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A Broader Impacts

Recently, ethical concerns about the fairness of deep-learning-based systems have been raised
(Castelvecchi, 2020; Roussi, 2020; Noorden, 2020). Especially, due to the intrinsic imbalance of
facial datasets (Ricanek & Tesafaye, 2006; Zhang et al., 2017; Niu et al., 2016), most deep learning
methods on facial analysis (Wen et al., 2020; Or-El et al., 2020) have unwanted gender or racial
bias. The proposed algorithm is not free from this bias either when trained on such datasets. Hence,
the bias should be resolved before any practical usage. Also, even though the proposed algorithm
discovers some subclasses by ranking instances, these results should never be misinterpreted in such
a way as to encourage any kind of discrimination. We recommend using the proposed algorithm for
research only.

B Derivation of L,_, in (10)

From the metric constraint in (7), if < y, it should be that d.(h.,, hy) > 7, or equivalently
- de(hwa hy) <7 (Sl)

Note that reference points and instances are roughly sorted according to their corresponding ranks in
the embedding space by the order constraint in (5). Therefore, for x < y, h, tends to be closer to
each reference point r;, 0 < ¢ < 6(x), than hy is. In other words, for < v, it is likely that

de(T’i, hT) — de(’l"i, hy) < 0. (SZ)

However, to satisfy the constraint in (S.1), we impose a stricter upper bound on the difference
de(7i, hy) — de(ri, hy) as follows. From the triangle inequality, we have

de<ri7hy) S de<ri7hw)+de(hw7hy)7 (S3)
which is equivalent to
— de(hg, hy) < de(ri, ha) — de(r4, hy). (S.4)
Therefore, if
de(rh h;c) - de(ria hy) <=7, (S.5)

the constraint in (S.1) is satisfied. This desirable condition in (S.5) is formulated into the first sum in
Ly~ in (10).

Similarly, for each reference point r;, 8(y) < j < M — 1, it is likely that

de(rj, hy) — de(rj, hy) < 0. (S.6)
However, to satisfy the metric constraint, it is desirable that
de(rj, hy) — de(rj, ha) < =7, (S.7)

which is formulated into the second sum in Ly, in (10).
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C Implementation Details

C.1 Network Architecture

The structure of the encoder h is detailed in Table S-1, where ‘kj, X k,,-s-¢ Conv’ denotes the 2D
convolution with kernel size kj, X k,,, stride s, and c output channels. Similarly, ‘k;, x k,,-s MaxPool’
and ‘kjp, x k,,-s AvgPool’ represent the 2D max pooling and 2D average pooling with a kj, x k., kernel
at stride s, respectively. Also, BN means batch normalization (Ioffe & Szegedy, 2015). The encoder
is based on the VGG16 network and takes a 224 x 224 x 3 image as input.

Table S-1: The structure of the encoder h.

Layers Output
3%3-1-64 Conv BN ReLU 224 %224 x64
3x3-1-64 Conv BN ReLU 224 %224 x 64
3x3-2 MaxPool 112x112x64
3%3-1-128 Conv BN ReLU | 112x112x128
3%3-1-128 Conv BN ReLU | 112x112x128
3x3-2 MaxPool 56x56x128
3%3-1-256 Conv BN ReLU 56x56x256
3x3-1-256 Conv BN ReLU 56x56x256
3%3-1-256 Conv BN ReLU 56x56x256
3x3-2 MaxPool 28%x28x%x256
3%3-1-512 Conv BN ReLU 28x28x%x512
3%3-1-512 Conv BN ReLU 28x28x%x512
3%3-1-512 Conv BN ReLU 28x28x512
3x3-2 MaxPool 14x14x512
3%3-1-512 Conv BN ReLU 14x14x512
3%3-1-512 Conv BN ReLU 14x14x512
3x3-1-512 Conv BN ReLU 14x14x512
14x14-1 AvgPool Ix1x512

C.2 Embedding Space Visualization

In Figure 1, ResNet18 is employed as an encoder, but the output dimension of its last fully connected
layer is reduced to 3 for the visualization. The encoder takes a 28 x 28 x 3 image as input. We use
the same training setting in Section 4.1.

