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Abstract

A key goal of unsupervised learning is to go beyond density estimation and sample
generation to reveal the structure inherent within observed data. Such structure
can be expressed in the pattern of interactions between explanatory latent vari-
ables captured through a probabilistic graphical model. Although the learning of
structured graphical models has a long history, much recent work in unsupervised
modelling has instead emphasised flexible deep-network-based generation, either
transforming independent latent generators to model complex data or assuming that
distinct observed variables are derived from different latent nodes. Here, we extend
amortised variational inference to incorporate structured factors over multiple vari-
ables, able to capture the observation-induced posterior dependence between latents
that results from “explaining away” and thus allow complex observations to depend
on multiple nodes of a structured graph. We show that appropriately parametrised
factors can be combined efficiently with variational message passing in rich graphi-
cal structures. We instantiate the framework in nonlinear Gaussian Process Factor
Analysis, evaluating the structured recognition framework using synthetic data
from known generative processes. We fit the GPFA model to high-dimensional
neural spike data from the hippocampus of freely moving rodents, where the model
successfully identifies latent signals that correlate with behavioural covariates.

1 Introduction

A central challenge of unsupervised learning is to identify and model patterns of statistical dependence
in high-dimensional data. One approach to this challenge exploits latent-variable generative models,
which capture the statistical structure of data through the modelled influence of the latent variables on
observations, and through interactions between the latents themselves. Recent developments in deep
learning have enabled deep generative models (DGM), with remarkable success in density estimation
and high-fidelity image or text generation [1–5]. However, much of the DGM development has
emphasised the expressiveness and accuracy of the latent-to-observation generative process, with the
latents themselves often assumed independent a priori.

Variational learning requires inferring or approximating the posterior distribution of the latents
conditioned on observations [6]. In a variational autoencoder [VAE; 1, 2], inference for a DGM is
amortised by training a recognition network to return parameters of the variational posterior. The
structured variational autoencoder [SVAE; 7] connects the DGM framework with richer models that
include structured prior dependence amongst the latent variables. In an SVAE the structured latent
prior is combined with a DGM link between each latent and a corresponding observation. Variational
inference is amortised using recognition networks that return parameters of a factor associated with
each link, which are combined with the structured prior to obtain the full posterior. However, in
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many generative models of interest, observations depend on more than one latent variable. Such
interactions induce joint potentials in the likelihood, coupling latents in the posterior even if they
are independent a priori, a phenomenon sometimes called “explaining away” [8]. To capture such
observation-induced dependence in the DGM setting we develop the structured recognition VAE
(SRVAE), where recognition potentials that incorporate joint factors induced by the observations are
learnt in a (structured) variational autoencoding framework.

We instantiate the SRVAE framework for a range of graphical structures, including non-linear latent
Gaussian process (GP) models. In the latter case, we bring together the GP-prior VAE [9, 10], and
(sparse) Gaussian process factor analysis (GPFA) [11, 12] models, yielding a novel autoencoding
model (SR-nlGPFA). Experiments show that SR-nlGPFA outperforms alternatives that lack structured
recognition. We apply SR-nlGPFA to data collected from a population of neurons in the hippocampal
complex, and show that the unsupervised approach automatically captures dimensions underlying
neural firing that reflect relevant behavioural correlates.

2 Background

2.1 Variational Inference and Structured Variational Autoencoders

Consider a general generative process with latent variables z and observations y,

z ∼ p(z|θ), y ∼ p(y|z; γ) ,
where θ and γ are the parameters of the prior and conditional likelihood distributions, respectively
(and we write Θ = (θ, γ)). We assume deterministic θ for simplicity, but distributions over θ (with
conjugate hyperpriors) can be incorporated by variational Bayes (VB) [13]. The posterior distribution,
p(z|y,Θ) ∝ p(z|θ)p(y|z, γ), is often analytically intractable. In such cases, a common approach is
to seek an approximation q(z) constrained to a tractable class Q by variational inference (VI); that is,
by minimising the KL-divergence to the true posterior distribution or, equivalently, maximising a
variational free energy [6] FVI =

〈
log p(y, z|Θ)− log q(z)

〉
q(z)

:

qVI(Q)(z|y,Θ) = argmin
q∈Q

KL[q(z)∥p(z|y,Θ)] = argmax
q∈Q

〈
log p(y, z|Θ)− log q(z)

〉
q(z)

. (1)

In the variational autoencoder (VAE) architecture, the parametric optimisation of q(z) implicit in (1)
is amortised by a recognition network that takes as input the observed values y and returns parameters
of q. The parameters of this recognition network are then trained jointly with the generative model by
stochastic optimisation of the free energy [1, 2].

