
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [No] We are not

aware of potential negative societal impacts of this work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In supplementary

material
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] item Did you report error bars (e.g., with respect to the random
seed after running experiments multiple times)? [N/A]

(c) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?[N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

A Proofs for the Upper Bounds (Theorems 6 and 12)

In this section, we prove Theorems 6 and 12 which give upper bounds on the sample complexity in
the standard and agnostic settings respectively. In order to have sample complexity bounds relating
to the pseudo dimension of the function class, we would need to introduce the notion of covering
numbers and relate them to the pseudo-dimension.
Definition 10. Given a set S in Euclidean space and a metric d(·, ·), the set W ⊆ S is said to be
ε cover of S if for any s ∈ S, there exists a w ∈ W such that d(s, w) ≤ ε. The smallest possible
cardinality of such an ε cover is known as the ε covering number of S with respect to d and is denoted
as Nd(·,·)(ε, S).

When d is given by the distance metric

dp(r, s) =
∣∣ d∑
i=1

(ri − si)p
∣∣1/p,

where r = (r1, r2 . . . rd), s = (s1, s2 . . . sd) ∈ Rd, we will denote the ε covering number of set S as
Np(ε, S). For a given real-valued function family F and x = (x1, x2, . . . , xm) ∈ Xm, we denote

F|x = {(f(x1), f(x2), . . . f(xm)) | f ∈ F} and

Np(ε,F ,m) = sup
x∈Xm

[
Np(ε,F|x)

]
.

Note that N1(ε,F ,m) ≤ N2(ε,F ,m) ≤ N∞(ε,F ,m).

The following is a well-known result that relates covering numbers to the pseudo dimension (cf.
Theorem 12.2 in Book [8]):
Lemma 15. Let F be a real-valued function family with pseudo dimension d, then for any ε ≤ 1

d , we
have

N1 (ε,F ,m) ≤ O
(

1

εd

)
.

A.1 The Standard Model: Proof of Theorem 6

First, we relate covering numbers to this error measure. This will be crucial in proving Theorem 6.
Lemma 16. Let D be a distribution on X× Y and let S ∈ Dm. For 0 ≤ η ≤ 12 and m ≥ 8·H

εη2 , for
any real valued function family F , we have:

PS∈Dm
[

sup
f∈F

∣∣ERS,ε(f)− ERD,ε(f)
∣∣

ERD,ε(f) + ε
≥ η

]
≤ 4 · N1

(
ηε2

8
,F , 2m

)
· exp

(
−m · η

2·
64H

)
.

To prove this lemma, we need the following definition.
Definition 11. The ν-normalised error is defined as :

ÊRS,D,ν(f) =
ERS,ν(f)

ERD,ν(f) + ν
.

Note that ν plays two roles here: as a parameter in the loss function, and as the normalization
parameter.

We will drop the D, ε in the subscript and simply refer to ÊRS,D,ε(f) as ÊRS(f) for the rest of the
proof. Additionally, we denote ÊRD(f) = ERD(f)

ERD(f)+ε .

We break this proof into four separate claims as illustrated below.

First, we reduce the probability of the event:
[∣∣ÊRS(f)− ÊRD(f)

∣∣ ≥ η] to a probability term
involving two sample sets S, S̄ the members of which are drawn i.i.d.
Lemma 17. For m ≥ 8H

ε·η2 , we have that:

PS∼Dm
[∣∣ÊRS(f)− ÊRD(f)

∣∣ ≥ η] ≤ 2 · P(S,S̄)∼Dm×Dm
[∣∣ÊRS(f)− ÊRS̄(f)

∣∣ ≥ η/2] .
16

Proof. For a given sample S ∼ Dm, let fSbad ∈ F denote a function such that
∣∣ÊRS(f)− ÊRD(f)

∣∣ ≥
η if it exists and any fixed function in the family otherwise.

P(S,S̄)∼Dm×Dm

[
sup
f∈F

∣∣ÊRS(f)− ÊRS̄(f)
∣∣ ≥ η

2

]
≥ P(S,S̄)∼Dm×Dm

[∣∣ÊRS(fSbad)− ÊRS̄(fSbad)
∣∣ ≥ η

2

]
≥ P(S,S̄)∼Dm×Dm

[∣∣ÊRS(fSbad)− ÊRD(fSbad)
∣∣ ≥ η ∩ ∣∣ÊRS(fSbad)− ÊRS̄(fSbad)

∣∣ ≤ η

2

]
= PS∼Dm

[∣∣ÊRS(fSbad)− ÊRD(fSbad)
∣∣ ≥ η] · PS̄∼Dm|S [∣∣ÊRS(fSbad)− ÊRS̄(fSbad)

∣∣ ≤ η

2

]
= PS∼Dm

[
sup
f∈F

∣∣ÊRS(f)− ÊRD(f)
∣∣ ≥ η] · PS̄∼Dm|S [∣∣ÊRS(fSbad)− ÊRS̄(fSbad)

∣∣ ≤ η

2

]
.