Similarly, for the other 3D embedding space visualizations, including Figures 3 and 5, we modify
the encoder in Table S-1 to append a fully connected layer with output dimension 3. We train the
modified encoder using the same setting in Section 4.1.

C.3 Computing Environment

We do all experiments using PyTorch (Paszke et al., 2019) and an NVIDIA GeForce RTX 3090 GPU.

C.4 Training Time

We train the encoder until the loss converges. Table S-2 lists the training epochs and time for each
dataset.

Table S-2: Training epochs and time.

MORPH MORPH CACD CACD UTK Adience HCI Aesthetics
(setting A)  (setting C)  (train split)  (validation split)
# epochs 250 150 10 30 50 80 150 50
Time (hrs) 5 30 7 1 3 4 1 3




D More Experimental Results

D.1 Hyper-Parameters

The proposed GOL algorithm has three hyper-parameters; 7 in (1), v in (7), and k in (14). Unless
specified otherwise, we set 7 = 0 and v = 0.05. Also, we fix £ = 50 and £ = 16 for facial
age estimation tasks and the others, respectively. Let us describe how the hyper-parameters affect
performances.

Hyper-parameter : Table S-3 compares the MAE scores at different ’s on the MORPH 11,
CACD, and UTK datasets. In this test, 7 = 0 and k£ = 50. Note that ~ is a margin to impose the
minimum distance between instances with a rank difference larger than 7 in the embedding space.
We see that v = 0.05 performs well in general, so we set v = 0.05 as the default option. Only for
UTK, we set v = 0.25, even though GOL outperforms the state-of-the-art MWR-G (4.49) at the
other ~ levels as well.

Table S-3: MAE performances according to v on MORPH II, CACD, and UTK.
0 MORPH (setting D) CACD (validation split) UTK

0.05 2.08 5.58 4.48
0.15 2.13 5.78 4.44
0.25 2.09 5.60 4.35

Hyper-parameter 7: Table S-4 compares the MAE scores at different 7°’s on MORPH II, CACD,
and UTK. In this test, v = 0.05 and £ = 50. We see that 7 = 0 provides decent results. We hence set
the default 7 = 0.

Table S-4: MAE performances according to 7 on MORPH II, CACD, and UTK.

7 MORPHII (setting D) CACD (validation split) UTK
0 2.08 5.58 4.48
1 2.12 5.71 4.45
2 2.18 5.99 4.46

Hyper-parameter k: Table S-5 compares the MAE scores according to k. In each age estimation
task, there are more than 40 ranks, but there are no clear distinctive characteristics for each rank.
Therefore, we set a relatively large £ = 50 as the default option. However, note that the results are
not very sensitive as long as k£ > 18.

Table S-5: MAE performances according to £ on MORPH II, CACD, and UTK.

k 2 10 18 26 34 42 50 58

MORPH (setting D) 214 211 211 210 209 209 208 2.09
CACD (validation split)  5.73 5.62 5.59 559 558 558 558 557
UTK 463 452 451 450 449 448 448 449

Next, Table S-6 compares the MAE scores on different folds of the HCI dataset according to k. The
HCT and aesthetics datasets contain only five ranks, respectively. Thus, we use a relatively small
k = 16 for these tasks.

D.2 Embedding Spaces

Table S-7 compares the B2W and DRR scores on the test data of MORPH II, CACD, and Adience.
GOL performs the best in all tests, as well as for the training data in Table 1. These results indicate that
GOL can arrange the rank sets effectively in the embedding space to reflect their ordinal relationships
even for unseen test instances.