In both standard and amortised VI, the approximate distribution q is often constrained to factor over
the latent variables, a so-called mean-field constraint. While tractable, such mean-field approximations
may be too restrictive to capture the complexity of the true posterior [14, 15]. Many approaches
have been proposed for improving the expressiveness of variational approximation [16–19]. Here we
consider the structured VAE [SVAE; 7]. Unlike standard VAEs, the SVAE assumes the generative
prior distribution to be specified by a structured probabilistic graphical model (PGM), p(z|θ) ∝∏

c∈C ψc(zc), where {ψc}c∈C correspond to C clique potentials. In addition, the amortised inference
network outputs recognition factors, r(z|y, ϕ), that approximate the generative likelihood function
rather than the full variational posterior. These recognition factors are combined with the structured
prior distribution to obtain the amortised variational posterior,

qSVAE(z|y,Θ, ϕ) = argmax
q∝r(z|y,ϕ)p(z|θ)

∑
y∈Y

〈
log

(
p(z|θ)p(y|z, γ)

q(z)

)〉
q(z)

∝ r(z|y, ϕ∗)p(z|θ) , (2)

where ϕ∗ minimises the averaged KL over the data observations Y . Johnson et al. [7] considered
recognition factors that are local (singleton) evidence potentials, chosen to be conjugate to p(z|θ).
Even in this case, the form of (2) allows the dependency structure established by the prior to be
carried over to the variational posterior distribution. Further details of SVAE appear in Appendix A.

2.2 Gaussian Process Factor Analysis

Gaussian Process Factor Analysis (GPFA) is a model used in neural data analysis to infer the dynamic
latent structure underlying high-dimensional population spike trains [11, 12]. Standard GPFA assumes
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the following generative model:

latent functions: fk(·) ∼ GP
(
mk

θ(·), κkθ(·, ·)
)
, for k = 1, . . . ,K ,

affine embeddings: hn(·) =
K∑

k=1

cnkf
k(·) + dn, for n = 1, . . . , N ,

observations: yn(t) ∼ p
(
yn(t)|g(hn(t))

)
, for t = 1, . . . , T ,

(3)

where mk
θ(·) and κkθ(·, ·) parametrise the GP prior, cjk and dn define an affine mapping from the

latent space to the observation space (or a transform of the observations for general likelihoods), and
g(·) is a smooth scalar link function appropriate for the observation distribution. We take mk

θ(·) = 0
unless stated otherwise. Correlations between observed neurons are captured by dependence on the
common set of latents, while temporal correlations in the high-dimensional observations are modelled
by the latent temporal correlations of the GPs. The PGM describing the GPFA generative model
(with sparse variational approximation, see below) is shown in Fig 1a.

Although maximum-likelihood parameters for GPFA can be found using (variational) expectation-
maximisation [20, 11] exact GP inference scales cubically in the number of observation times [21].
Sparse variational GP (svGP) inference based on auxilliary inducing points [22] reduces the time
complexity of learning in GPFA [23], and also facilitates efficient extensions to (pointwise) non-
conjugate likelihoods [12].

For k = 1, . . . ,K, we introduce inducing values uk representing the evaluations of the latent process
fk at Mk inducing locations, zk. For simplicity, we assume M1 = · · · = MK = M unless stated
otherwise. The GPFA generative model (3) can be augmented to include these auxiliary variables:

p(uk|zk) = N
(
0,Kk

zkzk

)
, p(fk(·)|uk) = GP(Fk(·)uk, κkθ(·, ·)− Fk(·)Kk

zkzkF
T
k (·)), (4)

where Fk(·) = κkθ(·, zk)(Kk
zkzk)

−1 is the linear operator that maps uk to fk(·); κkθ(·, zk) is a
vector-valued function with κkθ(x; zk) = [κkθ(x, zk1), κ

k
θ(x, zk2), . . . , κ

k
θ(x, zkMk

)]; and Kk
zkzk is the

covariance matrix obtained by evaluation of the kernel function κkθ(·) at the inducing locations zk.