Now, the term PS̄∼Dm|S
[∣∣ÊRS(fSbad)− ÊRS̄(fSbad)

∣∣ ≤ η
2

]
is bounded below by the Chebyshev’s

inequality as follows:

PS̄∼Dm|S
[∣∣ÊRS(fSbad)− ÊRS̄(fSbad)

∣∣ ≥ η

2

]
≥ 1−

VarS̄∼Dm|S
[

ÊRS̄(fSbad)
]

η2

4

≥ 1−

(
H

m · ε · η2

4

)
≥ 1

2
.

Note that the random variable ÊRS̄(fSbad) is 1
m times the sum of m i.i.d. random variables each

having variance bounded above by H
ε . Hence, VarS̄∼Dm|S

[
ÊRS̄(fSbad)

]
≤ 1

m ·
H
ε , and the second

inequality above follows. The last inequality is immediate from the fact that m ≥
(

8·H
εη2

)
, which

proves our claim.

The second claim intuitively says that the probabilities remain unchanged under symmetric permuta-
tions. Let σ denote a permutation on the set {1, 2, . . . , 2m} such that for each i ∈ {1, 2, . . . ,m}, we
use either of the two mappings:

• σ(i) = i and σ(m+ i) = m+ i, or

• σ(i) = m+ i and σ(m+ i) = i.

Let Γm denote the set of all such permutations σ. Suppose we draw i.i.d. samples S ∼ Dm and
S̄ ∼ Dm; let S = {s1, s2, . . . , sm} and S̄ = {s̄1, s̄2, . . . , s̄m}. Then, define σ(S) and σ(S̄) by
using a permutation σ ∈ Γm as follows. Let σ(S) = {s′1, s′2, . . . , s′m} and σ(S̄) = {s̄′1, s̄′2, . . . , s̄′m}
such that s′i = si and s̄′i = s̄i if σ(i) = i and σ(m + i) = m + i, while s′i = s̄i and s̄′i = si if
σ(i) = m+ i and σ(m+ i) = i. Let Um denote the uniform distribution over Γm.

Lemma 18. For every f ∈ F:

P(S,S̄)∼Dm×Dm
[∣∣ÊRS(f)− ÊRS̄(f)

∣∣ ≥ η/2] ≤ sup
(S,S̄)∈(X×Y)2m

(
Pσ∼Um

[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)
∣∣ ≥ η/2]) .

Proof. We have for every f ∈ F :

P(S,S̄)∼Dm×Dm
[∣∣ÊRS(f)− ÊRS̄(f)

∣∣ ≥ η/2]
= P(S,S̄)∼Dm×Dm, σ∼Um

[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)
∣∣ ≥ η/2] (by the i.i.d. property)

≤ sup
(S,S̄)∈(X×Y)2m

(
Pσ∼Um

[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)
∣∣ ≥ η/2]) ,

where in the last expression we chose the members of S, S̄ adversarially instead of randomly.

Third, we make use of covering numbers to quantify the above probability.

17

Lemma 19. Fix a (S, S̄) ∈ (X× Y)2m. Consider the set G ∈ F such that ˆ̀G(S, S̄) is a η
8 -covering

of the set ˆ̀F (S, S̄) = {ˆ̀f (xi, yi) | (xi, yi) ∈ S ∪ S̄, f ∈ F} ∈ [0, H]2m (wrt d1(·, ·)). Then :

PS∼Dm
[

sup
f∈F

∣∣ÊRS(f)− ÊRD(f)
∣∣ ≥ η] ≤ N (η

8
, ˆ̀
f , 2m

)
·max
g∈G

PS∼Dm
[∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣ ≥ η

4

]
.

Proof. Note that the cardinality of G is less than N1 (η/8, `F , 2m) and is a bounded number. We
claim that whenever an f ∈ F satisfies,

∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)
∣∣ ≥ η

2 , then there exists a g ∈ G
such that,

∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)
∣∣ ≥ η

4 .

Let g satisfy that, 1
2m [
∑2m
i=1|`g(xi, yi)− `g(xi, yi)|] ≤

η
8 .

