show the Pearson correlation coefficient between the performance, the latency, and the number50

of parameters in Figure 7. We find that: 1) the number of parameters and the latency are positively51

correlated in general. 2) Better performance in general also means a larger latency and more52

parameters, which makes it necessary to balance the performance with the computational overhead.53

B.2 The Operation Distribution of Different Depths54

To further analyze the operation choices, we plot the frequency of operations with different depths,55

i.e., the distance of the computation node to the input node. For example, if an operation receives the56

raw input or the output of the pre-process layer, it is at the depth one; if an operation receives the57

output of the above operation, it is at depth two, etc. We categorize the operations into two groups,58

depth one and depth larger than one, and visualize the frequency of operation choices in Figure 8.59

The results show that the distribution of operations at different depths shows different patterns on60

different datasets. For example, for CiteSeer, GCN appears more frequently at depth one, but the61

opposite for ogbn-proteins. The results indicate that searching for different operations at different62

depths is critical and simply stacking the same operation cannot lead to the optimal results.63
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B.3 Transferability of the Optimal Architecture64
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Figure 9: The rate at which the optimal ar-
chitecture on the search dataset outperforms
other architectures on the evaluation dataset.

To investigate the transferability of optimal architec-65

tures for different datasets, we calculate the rate at66

which an optimal architecture obtained on a search67

dataset outperforms other architectures on another68

evaluation dataset. The results are shown in Figure 9.69

We find that in some cases, the optimal architecture70

can transfer well, e.g., Citeseer to Cora and Physics71

to arXiv. Besides, the transferability can be asymmet-72

ric in some cases, e.g., the optimal architecture on73

Amazon-Computers performs well on Cora, CiteSeer,74

PubMed, and Coauthor-CS, but the optimal architec-75

tures on these four datasets cannot perform well on76

Amazon-Computers.77

C Example Usage & Reproducibility78

C.1 Example Usage79

All our codes and recorded metrics for the trained models are available at https://github.com/80

THUMNLab/NAS-Bench-Graph. Next, we provide some example usages.81

At first, the benchmark of a certain dataset, e.g., Cora, can be read as:82

from readbench import lightread83

bench = lightread(’cora’)84

The data is stored as a Python dictionary. To obtain the recorded metrics, an architecture needs to be85

specified by its macro space and operations. Since we constrain the DAG of the computation graph to86

have only one input node for each intermediate node, the macro space can be described by a list of87

integers, indicating the input node index for each computing node (0 for the raw input, 1 for the first88

computing node, etc.). Then, the operations can be specified by a list of strings with the same length.89

For example, to specify the architecture shown in Figure 10, we can use the following code:90

from hpo import Arch91

arch = Arch([0, 1, 2, 1], [’gcn’, ’gin’, ’fc’, ’cheb’])92

Figure 10: An example architecture.

Notice that we assume all leaf nodes (i.e., nodes without descendants) are connected to the output, so93

there is no need to specific the output node. Besides, the list can be specified in any order, e.g., the94

following code can specific the same architecture:95

arch = Arch([0, 1, 1, 2], [’gcn’, ’cheb’, ’gin’, ’fc’])96

Then, four recorded metrics in the benchmark including the validation and test performance, the97

latency, and the number of parameters, can be obtained by a look-up table:98

info = bench[arch.valid_hash ()]99
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info[’valid_perf ’] # v a l i d a t i o n p e r f o r m a n c e100

info[’perf’] # t e s t p e r f o r m a n c e101

info[’latency ’] # l a t e n c y102

info[’para’] # number o f p a r a m e t e r s103

We provide the full data, including the training/validation/testing performance at each epoch104

at: https://figshare.com/articles/dataset/NAS-bench-Graph/20070371. Since we run105

each dataset with three random seeds, each dataset has 3 files. The full metric can be obtained106

similarly as follows:107

from readbench import read108

bench = read(’cora0.bench’) # d a t a s e t and s e e d109

info = bench[arch.valid_hash ()]110

epoch = 50111

info[’dur’][ epoch ][0] # t r a i n i n g p e r f o r m a n c e112

info[’dur’][ epoch ][1] # v a l i d a t i o n p e r f o r m a n c e113

info[’dur’][ epoch ][2] # t e s t i n g p e r f o r m a n c e114

info[’dur’][ epoch ][3] # t r a i n i n g l o s s115

info[’dur’][ epoch ][4] # v a l i d a t i o n l o s s116

info[’dur’][ epoch ][5] # t e s t i n g l o s s117

info[’dur’][ epoch ][6] # b e s t p e r f o r m a n c e118

We have also provided the source codes of using our benchmark together with two public libraries for119

GraphNAS, AutoGL and NNI. See https://github.com/THUMNLab/AutoGL/tree/agnn and120

https://github.com/THUMNLab/NAS-Bench-Graph/blob/main/runnni.py for details.121

C.2 Reproducibility122

We have released the source code for our benchmark as well as the detailed hyper-parameters. We123

have also provided the full metrics of all the architectures in our search space, as discussed in124