Introducing a variational distribution over the inducing points and the latent functions, and utilising
the generative model (Fig 1a), the free energy of the sparse variational GPFA (svGPFA) has the form

F(Θ,C,d,Z, ϕ) =

〈
log

(∏T
t=1 p(yt|ft; γ,C,d)

)
p(F|U; θ)p(U|Z; θ)

q(F,U;ϕ)

〉
q(F,U;ϕ)

. (5)

where (with [xi] denoting an array obtained by iterating over the index i), yt = [yn(t)] ∈ RN ,
ft = [fk(t)] ∈ RK , F = [fTt ] ∈ RT×K , C = [cnk] ∈ RN×K , d = [dn] ∈ RN , U = [uk]T ∈ RK×M ,
and Z = [zk]T ∈ RK×M . The svGP approach constrains q(F,U;ϕ) to the form q(U)p(F|U, θ)
with Gaussian q(U) [22]. In the multi-GP case, the distribution is typically also taken to factorise
over processes [23], q(F,U) =

∏K
k=1 p(f

k|uk)q(uk), with fk = [fk(1), . . . , fk(T )] ∈ RT , q(uk) =
N (mk,Sk). Under these constraints on q, the svGPFA free energy simplifies to

FsvGPFA =
∑
t

⟨log p(yt|ht)⟩q(ht) −
K∑

k=1

KL[q(uk)∥p(uk|zk)] ,

where q(ht) =
∫
dU p(ht|U)q(U) is itself a GP with mean and kernel functions given by

mh
n(t) =

K∑
k=1

cnkFk(t)mk + dn and νhn(t, t
′) =

K∑
k=1

c2nk(κk(t, t
′) + Fk(t)(Sk −Kzkzk)Fk(t

′)T ) .

Hence the computational cost for sparse variational GP inference reduces from O(T 3) down to
O(M3 + TM2).

3 Structured Recognition and Explaining Away

3.1 Structured Recognition in VAEs

A general non-linear likelihood may induce additional latent dependency structure in the posterior
beyond that of the prior (a simple illustrative example appears in Appendix C). Although the SVAE

3



uk fk(xn)

hn

yn

Fkuk

Cf1:K + d

g(·)

k = 1, . . . , K

n = 1, . . . , N

(a)

uk fk(xn)

hn

yn

Fkuk

Cf1:K + d

r(u|y, ϕ)

k = 1, . . . , K

n = 1, . . . , N

(b)

uk fk(xn)

hn

yn

Fkuk

r(h|y, ϕ)p(u) Cf1:K + d

r(h|y, ϕ)

k = 1, . . . , K

n = 1, . . . , N

(c)

Figure 1: Graphical models for sparse variational GPFA models. (a) Generative model of GPFA
model with sparse inducing point approximation; (b) Standard GPFA inference with sparse amortised
variational approximation (note that C = I and d = 0 for SGP-VAE [10]); (c) Structured recognition
potential enables full-covariance variational inference in SR-nlGPFA model.

approach developed by Johnson et al. [7] composed amortised inference with a structured prior
distribution, the recognition models these authors discussed all contributed amortised potentials that
factored over latent variables. Such an approach cannot accurately model posteriors with dependence
structure that differs from that of the prior PGM.

Here we adopt a recognition network that outputs structured factor potentials over the latents,
providing amortised estimates of the additional dependencies induced by “explaining away”. We
denote the resulting model the Structured Recognition VAE (SRVAE). The SRVAE variational
approximation takes the form

qSRVAE(z|y, θ, ϕ) ∝
∏
c∈C

ψc(zc; θ)
∏
c∈Cr

ξc(zc|y;ϕ) , (6)

where Cr is the set of recognition factors and the ξcs the associated factor potentials. We assume that
the ξcs are chosen to be conjugate to the prior factors unless otherwise stated. Hence the analytical
(approximate, if necessary) form of qSRVAE can be computed with (variational) message passing. In
the most general form, we could let ξ(z|y;ϕ) be a single joint factor potential over the complete set
of latent variables.