We are guaranteed that such a g exists, since it is in the cover.
η

2
≤
∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)

∣∣
=
∣∣(ÊRσ(S)(f)− ÊRσ(S)(g))− (ÊRσ(S̄)(f)− ÊRσ(S̄)(g)) + (ÊRσ(S)(g)− ÊRσ(S̄)(g))

∣∣
=
∣∣(ÊRσ(S)(f)− ÊRσ(S)(g))

∣∣+
∣∣ÊRσ(S̄)(f)− ÊRσ(S̄)(g)

∣∣+
∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣
=
∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

(`f (xi, yi)− `g(xi, yi))

∣∣∣∣∣+

∣∣∣∣∣ 1

m

2m∑
i=m+1

(
ˆ̀
f (xi, yi)− ˆ̀

g(xi, yi)
)∣∣∣∣∣

≤
∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣+
1

m

2m∑
i=1

∣∣∣ˆ̀f (xσ(i),yσ(i)
)− ˆ̀

g(xσ(i),yσ(i)
)
∣∣∣

<
∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣+
η

4
.

Therefore, we get:
PS∼Dm

[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)
∣∣ ≥ η/2]

≤ PS∼Dm
[∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣ ≥ η/4]
≤ |G| ·max

g∈G
PS∼Dm

[∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)
∣∣ ≥ η/4] .

≤ N
(η

8
, ˆ̀
f , 2m

)
·max
g∈G

PS∼Dm
[∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)

∣∣ ≥ η/4] .
Our final step is to bound Pσ∼Um

[∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)
∣∣ ≥ η

4

]
for all (S, S̄) ∈ (X × Y)2m,

which is effected by the last claim.
Lemma 20. For any f ∈ F , with η ≤ 12:

Pσ∼Um
[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)

∣∣ ≥ η

4

]
≤ 2 · exp

(
−m · η

2 · ε
64H

)
.

Proof. We use Bernstein’s inequality [18] that says for n independent zero-mean random variables
Xi’s satisfying |Xi| ≤M , we have:

P

(∣∣∣∣∣
n∑
i

Xi

∣∣∣∣∣ > t

)
≤ 2 · exp

(
− t

2

2∑n
i=1 E[X2

i] + 1
3M · t

)
.

Note that the quantity ÊRσ(S)(f)− ÊRσ(S̄)(f) is simply an average of m random variables, each of
which has mean 0 and variance upper bounded by H

ERD(f)+ε ≤
H
ε . Then applying the above bound:

Pσ∼Um
[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)

∣∣ ≥ η

4

]
≤ 2 · exp

(
− m · η2 · ε

32H(1 + η
12)

)
≤ 2 · exp

(
−m · η

2 · ε
64H

)
.

18

We will use the Lipschitz property of the loss function to relate the covering numbers of `F and F as
follows:

Lemma 21. Let ` : Y× Y 7→ [0, H] be a loss function such that it satisfies:

|`(y1, y)− `(y2, y)| ≤ L · |y1 − y2|.

Then, for any real valued function family F , we have:

N (ε,F ,m) ≤ N (ε/L, `F ,m) .

Proof. Let S = {(x1, y1) . . . (xm, ym)} ∈ (X× Y)
m, and let g, h ∈ F be two functions. We have:

1

m

m∑
i=1

|`g(xi, yi)− `h(xi, yi)| =
1

m

m∑
i=1

|`(yi, g(xi))− `(yi, h(xi))| ≤
L

m

m∑
i=1

|g(xi)− h(xi)|.

Hence, any ε
L cover for F|xm1 is an ε cover for (`F)|S .

Now we are ready for the proof of Lemma 16.

Proof of Lemma 16. We have:

PS∼Dm
[

sup
f∈F

∣∣ÊRS(f)− ÊRD(f)
∣∣ ≥ η]

≤ 2 · P(S,S̄)∼Dm×Dm [sup
f∈F

(∣∣ÊRS(f)− ÊRS̄(f)
∣∣ ≥ η/2) (by Lemma 17)

≤ 2 · sup
(S,S̄)∈(X×Y)2m

(
Pσ∼Um

[∣∣ÊRσ(S)(f)− ÊRσ(S̄)(f)
∣∣ ≥ η/2]) (by Lemma 18)

≤ 2 · N
(
η/8, ˆ̀

f , 2m
)
·max
g∈G

(
Pσ∼Um

[∣∣ÊRσ(S)(g)− ÊRσ(S̄)(g)
∣∣ ≥ η/4]) (by Lemma 19)

≤ 4 · N
(
η/8, ˆ̀

f , 2m
)
· exp

(
−m · η

2 · ε
64H

)
(by Lemma 20).

Lastly, the function ˆ̀
f (·, ·) is L-Lipschitz in its first argument with L = 1

ε·(ε+E(x,y)∼D[`f (x,y)])
≤ 1

ε2 .

Hence, from Lemma 21, we get that:

N
(η

8
, ˆ̀F , 2m

)
≤ N

(
ε2η

8
, ˆ̀F , 2m

)
.

Finally, we come to the proof of Theorem 6.