Table S-6: MAE performances according to k on the HCI dataset. The performances for 5 folds out
of 10 are listed.

k 4 8 12 16 20 24 28 32

Fold 1 0.528 0.532 0512 0.508 0.500 0.504 0.504 0.504
Fold 2 0.584 0.596 0.588 0.584 0.584 0.584 0.588 0.588
Fold 3 0.548 0.544 0540 0532 0532 0528 0.528 0.528
Fold 4 0.516 0.512 0512 0508 0.508 0.508 0.512 0.512
Fold 5 0.532 0532 0528 0524 0532 0536  0.540 0.540

Average 0.542 0543 0.536 0.531 0531 0.532 0.534 0534

Table S-7: Comparison of B2W and DRR scores on the MORPH II, CACD and Adience test data.

MORPH II (setting A) CACD (validation split) Adience
Algorithm B2W DRR; o DRRps B2W DRR;y DRRps B2W DRR;, DRRg;s
ML (Schroff et al., 2015) 6.84 4.14 3.64 0.83 1.39 1.20 3.15 245 2.24
MV (Pan et al., 2018) 3.89 2.90 2.63 0.75 1.30 1.15 1.45 1.69 1.60
OL (Lim et al., 2020) 5.16 3.80 3.38 1.31 1.99 1.72 5.58 4.16 3.71
MWR-G (Shin et al., 2022)  7.23 4.85 4.20 1.09 1.80 1.55 471 3.63 3.25
Proposed GOL 9.47 5.21 4.54 1.71 2.29 1.97 11.49 7.24 6.39

D.3 Rank Estimation — Facial Age Estimation

Datasets: We provide facial age estimation results of GOL on four datasets: MORPH II (Ricanek &
Tesafaye, 2006), CACD (Chen et al., 2015), UTK (Zhang et al., 2017), and Adience (Levi & Hassner,
2015). MORPH II has the Institutional Review Board approval. The other datasets were made for
academic research purposes only. Any images getting deletion requests from the original owners
will be discarded from the datasets. There are no name labels, except for CACD containing celebrity
names. We exploit the datasets only for the performance assessment of GOL.

MORPH 1II (Ricanek & Tesafaye, 2006) is a popular dataset for facial age estimation, containing
about 55,000 facial images of 13,617 subjects in the age range [16, 77]. In each image, the gender
and race labels are annotated. Based on these labels, various evaluation protocols have been proposed.
We employ the four evaluation settings A, B, C, and D (Lim et al., 2020; Lee & Kim, 2021; Shin
etal., 2022).

e Setting A: 5,492 Caucasian images are randomly sampled and divided into training and
testing sets with a ratio of 8:2.

e Setting B: About 21K images of Caucasians and Africans are randomly chosen so that the
ratio between Caucasians and Africans is 1:1 and that between females and males is 1:3.
Then, it is divided into three subsets (S1, S2, S3). The training and testing are repeated
twice — 1) training on S1, testing on S2+S3, and 2) training on S2, testing on S1+S3.

e Setting C: The entire dataset is randomly split into five folds, subject to the constraint that
the same person should belong to only one fold, and the 5-fold cross-validation is performed.

e Setting D: The whole dataset is randomly divided into five folds without any constraint, and
the 5-fold cross-validation is performed.

CACD (Chen et al., 2015) provides 160k images from 2,000 celebrities. It is split into three subsets
by celebrities: 1,800 for training, 80 for validation, and 120 for testing. We provide two results by
training GOL on the train set and on the validation set, respectively, as done in (Rothe et al., 2018;
Shen et al., 2018; Shin et al., 2022). The age range is [14, 62].

UTK (Zhang et al., 2017) consists of 20,000 facial images in a wide age range [0, 116]. We adopt the
evaluation protocol in (Gustafsson et al., 2020; Berg et al., 2021).

Adience (Levi & Hassner, 2015) is used for age group estimation. There are 26,580 facial images
from 2,284 subjects, which are grouped into 8 ordinal classes: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-
53, and over 60-year-olds. We employ the 5-fold subject-exclusive (SE) cross-validation evaluation
setting in (Liu et al., 2018, 2019; Diaz & Marathe, 2019; Li et al., 2021).