The free energy objective takes the same form as the standard autoencoding free energy objective [1, 2],
but with the structured amortised variational approximation, qSRVAE, as the variational distribution.

FSRVAE(Θ, ϕ) = ⟨log p(z|θ) + log p(y|z, γ)− log qSRVAE(z|y, ϕ, θ)⟩qSRVAE(z|y,ϕ,θ) (7)

The training of the model follows standard VAE-style stochastic optimisation to update the parameters
of the recognition and generative networks, as well as (optionally) the parameters of the prior PGM.

The following proposition supports the use of SRVAE framework (the proof appears in Appendix E).

Proposition 3.1. The SRVAE objective function provides a tighter lower bound to the free energy
than the SVAE objective function.

max
q

FVI(Q)(Θ, q) ≥ max
ϕ

FSRVAE(Θ, ϕ) ≥ max
ϕ

FSVAE(Θ, ϕ) (8)

Below we describe two instantiations of the SRVAE framework, the first based on a latent Gaussian
mixture model, and the second on a latent GPFA model, both with DGM outputs. Structured amortised
inference facilitates scalable inference of the posterior latent distribution with full covariance structure,
allowing more accurate learning than with factored recognition approaches. However, the SRVAE
framework is more general-purposed, and can be combined with many different latent variable models.
Further examples appear in Appendix E.
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3.2 Structured Recognition with Latent Gaussian Mixture Model

The first experiments in Section 5 apply SRVAE to the setting of a latent Gaussian mixture model
(GMM) [24] of the form (Figure 5a)

zt|π ∼ Categorical(z|π)
ht ∼ N (h|µ(zt),Σ(zt))

yt|ht ∼ N (y|µNN(ht),ΣNN(ht)) .

(9)

This model was studied by Johnson et al. [7], who used an SVAE with fully factorised recognition
potentials and variational message passing[VMP; 25] to obtain the GMM variational posterior (details
can be found in Appendix A). However, the neural-network defined conditional model induces
posterior correlations between the latent variables beyond those imposed by the prior. Thus here we
used an SRVAE model, with a full covariance Gaussian recognition potential on h, combined with
the prior factor using VMP.

3.3 Structured Recognition Variational Autoencoding Nonlinear GPFA

The GPFA model (3) incorporates a generalised-linear likelihood, with the link function g(·) acting
separately on each affine embedding value hn. We are now in a position to use the SRVAE framework
to extend GPFA to include a DGM likelihood, greatly increasing the expressiveness of the generative
model. Consider observations {(xt, yt)}Tt=1 and define ft ∈ RK and ht ∈ RN to be the corresponding
vectors of latent process values and embeddings at xt. [In neural applications, the input xt is usually
taken to be identical to the timestamp t; see (3). Here we consider the more general case of arbitrary
time-dependent inputs.] The generative model we consider retains the affine mapping from ft to ht,
but replaces the link function by a non-linear multivariate DGM: yt ∼ p(y|g(ht, γ)). Although the
generative affine mapping could, in principle, be subsumed within the general deep network, the
embeddings ht will play a valuable role in parametrising structured recognition.

For amortised svGP inference, our goal is to define a variational distribution q(U|Y, ϕ). Ashman
et al. [10] have considered a similar latent GP model called the SGP-VAE. There, the variational
distribution over the latents was found by combining the prior GP distribution with an amortised
approximation of the likelihood function factored over latent processes [22]:

q(F,U) =
∏
k

p(fk|uk)q(uk), where q(uk) ∝ p(uk)
∏
t

r(uk|yt, xt, zk), (10)

The graphical model for SGP-VAE inference corresponds to that of Figure 1b, with C = I and d = 0.
While this approach captures induced correlation amongst the inducing points, it fails to capture
correlations between latent processes that arise in the posterior through “explaining away", potentially
leading to sub-optimal inference and learning.