Proof of Theorem 6. By Lemma 5, it suffices to show that there exists a learning algorithm L :

Sm 7→ F that outputs a function f̂ : X 7→ Y ∈ F such that ERD,ε(f̂) ≤ 3ε. Recall that in the training
phase of Algorithm 4, we use an ε−SEM algorithm O that returns a function f̂ satisfying:

ERS,ε(f̂) ≤ inf
f̃∈F

ERS,ε(f̃) + ε = ε, (1)

where the last equality is because inf f̃∈F ERS,ε(f̃) = 0 in the standard model. So, we are left to
bound ERD,ε(f̂) in terms of ERS,ε(f̂), in particular, that ERD,ε(f̂) ≤ 2 · ERS,ε(f̂) + ε, which would
prove the theorem.

For this purpose, we employ Lemma 16. In this lemma, let us set η = 1/2 and denote the event

sup
f∈F

∣∣ERS,ε(f)− ERD,ε(f)
∣∣

ERD,ε(f) + ε
≥ η = 1/2

19

as the “good” event; if this does not hold, we call it the “bad” event. In the case of the good event, we
have

ERD,ε(f)− ERS,ε(f) ≤ ERD,ε(f) + ε

2
i.e., ERD,ε(f) ≤ 2 · ERS,ε(f) + ε.

Plugging in Eq. (1) gives ERD,ε(f) ≤ 3ε, as desired.

This leaves us to bound the probability of the bad event, which by Lemma 16, is at most

4 · N1

(
ε2

16
,F , 2m

)
· exp

(
− m

256H

)
.

This quantity is at most δ when m ≥ C ·
(
H log 1

ε log 1
δ

ε

)
for a large constant C, thereby proving the

theorem.

A.2 The Agnostic Model: Proof of Theorem 12

First, we give a proof of Lemma 11.

Proof of Lemma 11. Let χ(ε) = minf∈F ERD,ε(f) and λ(ε) = minf∈F ERS,ε(f), where S ∼ Dm.
For fixed ŷ, y, we note that `ε(ŷ, y) can only decrease when ε increases. Therefore, both χ(ε) and
λ(ε) are non-increasing with ε.

When m ≥ H log 1
ε ·log 1

δ

ε , where ε ≤ ε, we have from Lemma 16:

PS∈Dm
[

sup
f∈F

(
∣∣ÊRS,ε(f)− ÊRD,ε(f)

∣∣ ≥ η)

]
≤ 4 · N

(
ηε2

8
,F , 2m

)
· exp

(
−m · η

2 · ε
64H

)
.

From Lemma 15, we have : N
(
ηε2

8 ,F , 2m
)
≤
(

1
ε

)O(d)
. Setting η = 1

4 and noting that the size

of the sample set exceeds C ·
(
H·d·log 1

ε ·log 1
δ

ε

)
for some large C ≥ 0, and small enough ε ≤ ε, we

claim that with probability 1− δ, we have for all f ∈ F :

|ERS,ε(f)− ERD,ε(f)| ≤ ERD,ε(f) + ε

4
(2)

Due to the breaking condition, we have ε ≥ ERS,ε(f̂) ≥ λ(ε). Then, by Eq. (2), we have:

χ(ε) ≤ 4

3
· λ(ε) +

ε

3
≤ 5ε

3
.

By monotonicity of χ(.),

χ

(
5ε

3

)
≤ χ (ε) ≤ 5ε

3
. (3)

Also, we have that ε2 < λ(ε2) + ε
6 . Then, using Eq. (2) again, we get:

λ
(ε

2

)
≤ 5

4
· χ
(ε

2

)
+
ε

8
ε

6
≤ χ

(ε
2

)
≤ χ

(ε
6

)
.

Combining the above with Eq. (3), we get 1
6ε ≤ ∆F ≤ 5

3ε.

We are now ready to prove Theorem 12.

Proof of Theorem 12. From the breaking condition in Algorithm 5 and Lemma 11, we have that
arg minf∈F ERS,ε(f) ≤ ε ≤ 6 · ∆F . Using the sample error minimization algorithm returns a
function f̂ such that

ERS,ε(f̂) ≤ arg min
f∈F

ERS,ε(f) + ε ≤ 2ε

Finally, application of Lemma 16 to bound ERD,ε(f̂) = O (∆F), followed by Lemma 5 gives the
desired result.

20

B Proofs for the Lower Bounds (Theorems 8 and 13)

In this section, we prove Theorems 8 and 13 which give lower bounds on the sample complexity of
an ε-efficient algorithm in the standard and agnostic settings respectively.