More comparison: Table S-8 provides comparison results with more conventional algorithms on
MORPH II. It is an extended version of Table 2.

Table S-8: Comparison of facial age estimation results in the four evaluation settings (A, B, C, and
D) of MORPH II. Here, * means that IMDB-WIKI pre-training is performed.

Setting A Setting B Setting C Setting D
MAE CS(%) MAE CS(%) MAE CS(%) MAE CS(%)
RED-SVM (Chang et al., 2010) - - - - - - 6.49 49.0
OHRank (Chang et al., 2011) - - - - - - 6.07 56.3
KPLS (Guo & Mu, 2011) - - 4.18 - - - - -
CPLF (Yiet al., 2014) - - 3.63 - - - - -
Huerta et al. (Huerta et al., 2015) - - - - 3.88 - - -
OR-CNN (Niu et al., 2016) - - - - - - 3.27 73.0
Tan et al. (Zichang et al., 2016) - - 3.03 - - - - -
Ranking-CNN (Chen et al., 2017) - - - - - - 2.96 85.0
DEX (Rothe et al., 2018)* 2.68 - - - - - - -
DMTL (Hu et al., 2017) - - - - 3.00 85.3 - -
CMT (Yoo et al., 2018) - - - - 291 - - -
DREFs (Shen et al., 2018) 291 82.9 2.98 - - - 2.17 91.3
AGEn (Tan et al., 2017)* 2.52 85.0 2.70 83.0 - - - -
MV (Pan et al., 2018)* - - - - 2.79 - 2.16 -
C3AE (Chao et al., 2019)* - - - - - - 2.75 -
BridgeNet (Li et al., 2019)* 2.38 91.0 2.63 86.0 - - - -
AVDL (Wen et al., 2020)* 2.37 - 2.53 - - - 1.94 -
OL (Lim et al., 2020)* 2.41 91.7 2.75 88.2 2.68 88.8 2.22 93.3
DRC-ORID (Lee & Kim, 2021)* 2.26 93.8 2.51 89.7 2.58 89.5 2.16 93.5
MWR-G (Shin et al., 2022)* 2.24 93.5 2.55 90.1 2.61 89.5 2.16 93.0
Proposed GOL 2.17 93.8 2.60 89.3 2.51 90.0 2.09 94.2

D.4 Rank Estimation — HCI Classification

Table S-9 is an extended version of the HCI results in Table 4.

Table S-9: Accuracy (%) and MAE comparison on the HCI dataset.

HCI
Algorithm Accuracy (%) MAE
Frank & Hall (Frank & Hall, 2001) 41.4 0.99
Cardoso et al. (Cardoso & da Costa, 2007) 41.3 0.95
Palermo et al. (Palermo et al., 2012) 44.9 0.93
RED-SVM (Lin & Li, 2012) 35.9 0.96
Martin et al. (Martin et al., 2014) 42.8 0.87
OR-CNN (Niu et al., 2016) 38.7 0.95
CNNPOR (Liu et al., 2018) 50.1 0.82
GP-DNNOR (Liu et al., 2019) 46.6 0.76
DRC-ORID (Lee & Kim, 2021) 44.7 0.80
POE (Li et al., 2021) 54.7 0.66
MWR-global (Shin et al., 2022) 52.2 0.60
Proposed GOL 56.2 0.55

D.5 Rank Estimation — Aesthetic Score Regression

The aesthetics dataset (Schifanella et al., 2015) provides 15,687 image URLs on Flickr, where 13,929
images are available but the others are lost. Each image is annotated with a 5-scale aesthetic score.
We adopt the 5-fold cross-validation. For training, we set the learning rate of all parameters, including
reference points, to 10~6. The other settings are the same as in Section 4.1. Table S-10 is an extended
version of Table 5.



Table S-10: Accuracy (%) and MAE comparison on the aesthetics dataset.