Our solution is to recast the output of the amortised inference to the likelihood of h rather than U,
and propose the following structured variational distribution.

q(F,U) =

[∏
k

p(fk|uk)
]
q(U), where q(U) ∝

∫
dH p(U)p(H|U)

∏
t

r(ht|yt) (11)

and r(ht|yt) ∝ N (ht|m(yt;ϕ),Ψ(yt;ϕ)) = N
(
µh

t ,Ψ
h
t

)
, with Ψh

t diagonal, and H =
[h(x1), . . . ,h(xT )]. Given the linear-Gaussian relationship between U and h (Fig 1a), the inte-
gral in (11) can be computed in closed form. Furthermore, even though the recognition potential on
h, r(h|yt), is assumed to be fully factorised over the dimensions of each ht, the variational distri-
bution on U includes coupling between latent processes induced by the affine mixing coefficients.
Hence q(U) captures the correlations both between the latent processes and through time (through
combination with the GP prior under the structured autoencoding formulation).

Specifically, given the general expression of the GPFA generative model and the sparse approximation
with inducing points, the linear Gaussian relationship between h and U at any x is given by

p(h|U, x) = N
(
CF(x)U+ d,C(Kx − F(x)KUF(x)

T )CT
)
, (12)
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where

F(x) =

F1(x)
. . .

FK(x)

 , KU =

Kz1z1
. . .

KzKzK


with Kx = diag[κkθ(x, x)]. Combining this result with the fully factorised recognition potential on h
at xt (11), we obtain the structured variational distribution on U:

q(U) = N (mU,SU) ∝ p(U)
∏
t

N (CF(xt)U|µh
t ,Ψ

h
t ), with (13)

S−1
U = K−1

U +
∑
t

F(xt)
TCT (Ψh

t )
−1CF(xt), mU = SU

(∑
t

F(xt)
TCT (Ψh

t )
−1(µh

t − d)

)
.

This variational posterior on U leads to a corresponding posterior on h at each x:

q(h(x)) =

∫
dU p(h|U)q(U) = N

(
CF(x)mU + d,C(Kn + F(x)(SU −KU)F(x)

T )CT )
)
.

and we write q(h(xt)) = N
(
mh

t ,S
h
t

)
. Then the complete (reparametrised) Monte Carlo estimate of

the free energy objective given a mini-batch of data, {(xb, yb)}Bb=1, takes the following expression.

F(θ, γ, ϕ,C,d,Z) =
B∑

b=1

1

S

S∑
s=1

log p(yb|mh
b + Lh

b ϵs)− KL[q(U)∥p(U)] (13)

where ϵs ∼ N (0, I), θ is the set of kernel parameters, Lh
b is the lower-triangular Cholesky component

of Sh
b such that Sh

b = Lh
b (L

h
b )

T .

We note that we have retained the scalability of amortised inference by choosing an amortised
diagonal-Gaussian potential on h. However, the linear-Gaussian relationship between the inducing
points U and h(x) (12) leads to a full-covariance variational Gaussian approximation for U, allowing
amortised inference to capture the observation-induced posterior correlations between latent processes
(commonly referred to as the “explaining away” effect). Thus, the retention of the affine GPFA
mapping introduces a key extenstion to SGP-VAE. We will refer to the new model as structured
recognition non-linear GPFA (SR-nlGPFA). The generative model corresponds to that of svGPFA
(Figure 1a) but with the nonlinearity g(·) generalised to a flexible form modelled by a neural network.
The complete inference procedure for SR-nlGPFA is graphically illustrated in Figure 1c.

The implicit computation of the variational distribution over U given the recognition potentials on
h also makes it possible to carry out svGP inference with changed inducing locations (13). This
is particularly useful in situations that require inference over test datasets of different durations to
those seen in training. In particular, it may be possible to learn an amortised inference network using
short sub-sequences drawn from a longer dataset, and then infer a posterior over latent GPs for the
complete data sequence efficiently by optimising the placement of inducing points along its full
length. See further details on the free-form svGP inference step in Appendix F.2.