B.1 The Agnostic Model: Proof of Theorem 13

We begin with the agnostic case. We describe a class of distributions Dp on pairs (x, y), where p
is a parameter in (0, 1). Recall that y represents log2 z, where z is the actual optimal cost of the
offline-instance. The distribution Dp consists of two pairs: (1, 1) with probability p, and (0, 2) with
probability 1− p. Note that the projection of Dp on the first coordinate is a Bernoulli random variable
with probability of 1 being p. For the sake of concreteness, the input sequence Σ = τ0, τ1, . . . , is
such that OPT(0) = 2, OPT(1) = 4. The distribution Dp ensures that the stopping time parameter
T = 0 with probability p, and T = 1 with probability 1− p. It follows that any online algorithm has
only one decision to make: whether to buy the solution for I0.

Let A?p be the algorithm which achieves the minimum competitive ratio when the input distribution is
Dp, and let ρ?p be the expected competitive ratio of this algorithm. There are only two strategies for
any algorithm: (i) buy optimal solution for I0, and if needed buy the solution for I1, or (ii) buy the
optimal solution for I1 at the beginning. The following result determines the value of ρ?p.

Lemma 22. If p = 1
3 + ε for some ε ≥ 0, then ρ?p = 4

3 −
ε
2 , and strategy (i) is optimal here. In case

p = 1
3 − ε for some ε ≥ 0, then ρ?p = 4

3 − ε, and strategy (ii) is optimal.

Proof. For strategy (i), the cost of the algorithm is 2 with probability p and 6 with probability 1− p.
Therefore its expected competitive ratio is

p · 1 +
6

4
· (1− p) =

3

2
− p

2
.

For strategy (ii), the cost of the algorithm is always 4. Therefore, its expected competitive ratio is

p · 2 + 1 · (1− p) = p+ 1.

It follows that strategy (i) is optimal when p ≥ 1/3, whereas strategy (ii) is optimal when p ≤
1/3.

We are now ready to prove Theorem 13. Let A be an algorithm for LTS which is ε/4-efficient with
probability at least 1− δ. Further, let k be an upper bound on the sample complexity of A. Given k
samples from a distribution Dp, the algorithm outputs a strategy which is a probability distribution
on strategies (i) and (ii). We use this algorithm A to solve the following prediction problem P: X
is a random variable uniformly distributed over { 1

3 − ε,
1
3 + ε}. Given i.i.d. samples from from 0-1

Bernoulli random variable T with probability of 1 being X , we would like to predict the value of X .
Lemma 23. Let A be an algorithm for LTS which is ε/4-efficient with probability at least 1 − δ.
Then, there is an algorithm that predicts the value of X with probability at least 1− δ using k i.i.d.
samples from T .

Proof. Let t1, . . . , tk be i.i.d. samples from T . We give k samples (x1, y1), . . . , (xk, yk) to A as
follows: for each i = 1, . . . , k, if ti = 0, we set (xi, yi) to (0, 2); else we set it to (1, 1). Observe
that the samples given to A are k i.i.d. from the distribution DX .

Based on these samples,A puts probability q1 on strategy (i) (and 1−q1 on strategy (ii)). If q1 > 1/2,
we predict X = 1

3 + ε, else we predict X = 1
3 − ε.

We claim that this prediction strategy predicts X correctly with probability at least 1− δ. To see this,
assume that A is ε/4-efficient (which happens with probability at least 1− δ).

First consider the case when X = 1
3 + ε. In this case, Lemma 22 shows that the expected competitive

ratio of A is at most 4
3 −

ε
4 . As in the proof of Lemma 22, the expected competitive ratio of A is

q1

(
3

2
− X

2

)
+ (1− q1)(X + 1).

21

We argue that q1 ≥ 1/2. Suppose not. Since X > 1/3, 3
2 −

X
2 ≤ X + 1. Therefore, the above is at

least (using q1 ≤ 1/2 and X = 1/3 + ε)

1

2

(
3

2
− X

2

)
+

1

2
(X + 1) > 4/3,

which is a contradiction. Therefore q1 > 1/2.

Now consider the case when X = 1/3− ε. Again Lemma 22 shows that the expected competitive
ratio of A is at most 4

3 −
3ε
4 . It is easy to check that if q1 ≥ 1/2, then the expected competitive ratio

of A is at least
4

3
− ε

4
,

which is a contradiction. Therefore, q1 < 1/2. This proves the desired result.

It is well known that in order to predict X with probability at least 1 − δ, we need Ω
(

1
ε2 ln

(
1
δ

))
samples. This proves Theorem 13.

B.2 The Standard Model: Proof of Theorem 8

Now we consider the standard setting and prove Theorem 8. As in the previous case, the input
sequence Σ = τ0, τ1, . . . will be such that OPT(0) = 2, OPT(1) = 4. Note that the log-cost at the two
time-steps are 1 and 2 respectively. Let X be set of d distinct points (on the real line). Let F be the
set of all 2d functions from X to {0, 1}. Clearly, the VC-dimension of F is given by d. For every
f ∈ F , we define a distribution Df over pairs (x, y) ∈ X × {1, 2} as follows: Df is the uniform
distribution over Af := {(x, f(x) + 1) : x ∈ X}. Note that this is an instance of the standard setting,
because for any distribution Df , the corresponding function f maps x to y.