Appendix C.1.125

D Discussions126

D.1 Preliminary on Graph NAS127

Graphs are natural data structures to represent entities and their relationships, with real-world128

examples including social networks, e-commerce networks, biochemistry, etc. Graph neural networks129

(GNNs) are de facto standards in processing the ubiquitous graph data. Consider a graph G = (V, E),130

where V denotes the vertex set and E = V × V denotes the link set. The neighborhood of a node v is131

denoted as N (v). The vertices are also associated with a feature matrix F. Graph neural networks132

follow a neighborhood aggregation scheme. At each layer, the representations of nodes are generated133

through aggregating their neighborhood representations as follows:134

m
(l)
i = AGGREGATE

({
h
(l)
j ,∀h ∈ N (i)

})
h
(l+1)
i = COMBINE

([
m

(l)
i ,h

(l)
i

])
,

(1)

where h
(l)
i denotes the vertex representation of vi in the lth layer, m(l)

i is the message vector,135

and AGGREGATE(·) and COMBINE(·) are learnable functions. The vertex representations are136

initialized as vertex features, i.e., h(0)
i = Fi,:. After L message-passing layers, the representation137

of vertices H(L) can capture both structural and semantic information within the nodes’ L-hop138

neighborhood. GNNs have achieved the state-of-the-art results for graph analytical tasks such as139

node classification, link prediction, and graph classification.140

Graph neural architecture search aims to further automate the design of GNN architectures, e.g., the141

operations choices in the learnable functions AGGREGATE(·) and COMBINE(·). The objective of142
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GraphNAS can be summarized as the following bi-level optimization problem:143

min
α∈A

Lval (W
∗(α), α)

s.t. W∗(α) = argmin
W

(Ltrain (W, α)) ,
(2)

where α denotes the GNN architecture, A is the search space, W are learnable parameters for GNNs,144

and Ltrain and Lval denotes the training and validation loss, respectively. In short, the goal of145

GraphNAS is to find the best performing architecture in the search space so that the architecture can146

achieve the best validation performance after its parameters are trained in the training set.147

D.2 A Comparison with the existing NAS benchmarks148

Table 5: A comparison with the exsiting NAS benchmarks
Benchmark Type Search Space Data Datasets

NAS-Bench-101 [17] Tabular 423k CV 1
NAS-Bench-201 [4] Tabular 6k CV 3
NAS-Bench-1shot1 [19] Tabular 364k CV 1
NAS-Bench-ASR [12] Tabular 8k Acoustics 1
NAS-Bench-NLP [9] Tabular 14k NLP 2
HW-NAS-Bench [10] Tabular 6k CV 3
NATS-Bench [3] Tabular 32k CV 3
NAs-HPO-Bench-II [7] Surrogate 192k CV 1
NAS-Bench-MR [2] Surrogate 1023 CV 4
TransNAS-Bench [5] Tabular 7k CV 14
NAS-Bench-111 [16] Surrogate 423k CV 1
NAS-Bench-311 [16] Surrogate 1018 CV 1
NAS-Bench-Zero [1] Tabular 34k CV 3
Surr-NAS-Bench-FBNet [20] Surrogate 1021 CV 2
NAS-Bench-Graph Tabular 26k Graph 9

We provide more comparisons of our proposed benchmark with the existing NAS benchmarks in Ta-149

ble 5. NAS benchmarks can be mainly divided into tabular benchmarks and surrogate benchmarks. In150

tabular benchmarks, all architectures in the search space are trained to get the empirical performance.151

On the other hand, surrogate benchmarks use surrogate functions to predict the performance of the152

architectures. Tabular benchmarks have better authenticity since the results are from experiments, but153

running experiments can cost lots of computational resources and potentially limits the size of the154

search space. Surrogate benchmarks are more efficient, but the quality of the benchmark depends155

highly on the surrogate function. Despite the efforts in creating NAS benchmarks for other domains,156

e.g., computer vision, NAS benchmark for graphs has not been studied in the literature.157

D.3 Comparison with GraphGym158

GraphGym [18] is a pioneering work studying the design space of GNNs, which we have drawn159

inspirations in developing our benchmark. However, GraphGym is a public library and codebase160

for GNNs, which is different from our proposed benchmark in the following two aspects. First,161

GraphGym focuses on the search space and does not consider the search strategy of GNN architec-162

tures. Second and more importantly, we have trained and provided the performance of all possible163

architectures in our search space, consuming 8,000 GPU hours. Then, the evaluation of GraphNAS164

can be obtained by look-up tables for extremely efficient comparisons.165

E Broader Impact166

GraphNAS can be widely applied to various domains such as social networks, recommendation167

systems, biological networks, the World Wide Web, etc. Our proposed benchmark can enable fair,168
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reproducible, and efficient comparisons of GraphNAS methods and therefore promotes further this169

research direction and benefits the above applications. As for ethical aspects, we do not foresee that170

our benchmark should produce any biased or offensive content. Besides, our proposed benchmark is171

based on existing publicly available graph datasets, which do not contain personally identifiable or172

privacy-related information, to the best of our knowledge.173
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