4 Related work

Structured Deep Generative Models. A number of studies have considered latent graphical structure
within the DGM framework [26, 27, 7, 28–30]. Our work builds on and generalises the prominent
SVAE proposal of Johnson et al. [7]. Both SVAE and SRVAE combine the structure of a prior
PGM with the flexibility of neural-network-based recognition. The difference lies in the form of the
recognition potentials. These were taken to extend over single latent variables in the earlier study.
Here, we consider joint potentials that capture dependence induced by the generative likelihood. In a
closely related study, Lin et al. [28] proposed a structured inference network, which approximates
the variational distribution as the combination of the recognition potential and a separate structured
latent distribution independent of the prior, the independent structured latent distribution can have
non-conjugate factors to improve the expressiveness of the model.

svGPFA and Extensions. Since its introduction as a model to identify linear low-dimensional
struction in neural population data [11], GPFA has been extended to incorporate non-linear link
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Figure 2: Empirical Evaluations on Pinwheel Dataset. (a) Sampled data from the pinwheel dataset;
Training curves of the (b) variational free energy objective and (c) testing reconstruction MSE through
out training (all in log-scale); Sampled data given trained model of (d) SRVAE-GMM; (e) variational
GMM; (f) SIN-GMM [28]. All evaluations are based on the averages over 5 random seeds.

functions and non-conjugate (notably Poisson count or point-process) noise models, and combined
with sparse variational inference for efficiency [23, 31, 12, 32]. Related work has considered GP
latents in the context of DGMs, particularly using variational autoencoding [9, 33, 10]. In a sense,
SR-nlGPFA combines both approaches. It incorporates multiple latent GPs (as in GPFA and some
DGM GP models) with an affine mapping that feeds into a nonlinear DGM. However, this structure
means that the affine map contributes little to the generative process. Instead it provides a target for
amortised inference, which combines with sparse variational GP inference to yield a full structured
posterior on inducing point values. As such, the affine map may arguably be better seen as an element
of the structured recognition model.

5 Results

We evaluated SRVAE methods for both latent mixtures, and nlGPFA, comparing to relevant baselines
on synthetic and real datasets. Empirical results on the instantiations of the SRVAE framework with
other latent variable models can be found in Appendix F1.

5.1 Experiments with SRVAE-GMM

To assess the empirical performance of structured amortisation in a standard latent-variable model,
we evaluated SRVAE-GMM on the pinwheel dataset of [7] (Figure 2a). We compare SRVAE-GMM
with the structured inference network [SIN; 28], which is a more flexible instantiation of the SVAE
framework. From Figure 2, we observe that SRVAE-GMM outperforms SIN-GMM in terms of
the training variational free energy, reconstruction mean-squared error, and generation fidelity. The
models are identical apart from the recognition stage, providing support for the idea that by capturing
the “explaining away” posterior factors, structured recognition leads to a more accurate learnt model.

1Python implementation can be found at https://github.com/gatsby-sahani/
structured-recognition-neurips2022
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Synthetic data EEG Population spiking

SMSE NLL SMSE NLL SMSE
SR-nlGPFA 0.31± 0.02 1.69± 0.04 0.27± 0.05 1.81± 0.21 0.47± 0.18

SGP-VAE [10] 0.36± 0.05 1.76± 0.07 0.35± 0.05 2.17± 0.17 0.55± 0.19

Vanilla-VAE [1, 2] 1.05± 0.02 13.60± 3.58 0.57± 0.09 3.45± 0.87 3.19± 1.98

SVAE-LDS [7] 0.933± 0.02 9.37± 1.94 3.04± 0.38 11.71± 2.66 2.52± 1.31

Table 1: Quantitative comparison of performance between SR-nlGPFA and baseline models on syn-
thetic dataset, EEG dataset and population spiking dataset (Section 5.2.2) with respect to standarised
mean squared error (SMSE) and negative log-likelihood (NLL). Averages over 5 random seeds.

5.2 Experiments with SR-nlGPFA

5.2.1 Synthetic and EEG Dataset

We compared SR-nlGPFA to methods that do not capture the inter-latent posterior correlation, using
synthetic data and a small-scale EEG dataset used previously [34, 10]. Unless stated otherwise, we
employed an exponentiated quadratic kernel, κ(x, x′) = λ exp(− ||x−x′||2

τ2 ), where λ and τ are the
marginal variance and length-scale parameters, respectively.