Let A be an algorithm for the LTS problem as above which has expected competitive ratio at most
1 + ε/4 with probability at least 1 − δ. Let k be an upper bound on the sample complexity of A.
The algorithm A, after seeing k samples, outputs a strategy. The strategy gives for each x ∈ X, a
probability distribution over strategies (i) and (ii) as in the previous case.

Now consider the following prediction problem P : we choose a function f uniformly at random from
F , and are given k i.i.d. samples from Df . We would like to predict a function f ′ ∈ F which agrees
with f on at least 1− ε fraction of the points in X.

Lemma 24. Suppose the algorithm A has the above-mentioned properties. Then given k i.i.d.
samples from an instance of P , we can output the desired function f ′ with probability at least 1− δ.

Proof. Suppose the function f gets chosen. We feed the k i.i.d. samples from Df toA. The algorithm
A outputs a strategy S which, for each x, gives a distribution (qx, 1− qx) over strategies (i) and (ii).

Given this strategy S, we output the desired function f ′ as follows. For every x ∈ X, if q1(x) ≥ 1/2,
we set f ′(x) = 1, else we set it to 0. We claim that if A has expected competitive ratio at most 1 + ε,
then f ′ agrees with f on at least ε fraction of points in X.

Suppose not. Suppose f(x) 6= f ′(x) for some x ∈ X. If f(x) = 0, then the cost of the optimal
strategy here is 2, whereas the algorithm A follows strategy (ii) with probability at least 1/2, and its
expected cost is more than 2 · 1

2 + 4 · 1
2 = 3. Similarly, if f(x) = 1, optimal strategy pays 4. But

algorithm A places at least 1/2 probability on strategy (i). Therefore, its expected cost is more than
1
2 · 4 + 1

2 · 6 = 5. In either case, it pays at least 1.25 times the optimal cost. Since f and f ′ disagree
on at least ε-fraction of the points, it follows that the expected competitive ratio of A (when x is
chosen uniformly from X) is more than 1 + ε/4, a contradiction.

Since A has competitive ratio at most 1 + ε/4 with probability at least 1 − δ, the desired result
follows.

Now, it is well known that if we want to find a function f ′ ∈ F which matches with f on more than
1− ε fraction of points in X with probability at least 1− δ, we need to sample at least Ω

(
d
ε ln

(
1
δ

))
points from Df (see Thm 5.3 in [8]). This proves Theorem 8.

22

C Other Omitted Proofs

Proof of Theorem 1. Recall that T denotes the length of the input sequence. Let τi ≤ T < τi+1.
Then, the cost of the optimal solution, OPT(T) ≥ OPT(τi) by monotonicity, while the cost of the
online solution SOL is given by:

OPT(τ1 − 1)+OPT(τ2 − 1) + . . .+ OPT(τi+1 − 1)

≤ 2 · OPT(τi+1 − 1) ≤ 4 · OPT(τi).

Proof of Theorem 2. When the prediction is correct, i.e., T = T̂ , the algorithm only runs Phases 1
and 2. At the end of Phase 1, by Theorem 1, the cost of SOL is at most 4 · OPT(t1) ≤ (4ε/5) · OPT(T̂).
In Phase 2, the algorithm buys a single solution of cost at most (1 + ε/5) · OPT(T̂). Adding the two,
and noting that the optimal cost is OPT(T̂), we get a consistency bound of 1 + ε.

For robustness, we consider three cases. First, if t < t1, then the competitive ratio is 4 by Theorem 1.
Next, if t > t2, then the total cost of SOL is at most (1 + ε)OPT(T) in Phases 1 and 2 (from the
consistency analysis above), and at most 4 · OPT(T) in Phase 3 by Theorem 1. Thus, in this case,
the competitive ratio is 5 + ε. Finally, we consider the case t1 ≤ t ≤ t2. Here, the algorithm runs
Phases 1 and 2, and the cost of SOL is at most (1 + ε) · OPT(T̂) by the consistency analysis above.
By monotonicity, the optimal solution is smallest when T = t1, i.e., OPT(T) ≥ ε

5 · OPT(T̂). Thus,
the competitive ratio is bounded by 5

(
1 + 1

ε

)
.

