Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)
Lifeng Zhang
It is a challenge to detect complicated data relationships thoroughly. Here, we propose a new statistical measure, named the absolute neighbour difference based neighbour correlation coefficient, to detect the associations between variables through examining the heteroscedasticity of the unpredictable variation of dependent variables. Different from previous studies, the new method concentrates on measuring nonfunctional relationships rather than functional or mixed associations. Either used alone or in combination with other measures, it enables not only a convenient test of heteroscedasticity, but also measuring functional and nonfunctional relationships separately that obviously leads to a deeper insight into the data associations. The method is concise and easy to implement that does not rely on explicitly estimating the regression residuals or the dependencies between variables so that it is not restrict to any kind of model assumption. The mechanisms of the correlation test are proved in theory and demonstrated with numerical analyses.