Baselines Our main baseline model is SGP-VAE [10] (described in Sections 3.3 and 4). We also
compared to a “vanilla” VAE with fully factorised Gaussian variational distribution [1, 2], and SVAE
with a linear dynamical system (SVAE-LDS) latent prior [7]. All models were implemented with the
same recognition and generative network architectures (see Appendix G for implementation details).

Synthetic Dataset We generated data from the GPFA generative model (Eq. 3), with g(·) = σ(Φ(·)),
where Φ(·) represents the functional mapping through a fixed, randomly-initialised 2-layer MLP with
ReLU hidden non-linearity, and σ(·) is the sigmoid function.

EEG Dataset We follow the experimental procedure described by Requeima et al. [34], and consider
an EEG measurement dataset spanning 1 second at 256 Hz sample frequency, taken during image
viewing [35]. Each datapoint consists of the voltage readings from 7 electrodes positioned on the
participant’s scalp. Here we report results when all data are observed, contrary to the settings
in [34, 10] (we include results and further discussion on partial observability in Appendix F.2).

SR-nlGPFA achieved lower standardised mean squared error (SMSE) and lower test negative log-
likelihood (NLL) than the alternative methods on both data sets (Table 1), providing evidence for
the benefits of structured recognition. These gains come despite the computational complexity of
SR-nlGPFA being of the same order as SGP-VAE (see appendix F.2).

5.2.2 Population Neuronal Firing Data

The firing of place cells in Hippocampal area CA1 and grid cells in the medial Entorhinal Cortex
(mEC) is known to be modulated by the animal’s location [36, 37], speed and direction of locomo-
tion [38–40], with the mapping between these behavioural covariates and neural activity expressed in
non-linear mixed tuning curves. The behavioural signals are continuous and often mutually depen-
dent, and so create temporal and spatial structure in the time series of population activity. We asked
whether SR-nlGPFA and related methods would be able to identify and extract this structure without
supervision; that is, without direct access to the behavioural covariates.

We used single-cell spiking data from neurons in the hippocampal CA1 and mEC regions of rats
recorded during exploration of a Z-shaped track, as reported by Ólafsdóttir et al. [41]. The data
comprised 28 experimental sessions, each spanning 10 minutes. Example neural firing patterns of the
population are shown in Figure 11 of the Appendix.

For SR-nlGPFA and SGP-VAE, we adopted the GPFA generative model Eq. 3 with DGM non-linearity
and Poisson observation likelihood.

p(y(x)|h(x)) =
N∏

n=1

Poisson(yn(x)|g(h(x))n) (14)
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where x are discrete times, N is the number of recorded neurons, and g(·) represents the neural-
network mapping from the GPFA features, h, to the rate of Poisson-distributed firing counts for
each neuron over contiguous 100 ms bins. SR-nlGPFA obtained a lower SMSE of prediction than
SGP-VAE and other methods tested (Table 1).

Computational constraints meant that the SR-nlGPFA model was trained using short batches of
data and 64 inducing points per batch. Latent trajectory estimates derived from such batches will
not necessarily be continuous at the boundaries between them. Thus, once the model was fit, we
performed svGP inference over complete sessions with increased numbers of inducing points (see
Section 3.3 and Appendix F.3.2).

To relate these recovered latent time-series to behavioural covariates, we performed two-dimensional
Canonical Correlation Analysis [CCA; 42]. We present results for one session here, emphasising
qualitative effects. Further qualitative and quantitative results across sessions can be found in
Appendix F.3.2.

Figure 3a shows a heatmap of the correlation coefficients between the canonical correlates of the
posterior means (CCX{1, 2}) and the individual behavioural covariates (distance from one end of
the track, speed, direction of travel, head direction, and ‘unfolded’ position along a full lap of the
track). Many correlations are high, indicating the low-dimensional manifold parametrised by the
conjunctive set of behavioural correlates can be accurately captured by the posterior latent variables
learned with SR-nlGPFA solely from neural spikes. Please refer to Appendix Figure 13 for numerical
values of the correlations (and for other sessions).