Proof of Theorem 3. If T ≥ T̂ , the algorithm has to buy a solution that is feasible for T̂ at some
time τ ≤ T̂ . In particular, we must have OPT(τ) ≤ ε · OPT(T̂) for deterministic algorithms, else
the consistency bound would be > 1 + ε simply based on being feasible for t = τ which incurs
cost > ε · OPT(T̂) and again for t = T̂ which incurs an additional cost of OPT(T̂). This implies a
robustness bound of Ω

(
1
ε

)
if the input T = τ . The same argument extends to randomized algorithms:

now, since E[OPT(τ)] ≤ ε · OPT(T̂), it follows that E
[

OPT(T̂)
OPT(τ)

]
≥ OPT(T̂)

E[OPT(τ)] = Ω
(

1
ε

)
.

Proof of Lemma 4. When T ≤ t1, the competitive ratio of 4 follows from the doubling strategy of the
algorithm. Next, when t1 < T ≤ t2, the algorithm pays at most 4 · ε5 · OPT(T̂) until t = t1 and then
pays at most

(
1 + ε

5

)
· OPT(T̂) for the solution OPT(t2), which adds up to at most (1 + ε) · OPT(T̂).

In contrast, the optimal cost is OPT(T); hence, the competitive ratio is (1 + ε) · OPT(T̂)
OPT(T) . Finally, when

T > t2, then let τj ≤ T < τj+1. The algorithm pays at most(
1 + ε+ 2 + . . . 2j+1

)
OPT(T̂) ≤ 2j+2 · OPT(T̂),

while the optimal cost is at least 2j · OPT(T̂). Hence, the competitive ratio is ≤ 4.

Proof of Lemma 5. We note that for all values y, the competitive ratio is upper bounded by 1 + ε+
3 · `ε(ŷ, y), where `ε(ŷ, y) is the ε-parameterized competitive error of ŷ. So, the expected competitive
ratio is ≤ 1 + ε+ 3 · ERD,ε(f̂).

Proof of Lemma 9. Let the predicted log-cost be ŷ = fA(x). Let φ(ŷ) be the sum total of the costs
of solutions bought by A till the optimal log-cost reaches ŷ. Clearly φ(ŷ) ≥ eŷ . Since the algorithm
A can be possibly randomized, let eŷ ≤ φ(ŷ) ≤ eŷ+ε with probability α over the distribution chosen
by A.

We define the distribution D as: X is just the singleton set {x0} and Y = {ŷ, ŷ · (1 + ε)}. The
distribution D assigns probability 1 − ε to (x0, ŷ) and ε to (x0, ŷ · (1 + ε)) (note that the optimal
cost is eŷ and eŷ·(1+ε) in these cases respectively). Note that D and fA satisfy ERD,ε(f̂A) = ε. The
expected competitive ratio of A is a least

CR ≥ (2α+ 1−α) · ε+α · (1− ε) + (1− ε) · (1−α) · (1 + ε) = 1 + ε− (1−α) · ε2 ≥ 1 +
ε

2
.

23

Proof of Lemma 10. Let χ(ε) = minf∈F ERD,ε(f). Note that, χ(ε) is non-increasing in ε, and
limε→0 χ(ε) > 0. Since `ε(·, ·) ≤ 5

ε − 1, we have χ(2) < 2. Therefore, there must exist ∆F ∈ (0, 2)
such that:

∆F = min
f∈F

ERD,∆F (f)

The uniqueness follows from the monotonicity of the function χ(.)

Proof of Theorem 14. We show this theorem by using the following lemma:

Lemma 25. Let A denote Algorithm 4. Then

CRA(x, y) =

{
4 when y ≤ ln 5

ε − ŷ or y > ŷ + ln
(
1 + ε

5

)
(1 + ε) · eŷ−y otherwise

Proof. The proof follows from Lemma 4 by noting that ey = OPT(T), eŷ = OPT(T̂), and OPT(t1) =
ε
5 · e

ŷ, OPT(t2) = (1 + ε
5) · eŷ.

Theorem 14 now follows by noting that the worst case is when y just exceeds t1, i.e., when y =
ln 5

ε − ŷ.

D Inadequacy of Traditional Loss Functions

In this section, we motivate the use of asymmetric loss function (Definition 6) by showing that an
algorithm which uses predictions from a learner minimizing a symmetric loss function, such as
absolute loss or squared loss, would have a large competitive ratio. The intuition is that if we err on
either side of the true value of T by the same amount, the competitive ratio in the two cases does
not scale in the same manner. To formalize this intuition, we define a class of distributions D∆,
parameterized by ∆ > 0, which are symmetric around a real c; more concretely this distribution
places equal weight on {c−∆, c+ ∆}. Any algorithm relying on a symmetric loss function would
always predict c. In such a case, the online algorithm A has no new information. However, if ∆ is
large, an offline algorithm is better off buying the solution till c−∆ first, whereas if ∆ is small, it
should buy the solution for c+ ∆ in the first step. An algorithm which relies only on c would err in
one of these two cases. This idea is formalized in Lemma 26. Our second result (Lemma 27) shows
that predicting log-loss within an additive ε factor may result in a 1 + Ω (

√
ε) expected competitive

ratio. This further bolsters the case for the loss function as in Definition 6.
Lemma 26. LetA be an algorithm that uses predictions made by a learner that minimizes symmetric
error. Then, one of the following statements is true:

1. E(x,y)∼D∆
[CRA(x, y)] is Ω(e∆) when ∆ ≥ 4.

2. E(x,y)∼D∆
[CRA(x, y)] ≥ 1 + Ω(1), when ∆ = ε, with ε being an arbitrarily small positive

real number.