Nature Animal Urban People Overall
Algorithm Accuracy (%) MAE  Accuracy (%) MAE  Accuracy (%) MAE  Accuracy (%) MAE  Accuracy (%) MAE
RED-SVM (Lin & Li, 2012) 70.7 0.31 61.1 0.41 65.4 0.37 61.2 0.41 64.6 0.38
CNNm (Liu et al., 2018) 71.0 0.31 68.0 0.34 68.2 0.36 71.6 0.32 69.5 0.33
OR-CNN (Niu et al., 2016) 69.8 0.31 69.1 0.33 66.5 0.35 70.4 0.31 69.0 0.33
CNNPOR (Liu et al., 2018) 719 0.29 69.3 0.32 69.1 0.33 69.9 0.32 70.1 0.32
SORD (Diaz & Marathe, 2019) 73.6 0.27 70.3 0.31 733 0.28 70.6 0.31 72.0 0.29
Lietal. (Lietal.,2021) 73.6 0.27 71.1 0.30 72.8 0.28 72.2 0.29 72.4 0.29
Proposed GOL 73.8 0.27 72.4 0.28 74.2 0.26 69.6 0.31 72.7 0.28

D.6 Analysis

More visualizations: Figure S-1 visualizes the embedding spaces of the proposed algorithm on the
HCT and aesthetics datasets. For each dataset, the left subfigure shows the reduced 3D embedding
space and the right subfigure is the t-SNE visualization (Maaten & Hinton, 2008) of original 512D
embedding space.
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Figure S-1: Visualization of the embedding spaces for the HCI and aesthetics datasets.

Young, median, and old instances: Figure S-2 shows sampled instances from each rank set &;
of the Adience dataset. Specifically, Figures S-2 (a) and (c) list the instances in each X that are
the farthest from the reference point r; in the backward and forward directions, respectively. Also,
Figures S-2 (b) shows the closest instance to r; among all instances in X;. In Adience, each rank set
X; consists of instances in an age range, marked at the top of the figure. Thus, from each rank set,
young, median, and old instances tend to be selected in (a), (b), and (c), respectively, which means
that the instances are well sorted in the embedding space although their exact ages are not annotated.
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o

Figure S-2: Sampling (a) young, (b) median, and (c) old instances from each rank set of Adience.

Testing time: Table S-11 lists the testing time of GOL according to the number of samples for the
k-NN search on the MORPH II and CACD datasets. Note that the distances to all samples can be
computed efficiently in a parallel manner. Therefore, the proposed algorithm performs fast even with
44,000 samples.



Table S-11: Testing time according to the number of samples for the k-NN search.

MORPH MORPH MORPH CACD
(setting A)  (setting B)  (setting C)  (validation split)
# samples 4,394 7,000 44,000 7,600
Time (ms) 0.05 0.06 0.08 0.06

Limitations: Figure S-3 shows some success and failure cases of GOL on the CACD dataset. In
Figure S-3 (a), the ages of test instances are predicted accurately with absolute errors less than 4.
However, in Figure S-3 (b), GOL performs poorly on some hard cases, in which various factors, such
as poor illumination, overexposure, and low-quality photographs, hinder accurate estimation.

Also, since GOL predicts a rank based on the k-NN search, it suffers when there are insufficient
training instances. For example, GOL yields relatively poor results on MORPH II setting B, which
consists of 7,000 training samples and 14,000 test samples. Similarly, GOL tends to yield less
accurate estimates on minority classes, such as toddlers and elders, since most age estimation datasets
contain fewer instances in such classes. These limitations of GOL might be alleviated by generating
pseudo-references in the embedding space, which we leave as future work.
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Figure S-3: (a) Success and (b) failure cases of the proposed algorithm in facial age estimation. For

each test image , the estimate 0(z) is reported with the ground-truth (¢(x)) within the parentheses.
Also, the ten nearest neighbors of x are shown with their ages.
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