To see whether the learned latent structure contained decodable information about behavioural
covariates, we extracted the direction-modulated neurons predicted by the trained model (details
in Appendix F.3.2). Figure 3b compares the direction modulation of the model-predicted neurons
against that of the rest of the neurons, where direction modulation is defined as the correlation
between raw single-cell spike counts and the direction values. Neurons predicted by the model to
be direction modulated exhibited significantly greater direction modulation than the other neurons
(p-value=5.56 × 10−4) [43]. Figure 3c shows the firing profile for travel in each direction for the
neuron with the strongest predicted direction modulation. The pattern of firing fields exhibits clear
directional dependence. Similar comparisons hold for spatial and speed modulation, indicating that
SR-nlGPFA is able, in a purely unsupervised fashion, to learn a latent space that contains linearly
decodable information about the behavioural covariates associated with individual neuronal firing,
even for neurons whose activity exhibits conjunctive coding.

Figure 3d shows the two canonical correlates obtained from the latent trajectories as a function of the
animal’s spatial location. These reflect both location and direction of movement (colours), indicating
the latent dimensions learned by SR-nlGPFA disentangle direction from spatial location in a simple
linear projection, despite the conjunctive coding mechanism exhibited in the CA1 neurons. A similar
plot derived from SGP-VAE (Figure 14b), shows less clear disentanglement.

Figure 3e shows the temporal evolution of the latent CCs for SR-nlGPFA and SGP-VAE, as well
as the spatial location of the rat. Both CCX1 and CCX2 of SR-nlGPFA consistently track the
dynamics of the distance (with perfect phase alignment and half-cycle offset, respectively), whereas
neither CCX1 or CCX2 of SGP-VAE could accurately reflect the distance. Moreover, given the
additional svGP inference step over the entire trajectory (with increased number of inducing points),
latent signals of SR-nlGPFA exhibit significantly greater smoothness than that of SGP-VAE.

6 Discussion

We have developed a framework of structured recognition for variational autoencoders, which can
be viewed as a strict generalisation of the SVAE [7], capturing posterior correlations induced by
the “explaining away" effect. Correspondingly, the SRVAE framework yields a tighter bound on the
log-likelihood than the SVAE free energy objective.

Applying structured recognition and non-linear variational autoencoding to GPFA, we introduce
SR-nlGPFA, facilitating scalable free-form variational Gaussian approximation. SR-nlGPFA supports
a fully non-linear, non-conjugate extension to standard GPFA [11, 23, 12], which is particularly
well-suited to settings where posterior inference must be scaled to additional data. We show that
SR-nlGPFA outperforms the baseline on all presented tasks, both quantitatively and qualitatively.
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Figure 3: Analysis of SR-nlGPFA posterior latent structure. (a) Heatmap of the correlation
between the CCs and the behavioural covariates for the selected session; (b) Directional-modulation
comparison between the model-predicted direction-modulated neurons against other neurons; (c)
Exemplary firing fields of the model-predicted direction-modulated neuron during inbound v.s.
outbound movements; (d) Plot ofCCX{1, 2} of SR-nlGPFA posterior latents against spatial location,
color indicates direction of movement (yellow: inbound, magenta: outbound); (e-f) Temporal
evolution of (standardised values of) CCX{1, 2} and spatial location for SR-nlGPFA and SGP-VAE.

Studying population spiking data of hippocampal neurons, we show that SR-nlGPFA is able to identify
latent signals that exhibit strong correlation with the behavioural covariates that are well-known
to be conjunctively encoded by the recorded neurons, but without direct access to these covariates.
While here we focused on temporal correlation exhibited in time-series data, we note that the sparse
amortised variational approximation presented here can also be straightforwardly applied to other
GP-latent models, such as GP-LVM [44, 45]. While we have considered spiking data alone, these
could be substituted by or combined with EEG, calcium imaging, or indeed behavioural data recorded
during the same session. Such joint analysis of latent structures given different recordings within the
same session could potentially facilitate new findings with respect to, e.g., replay, phase coding, etc.
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