Proof. We define a family of distributions D∆, parameterized by ∆, 0 ≤ ∆ ≤ c, where c is a large
enough constant, as follows:

Definition 12. Let X denote the singleton set {x0} and Y denote {c−∆, c+ ∆}. The distribution
D∆ on X× Y assigns probability 1

2 to both (x0, c−∆) and (x0, c+ ∆).

Ideally, we would want an algorithm A to satisfy E(x,y)∼D∆
[CRA(x, y)]→ 0 when ∆→ 0, while

still maintaining a worst-case result like E(x,y)∼D∆
[CRA(x, y)] ≤ O(1). The following construction

shows that using a symmetric loss function would not be helpful. Suppose we use a learner that
outputs the function which minimizes a symmetric loss function. Then given samples from D∆, such
a learner will always yield ŷ = c as the prediction.

Since the feature is fixed, the behavior of the algorithm is independent of the feature and hence, it
only needs to decide on a list of solutions that it will progressively buy. Let τ be the cost of the first
solution bought by A that lies inside the interval [ec−∆, ec+∆] where ŷ = c is the predicted log-cost
that has been supplied to the algorithm.

24

There are two possible cases for τ :

(i) τ ≥ ec: With probability 1
2 , the competitive ratio is ec

ec−∆ = e∆. Hence, E [CRA(x, y)] ≥
1+e∆

2 . Observe that if ∆ ≥ 4, then E [CRA(x, y)] is Ω(e∆), and hence unbounded.

(ii) τ < ec: With probability 1
2 , y = c+ ∆, in which case the competitive ratio is ec+ec+∆

ec+∆ =

1 + e−∆. Therefore, E [CRA(x, y)] is 1 + e−∆

2 = 1 + Ω(1), even when ∆ is an arbitrarily
small positive ε.

It is worth noting that if we use the loss function as in Definition 6, then Algorithm 4 has expected
competitive ratio 1+O(ε) when ∆ ≤ ε. Further, this algorithm defaults to DOUBLE when ∆ = Ω(1),
and hence has bounded competitive ratio in this case.

We also show that any algorithm which relies on a predictor of log-cost which has an ε bound on
the absolute loss must incur 1 + Ω(

√
ε) expected competitive ratio. Comparing this result with

Theorem 12 shows that our loss function defined as in Definition 6 gives better competitive ratio
guarantees.
Lemma 27. Let A be a learning-augmented algorithm for ONLINESEARCH, that has access to
a predictor P : X 7→ [0, H] that predicts the log-cost y. Moreover, the only guarantee on P
is that E(x,y)∼D [|P (x)− y|] ≤ ε. Then there is a distribution D and a predictor P such that

E(x,y)∼D [CRA(x, y)] ≥ 1 +
√
ε

2 .

Proof. Fix an algorithmA. Given the prediction ŷ = 1, the algorithm outputs a (randomized) strategy
for buying optimal solutions at several time steps. Let φ be the sum total of the costs of the solutions
bought by the algorithm before the cost of the optimal solution reaches e. Clearly φ ≥ e. Let α
denote the probability that φ ∈ [e, e1+

√
ε], where the probability is over the distribution chosen by A.

We define the distribution D as follows: X is just the singleton set {x0} and Y = {1, 1 +
√
ε}. The

distribution D assigns probability 1−
√
ε to (x0, 1) and

√
ε to (x0, 1 +

√
ε) (note that the optimal

cost is e and e1+
√
ε in these cases respectively). Note that ED[y] is 1 + ε. Consider the predictor P

which outputs the prediction ŷ = 1, and therefore satisfies the condition E(x,y)∼D [|P (x)− y|] ≤ ε.
The expected competitive ratio of A is a least

(1−
√
ε)
[
α · 1 + (1− α) · e

√
ε
]

+

√
ε

[
α
e+ e1+

√
ε

e1+
√
ε

+ (1− α) · 1

]

Approximating e
√
ε by 1 +

√
ε, the above expression simplifies to

1 +
√
ε− ε ≥ 1 +

√
ε

2
.

25

